MPC5xxx知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

MPC5xxx Knowledge Base

标签

讨论

排序依据:
******************************************************************************** * Detailed Description: * * * This example shows synchronization between eTimer, CTU and ADC modules. * The eTimer0 module timer 2 is initialized to generate PWM signal, and rising edge * of this signal is used to generate trigger signal for CTU module. The CTU module * use one command list with 4 ADC_0 channels. Single conversion mode is used, * so ADC0 ch0, ch1, ch2 and ch3 are sampled. * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * * EVB connection: * * P8.1  - A[0]  .. GPIO output, used to see CTU-ADC ISR period * P9.1     - B[7]  .. ADC0 AN[0] input * P9.2     - B[8]  .. ADC0 AN[1] input * P16.4 - I[3] .. CTU0 EXT TRG output * * see CTU0 EXT TRG output signal (toggle on each trigger) on P16.4 with respect of eTimer PWM signals. * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * This example initializes SMPU_0 and SMPU_1 to cover all memory resources for * all masters. * Simple test case is used in this example: after initialization, SMPU * configuration is changed to disable write access to last 4kB of RAM. * Once this area is written by CPU, exception will occur due to access * violation. * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N81M * Target :  SRAM * Fsys:     160 MHz PLL * ********************************************************************************
查看全文
This example follows application notes AN3283 and AN4365. It is intended for users who develop own JTAG programmer. It shows how to implement basic functions: - enter debug mode during reset - enable external debug mode - OnCE access to GPR, SPR and memory - Nexus access to memory The example is written in PRACTICE script language using Trace32 debugger from Lauterbach (www.lauterbach.com). Low level functions for JTAG are used, so users can see sequences of ‘0’s and ‘1’s which are sent to JTAG interface. Used commands are described in this document: www2.lauterbach.com/pdf/general_ref_j.pdf This example was tested on MPC5607B device and VLE instruction set was used for OnCE access.
查看全文
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes interrupts, blinking one LED by interrupt, second LED by software * loop (by second core), initializes and display notice via UART terminal and * then terminal ECHO. * The example configures the device for maximum performance (OPTIMIZATIONS_ON). * For XPC567XKIT516 it initializes EBI for mounted external SRAM device. * * ------------------------------------------------------------------------------ * Test HW:         XPC567XKIT516 - MPC567xADAT516 Rev.D, MPC567XEVBFXMB Rev.C * MCU:             PPC5676RDMVY1 3N23A * Terminal:        19200-8-no parity-1 stop bit-no flow control on eSCI_A * Fsys:            180MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          RAM, internal_FLASH * EVB connection:  ETPUC0(J24-0) -> USER_LED_8 (J5-8) *                  ETPUC1(J24-1) -> USER_LED_7 (J5-7)(to see blinking LEDs) * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * * Example gives possible implementation of input signal period/freq measurement. * eTimer channel capture 1 and 2 features are used. CAPT1/CAPT2 capture counter * value on rising/falling edge of input signal. The FIFO is set to 2 entries * and ICF2 is monitored. Free-running mode is used here. * * eTimer channel 0-1 are cascaded to achieve 1sec/1Hz measuring with 32bit counter. * * DMA is used to read CAPT1/2 registers and form 32bit values used in calculation. * * EVB connection: *   P8.2  - A[1]  .. eTimer0 channel1 input signal *   P8.1  - A[0]  .. GPIO output, used to show measurement period * *   Route LINFlexD_0 TXD/RXD (PB2/PB3) signals to the main board RS-232 transceiver *   Daughtercard: *   J17.11–12 ON  .. Connect LINFlexD_0 TXD (PB2) to main board. *   J17.8–9 ON .. Connect LINFlexD_0 RXD (PB3) to main board. * *   Motherboard *   J14 - SCI_RX ON *   J13 - SCI_TX ON *   J25 - SCI_PWR ON * * connect pulse signal to the P8.2. * See results on PC terminal (19200, 8N1, None). * Change freq/duty of input signal. * * ------------------------------------------------------------------------------ * Test HW:  MPC5744P * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * Terminal: 19200, 8N1, None ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * This example shows how to configure Wake up unit and CAN sampler. * Once the device is woken up from STOP mode by falling edge on CAN0RX pin, * the CAN sampler starts to sample this pin in given period. * FlexCAN module is not initialized and used in this example because the CAN * sampler is independent of FlexCAN. * ------------------------------------------------------------------------------ * Test HW:  XPC56xxMB2 + XPC560B 176LQFP, PPC5607B * Target :  internal_FLASH, RAM * Fsys:     64 MHz PLL * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * This example shows, how to use overlay feature - how to remap SRAM over Flash. * The remapping is visible only in mirrored flash address space. Normal address * space is not affected. * To see effect of the remapping, read the comments and watch following * addresses in debugger before and after executing Overlay() function: * * SRAM over Flash test case: * 0x4003_0000 * 0x090C_0000 * * Test HW: X-MPC5744PE257DC, MPC57xx motherboard * MCU: PPC5744PFMMM8 1N65H * Fsys: 200 MHz * Debugger: Lauterbach Trace32 * Target: internal_FLASH (debug mode, release mode) * EVB connection: none * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Purpose of the example is to show how to simulate Multi-bit or Single-bit ECC * error in FlexCAN RAM (user must choose it in the option at the end of * main function). * Example configures FlexCAN module, initializes ECC for all FlexCAN RAMs, then * it injects ECC error to the Message Buffer 9. * When corrupted data is accessed the IVOR1 exception handler is called in case * of multi-bit ECC error (IVOR1 exception occurs) and FCCU_Alarm_Interrupt * handler is called in case of single-bit ECC error (FCCU interrupt occurs). * Both function calls MEMU handler. * Reported FlexCAN ECC error address is corrected according RM, section 7.12.2.3 * The example displays notices in the terminal window (connector J19 on * MPC57xx_Motherboard)(19200-8-no parity-1 stop bit-no flow control on eSCI_A). * No other external connection is required. * ------------------------------------------------------------------------------ * Test HW: MPC57xx_Motherboard + MPC5744P-144DC * MCU: PPC5744PFMLQ8,0N15P,QQAA1515N, Rev2.1B * Fsys: 200 MHz PLL with 40 MHz crystal reference * Debugger: Lauterbach Trace32 * Target: internal_FLASH, RAM * Terminal: 19200-8-no parity-1 stop bit-no flow control * EVB connection: default ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Initializes eQADC module, performs calibration and converts channel 146 * (voltage level of VDD) to check core voltage level and displays it into * terminal window. No external connection required excluding terminal via eSCI. * * ------------------------------------------------------------------------------ * Test HW:        XPC564AKIT208S and XPC564AKIT324S * MCU:            SPC5644AMMG1,0M14X and SPC5644AMVZ1,0M14X * Fsys:           150/132/120/12 MHz * Debugger:       Lauterbach Trace32 *                 PeMicro USB-ML-PPCNEXUS * Target:         RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection: default * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * * This example shows how to use CRC module. * - CRC32 is used * - byte stream is written into input register * - one test case uses direct access to CRC registers * - second test case uses DMA to write the data stream * - the results can be compared using this online calculator: *   http://www.zorc.breitbandkatze.de/crc.html * - screenshots from online calculator are attached * ------------------------------------------------------------------------------ * Test HW:         MPC574XG-324DS Rev.A + MPC574XG-MB Rev.C * MCU:             PPC5748GMMN6A 1N81M * Fsys:            160 MHz PLL * Debugger:        Lauterbach Trace32 * Target:          internal_FLASH ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * This example shows, how to use interrupt hardware vector mode. In the example * PIT0 interrupt and external interrupt source 1 are implemented. PIT interrupt * toggle LED every second, external interrupt causes IVOR1 exception. * * This example also shows, how to use exceptions, while HW vector mode is used. * After SW1 button is pressed, uninitialized RAM is read and IVOR1 exception is * reached. In IVOR1, only endless loop is implemented and micro has to be reset * externally if you want to get out from this loop. * * * For correct HW vector mode setup, following files was added to the project: * *  - exceptions.s *  - handlers_vle.s *  - HW_vector.c * * * Following files was modified (all changes are marked by comment): * *  - mem.ld *  - sections.ld *  - Vector.c *  - MPC57xx__Interrupt_Init.c * * *  Following files was removed from project (files are still place in project, but *  not compiled and linked) * *  - intc_sw_handlers.S *  - intc_SW_mode_isr_vectors_MPC5744P.c * * * * Test HW:         X-MPC5744P-144DC, MPC57xx motherboard * MCU:             PPC5744PFMLQ8 0N15P * Fsys:            200 MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          internal_FLASH (debug mode, release mode) * EVB connection:  User LED 1 connected to A0 (P8.0), *                    User switch SW1 connected to A1 (P8.1) * * * ------------------------------------------------------------------------------ * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * * * This example shows usage of FlexPWM and Sine Wave generator (SGEN) modules. * The setting is selected in the way to have a PWM output signal synhronized with * SWG output signal. This is necessary for resolver usage in motor control appls. * The CTU_0 is triggered from FlexPWM_0's. The PMWB output rising edge is used here. * The CTU generates the eTIMER1_TRG signal, that is a trigger signal for the * SGEN module. The delay between PWMB and SGEN trigger is changed so you can see * the generated sinusoidal signal change phase against the PWMB output. * * See attached Excel sheet for calculation of parammeters used here (AUX0_clk_DIV0, * AUX0_clk_DIV1, SGEN_IOFREQ, PWM_PRESCALER, PWM_MODULO). * * This example is set for 9.765625KHz SGEN/PWM frequency. * * Note  because the SGEN trigger input is an asynchronous signal, it must be held high * for at least 2 SGEN clock cycles in order to capture the input trigger. * As the CTU generates the trigger as a pulse of single CTU clock width, the CTU clock must be * half of the SGEN clock at least. * * Use the AUX0_clk_DIV0 to test this behaviour. * * * ------------------------------------------------------------------------------ * Test HW:  MPC57xx * Maskset:  1N65H * Target :  internal_FLASH * Fsys:     200 MHz PLL with 40 MHz crystal reference * * EVB connection: * * P11.8 - D[7] .. SGEN output *          connected to FEC PHY's MIIMODE input on motherboard, *          to see full amplitude remove J26    * * P8.12    - A[11] .. FlexPWM A[0] output * P8.11    - A[10] .. FlexPWM B[0] output * * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * * Application initializes SPI0 module as a master and SPI2 module as a slave. * Data are sent from master to slave and from slave to master. Simple * polling method is used to determine, when data were sent/received. * Received data are saved to global variables. * * ------------------------------------------------------------------------------ * Test HW:         MPC5777M-512DS, MPC57xx Motherboard * MCU:             PPC5777MQMVA8 0N78H * Fsys:            PLL0 300MHz *                    PLL1 300MHz * Debugger:        Lauterbach Trace32 *                  PeMicro USB-ML-PPCNEXUS * Target:          internal_FLASH (debug mode, debug_ram mode, release mode) * EVB connection:  P18.12 to P14.13 (CS_0) *                    P11.4 to P8.13 (SCK) *                    P11.1 to P11.5 (SOUT - SIN) *                    P11.8 to P12.9 (SIN - SOUT) * * ********************************************************************************
查看全文
* Version: 1.1 * Date: Sep-22-2021 * Classification: General Business Information * Brief: This example content a basic PMPLL initialization and * configuration of Mode Entry module and Clock Generation * module. By default active is core 2 -> e200z4 ******************************************************************************** ******************************************************************************** * Detailed Description: * ------------------------------------------------------------------------------ * Test HW: MPC57xx + S32R274RRUEVB * Maskset: 1N58R * Target : internal_FLASH * Fsys: 240 MHz PLL with 40 MHz crystal reference for z7 and 120MHz for z4 * ******************************************************************************** Revision History: 1.0 Apr-02-2019 b21190(Vlna Peter) Initial Version 1.1 Sep-22-2021 b21190(Vlna Peter) FCCU fault reading
查看全文
Demo application MPC5606S-DEMO + LM75B + HIH-5030 + PCA8565 + GUI Simple weather station demo using 2 external sensors and  external real time clock/calendar   For detailed description SEE ATTACHED document. ------------------------------------------------------------------------------ Test HW:            MPC5606S-DEMO-V2 + LM75BD + HIH-5030 + PCA8565 sensors MCU:             PPC5606SEF OMLU 0M25V DD68391 XOTAC1003 Fsys:            64MHz Debugger:        Lauterbach Trace32 Target:          internal_FLASH Terminal:        none EVB connection:  1) Temperature sensor LM75B:                        J51.40 - F[6] -> LM75B SDA                        J51.43 - F[7] -> LM75B SCL                        J52.1  - 3.3V -> LM75B Vcc                        J50.1  - GND  -> LM75B Gnd                   2) Humidity sensor HIH-5030:                        J52.1  - 3.3V -> HIH-5030 Ve+                        J50.1  - GND  -> HIH-5030 Ve-                        J50.1  - ANS0 -> HIH-5030 Out                   3) External Real Time Clock:                        J51.40 - F[6] -> PCA8565 SDA                        J51.43 - F[7] -> PCA8565 SCL                        J52.1  - 3.3V -> PCA8565 Vcc                        J50.1  - GND  -> PCA8565 Gnd                                        *******************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Initializes eQADC module, performs calibration and converts channel 0 and * displays results into terminal window by interrupt service routine. Analog * input AN[0] requires external connection to converted voltage (potentiometer). * ------------------------------------------------------------------------------ * Test HW:        MPC5554EVB * MCU:            MPC5554MVR132 * Fsys:           132/112/80/12 MHz * Debugger:       Lauterbach Trace32 *                 PeMicro USB-ML-PPCNEXUS * Target:         RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection: USER_DEV pin RV2(i.e. pin8) -> pin B7 on I/O header ring *                 (potentiometer RV2 to analog input AN[0])   * ********************************************************************************
查看全文
******************************************************************************** * Detailed Description: * Application performs basic initialization, setup PLL to maximum allowed freq., * initializes interrupts, blinking one LED by interrupt, second LED by software * loop, initializes and display notice via UART terminal and then terminal ECHO. * The example configures the device for maximum performance (OPTIMIZATIONS_ON). * * ------------------------------------------------------------------------------ * Test HW:        MPC5554EVB * MCU:            MPC5554MVR132 * Fsys:           132/112/80/12 MHz * Debugger:       Lauterbach Trace32 *                 PeMicro USB-ML-PPCNEXUS * Target:         RAM, internal_FLASH * Terminal:       19200-8-no parity-1 stop bit-no flow control on eSCI_A * EVB connection: TPU_PORT_37 -> USER_LED_8 *                 TPU_PORT_38 -> USER_LED_7 (to see blinking LEDs)   * ********************************************************************************
查看全文
Document describes possible reasons of result swap in eQADC's result FIFO and how to avoid it. Very preliminary version!
查看全文
This example enters the MCU into STANDBY0 low power mode and wakes up to backup SRAM. The WKPU6 (PE[0]pin) is used to wake up the MCU.   Regards, Petr   ******************************************************************************** * Detailed Description: * * On the EVB use KEY2 to enter Standby. * Use KEY1 to wake up from Standby to a code in backup SRAM. * * In RUN mode the LED1 blinks very fast, second core toggels LED3 * In STANDBY all LEDs are off. * The wakeup code blinks LED1 and LED2 slowly. * * The macro WKP_CORE is used to select which core is used after MCU wakes up. * When z4 core is selected, it is also necessary to set the MMU otherwise exception * is generated when uncovered memory area is accessed. * This is not needed for z0 core due to lack of the MMU.  * * * ------------------------------------------------------------------------------ * Test HW:  XPC56xxMB2 + XPC564xB/C, SPC5646C 0N32E silicon * Target :  internal_FLASH * Fsys:     120 MHz PLL0 ********************************************************************************
查看全文
The device can be secured by adding a Non-Volatile System Censorship Information (NVSCI) record to the DCF record list in the UTEST Flash block. A value of 55AAh in the censorship control word of the NVSCI record determines that the device is unsecured, any other value determines that the device is secured.   Censoring the device (example for lauterbach script) 1. Program NVSCI DCF record to first available space in UTEST memory.    data.set 0x00400308 %QUAD 0x55AA12340100000C ;NVSCI - Censorship Control enabled 2. Program Censorship password (0x1234567812345678)    data.set 0x00400310 %QUAD 0x1234567801000004 ;NVPWDL                                                            data.set 0x00400318 %QUAD 0x1234567801000008 ;NVPWDH    3. Perform reset   Now the device is censored and JTAG PASSWORD must be inserted in order to work with JTAG. Lauterbach ->   sys.option.keycode 0x1234567812345678 sys.attach sys.break The device is now accessible trough JTAG.   " After every reset the JTAG PASSWORD key must be reentered on censored device "   Uncensoring device: data.set 0x004003018 %QUAD 0x55AA55AA0100000C ;NVSCI - Censorship Control disabled   NOTE:   Peter Original Attachment has been moved to: MPC5744P_DCF_Censorship.cmm.zip
查看全文