How to use the object detection model trained by eiq on imx8mp board or pc?

キャンセル
次の結果を表示 
表示  限定  | 次の代わりに検索 
もしかして: 

How to use the object detection model trained by eiq on imx8mp board or pc?

1,233件の閲覧回数
taotaowang
Contributor I

Hello,

I trained a model according with "eIQ_Toolkit_UG.pdf" followed below routine. 

import my dataset -> select model -> detection -> balanced -> npu -> trainer -> validate -> deploy -> export model -> tensorflow lite model saved.

Below is the validate result. 

taotaowang_0-1696902574578.png

below is the export model sumarry.

taotaowang_1-1696902783100.png

Model property is like below.

taotaowang_2-1696902857616.png

As upper properties display, this model output name is StatefulPartitionedCall and type is float32[1,2034,7] , But where can i get the output_data defination?  How can i use this model in my inference program?

In my inference program i used below codes to get the inference result but it seems not correct.

 

  output_data = interpreter.get_tensor(output_details[0]['index'])
  print(output_data)
  for i in range(output_data.shape[1]):
        score = output_data[0][i][0]
        class_id = output_data[0][i][1]
        x_min = output_data[0][i][2]
        y_min = output_data[0][i][3]
        x_max = output_data[0][i][4]
        y_max = output_data[0][i][5]
        other = output_data[0][i][6]
 
Please give me some advises about the eiq detection model inference realization.
 
Thanks !
Taotao Wang

 

 

0 件の賞賛
返信
2 返答(返信)

280件の閲覧回数
jake4
Contributor I

Hi @Zhiming_Liu 

In the  eIQ Documentationcouldnt find this information.

We use the eiqtool for training a object_detection model with mobilenet ssd v3 for a imx8mp NPU.

The example given in eIQ_Toolkit_v1.16.0\workspace\models\mobilenet_ssd_v3\mobilenet_ssd_v3.ipynb

the inference is done by using the RTview and tensorflow, which our imx8mp we dont want to include . We would like to use the tensorflow lite inference.

We get a output of tensor (Since I have 1 class ) 

name: StatefulPartitionedCall:0
tensor: float32[1,2034,6]
location: 392
 

By splitting into scores and bounding box for each (1, 2034, 2), (1, 2034, 4)

And then follow the output treatment as in mobilenet_ssd_v3.ipynb, we dont get the bounding boxes and the scores as expected.

So wondering, whats the output format signature is?

We could guess (from https://community.nxp.com/t5/eIQ-Machine-Learning-Software/How-to-interpret-the-output-from-a-mobile...

The model predicts 2034 detections per class. The [1,2034,4] tensor corresponds to the box locations in terms of pixels [top, left, bottom, right] of the objects detected.

And [1,2034,2] tensor corresponds to scores of our class and background.

 

We couldnt get a correct meaningful output from the model trained by the eiq tool, which seem to follow a unique way of combining the outputs bounding boxes, that can be only interpreted by the rtview engine. But can we have a detailed explanation of the output. And example to show without using rtview or tensorflow libs?

Thanks.

タグ(1)
0 件の賞賛
返信

1,176件の閲覧回数
Zhiming_Liu
NXP TechSupport
NXP TechSupport

Please refer the eIQ document with HELP-->eIQ Documentation

0 件の賞賛
返信
%3CLINGO-SUB%20id%3D%22lingo-sub-1736135%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3Eeiq%20%E3%81%A7%E3%83%88%E3%83%AC%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%81%97%E3%81%9F%E3%82%AA%E3%83%96%E3%82%B8%E3%82%A7%E3%82%AF%E3%83%88%E6%A4%9C%E5%87%BA%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%20imx8mp%20%E3%83%9C%E3%83%BC%E3%83%89%E3%81%BE%E3%81%9F%E3%81%AF%20PC%20%E3%81%A7%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8B%E3%81%AB%E3%81%AF%E3%81%A9%E3%81%86%E3%81%99%E3%82%8C%E3%81%B0%E3%82%88%E3%81%84%E3%81%A7%E3%81%97%E3%82%87%E3%81%86%E3%81%8B%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-1736135%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AF%E3%80%81%3C%2FP%3E%3CP%3E%E7%A7%81%E3%81%AF%E4%BB%A5%E4%B8%8B%E3%81%AE%E3%83%AB%E3%83%BC%E3%83%81%E3%83%B3%E3%81%AB%E5%BE%93%E3%81%A3%E3%81%A6%E3%80%8CeIQ_Toolkit_UG.pdf%E3%80%8D%E3%81%AB%E5%BE%93%E3%81%A3%E3%81%A6%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E3%83%88%E3%83%AC%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%81%97%E3%81%BE%E3%81%97%E3%81%9F%E3%80%82%3C%2FP%3E%3CP%3E%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88%E3%82%92%E3%82%A4%E3%83%B3%E3%83%9D%E3%83%BC%E3%83%88%20-%26gt%3B%20%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E9%81%B8%E6%8A%9E%20-%26gt%3B%20%E6%A4%9C%E5%87%BA%20-%26gt%3B%20%E3%83%90%E3%83%A9%E3%83%B3%E3%82%B9%20-%26gt%3B%20NPU%20-%26gt%3B%20%E3%83%88%E3%83%AC%E3%83%BC%E3%83%8A%E3%83%BC%20-%26gt%3B%20%E6%A4%9C%E8%A8%BC%20-%26gt%3B%20%E3%83%87%E3%83%97%E3%83%AD%E3%82%A4%20-%26gt%3B%20%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E3%82%A8%E3%82%AF%E3%82%B9%E3%83%9D%E3%83%BC%E3%83%88%20-%26gt%3B%20Tensorflow%20Lite%20%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E4%BF%9D%E5%AD%98%E3%81%97%E3%81%BE%E3%81%97%E3%81%9F%E3%80%82%3C%2FP%3E%3CP%3E%E4%BB%A5%E4%B8%8B%E3%81%AF%E6%A4%9C%E8%A8%BC%E7%B5%90%E6%9E%9C%E3%81%A7%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22taotaowang_0-1696902574578.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22taotaowang_0-1696902574578.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F244193iBAC19A2C9A259C10%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22taotaowang_0-1696902574578.png%22%20alt%3D%22taotaowang_0-1696902574578.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%E4%BB%A5%E4%B8%8B%E3%81%AF%E8%BC%B8%E5%87%BA%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AE%E6%A6%82%E8%A6%81%E3%81%A7%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22taotaowang_1-1696902783100.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22taotaowang_1-1696902783100.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F244194iFB1952283A999213%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22taotaowang_1-1696902783100.png%22%20alt%3D%22taotaowang_1-1696902783100.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%E3%83%A2%E3%83%87%E3%83%AB%E3%83%97%E3%83%AD%E3%83%91%E3%83%86%E3%82%A3%E3%81%AF%E4%BB%A5%E4%B8%8B%E3%81%AE%E3%82%88%E3%81%86%E3%81%AB%E3%81%AA%E3%82%8A%E3%81%BE%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%3CSPAN%20class%3D%22lia-inline-image-display-wrapper%20lia-image-align-inline%22%20image-alt%3D%22taotaowang_2-1696902857616.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cspan%20class%3D%22lia-inline-image-display-wrapper%22%20image-alt%3D%22taotaowang_2-1696902857616.png%22%20style%3D%22width%3A%20400px%3B%22%3E%3Cimg%20src%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2Fimage%2Fserverpage%2Fimage-id%2F244195iDD439CE97B54A530%2Fimage-size%2Fmedium%3Fv%3Dv2%26amp%3Bpx%3D400%22%20role%3D%22button%22%20title%3D%22taotaowang_2-1696902857616.png%22%20alt%3D%22taotaowang_2-1696902857616.png%22%20%2F%3E%3C%2Fspan%3E%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%E4%B8%8A%E9%83%A8%E3%81%AE%E3%83%97%E3%83%AD%E3%83%91%E3%83%86%E3%82%A3%E3%81%AB%E8%A1%A8%E7%A4%BA%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E3%82%88%E3%81%86%E3%81%AB%E3%80%81%E3%81%93%E3%81%AE%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AE%E5%87%BA%E5%8A%9B%E5%90%8D%E3%81%AF%3CSTRONG%3EStatefulPartitionedCall%E3%80%81%E5%9E%8B%E3%81%AFfloat32%5B1%2C2034%2C7%5D%E3%81%A7%E3%81%99%E3%80%82%E3%81%97%E3%81%8B%E3%81%97%E3%80%81output_data%E3%81%AE%E5%AE%9A%E7%BE%A9%E3%81%AF%E3%81%A9%E3%81%93%E3%81%A7%E5%85%A5%E6%89%8B%E3%81%A7%E3%81%8D%E3%81%BE%E3%81%99%E3%81%8B%EF%BC%9F%E3%81%93%E3%81%AE%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E6%8E%A8%E8%AB%96%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%A0%E3%81%A7%E3%81%A9%E3%81%AE%E3%82%88%E3%81%86%E3%81%AB%E4%BD%BF%E7%94%A8%E3%81%99%E3%82%8C%E3%81%B0%E3%82%88%E3%81%84%E3%81%A7%E3%81%97%E3%82%87%E3%81%86%E3%81%8B%EF%BC%9F%3C%2FSTRONG%3E%3C%2FP%3E%3CP%3E%3CSTRONG%3E%E7%A7%81%E3%81%AE%E6%8E%A8%E8%AB%96%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%A0%E3%81%A7%E3%81%AF%E3%80%81%E6%8E%A8%E8%AB%96%E7%B5%90%E6%9E%9C%E3%82%92%E5%8F%96%E5%BE%97%E3%81%99%E3%82%8B%E3%81%9F%E3%82%81%E3%81%AB%E4%BB%A5%E4%B8%8B%E3%81%AE%E3%82%B3%E3%83%BC%E3%83%89%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%BE%E3%81%97%E3%81%9F%E3%81%8C%E3%80%81%E6%AD%A3%E3%81%97%E3%81%8F%E3%81%AA%E3%81%84%E3%82%88%E3%81%86%E3%81%A7%E3%81%99%E3%80%82%3C%2FSTRONG%3E%3C%2FP%3E%3CBR%20%2F%3E%3CDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3Eoutput_data%3C%2FSPAN%3E%20%3CSPAN%3E%3D%3C%2FSPAN%3E%3CSPAN%3E%E3%82%A4%E3%83%B3%E3%82%BF%E3%83%BC%E3%83%97%E3%83%AA%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E.get_tensor(%3C%2FSPAN%3E%20%3CSPAN%3Eoutput_details%3C%2FSPAN%3E%20%3CSPAN%3E%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3E'index'%3C%2FSPAN%3E%20%3CSPAN%3E%5D)%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3E%E5%8D%B0%E5%88%B7%3C%2FSPAN%3E%3CSPAN%3E(%3C%2FSPAN%3E%3CSPAN%3E%E5%87%BA%E5%8A%9B%E3%83%87%E3%83%BC%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E)%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3Ei%20%E3%81%8C%3C%2FSPAN%3E%3CSPAN%3E%E7%AF%84%E5%9B%B2%3C%2FSPAN%3E%3CSPAN%3E%E5%86%85%3C%2FSPAN%3E%3CSPAN%3E(%3C%2FSPAN%3E%20%3CSPAN%3Eoutput_data%3C%2FSPAN%3E%20%3CSPAN%3E.shape%5B%3C%2FSPAN%3E%20%3CSPAN%3E1%3C%2FSPAN%3E%20%3CSPAN%3E%5D%20)%3C%2FSPAN%3E%3CSPAN%3E%E3%81%AE%E5%A0%B4%E5%90%88%3C%2FSPAN%3E%3A%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3E%E3%82%B9%E3%82%B3%E3%82%A2%3C%2FSPAN%3E%3CSPAN%3E%3D%3C%2FSPAN%3E%3CSPAN%3E%E5%87%BA%E5%8A%9B%E3%83%87%E3%83%BC%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3Ei%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3E%E3%82%AF%E3%83%A9%E3%82%B9ID%3C%2FSPAN%3E%20%3CSPAN%3E%3D%3C%2FSPAN%3E%3CSPAN%3E%E5%87%BA%E5%8A%9B%E3%83%87%E3%83%BC%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3Ei%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3E1%3C%2FSPAN%3E%20%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3Ex_min%3C%2FSPAN%3E%20%3CSPAN%3E%3D%3C%2FSPAN%3E%3CSPAN%3E%E5%87%BA%E5%8A%9B%E3%83%87%E3%83%BC%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3Ei%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3E2%3C%2FSPAN%3E%20%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3Ey_min%3C%2FSPAN%3E%20%3CSPAN%3E%3D%3C%2FSPAN%3E%3CSPAN%3E%E5%87%BA%E5%8A%9B%E3%83%87%E3%83%BC%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3Ei%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3E3%3C%2FSPAN%3E%20%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3Ex_max%3C%2FSPAN%3E%20%3CSPAN%3E%3D%3C%2FSPAN%3E%3CSPAN%3E%E5%87%BA%E5%8A%9B%E3%83%87%E3%83%BC%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3Ei%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3E4%3C%2FSPAN%3E%20%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3Ey_max%3C%2FSPAN%3E%20%3CSPAN%3E%3D%3C%2FSPAN%3E%3CSPAN%3E%E5%87%BA%E5%8A%9B%E3%83%87%E3%83%BC%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3Ei%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3E5%3C%2FSPAN%3E%20%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%26nbsp%3B%20%3C%2FSPAN%3E%3CSPAN%3E%E3%81%9D%E3%81%AE%E4%BB%96%3C%2FSPAN%3E%3CSPAN%3E%3D%3C%2FSPAN%3E%3CSPAN%3E%E5%87%BA%E5%8A%9B%E3%83%87%E3%83%BC%E3%82%BF%3C%2FSPAN%3E%3CSPAN%3E%5B%3C%2FSPAN%3E%20%3CSPAN%3E0%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3Ei%3C%2FSPAN%3E%20%3CSPAN%3E%5D%5B%3C%2FSPAN%3E%20%3CSPAN%3E6%3C%2FSPAN%3E%20%3CSPAN%3E%5D%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%26nbsp%3B%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3Eeiq%E6%A4%9C%E5%87%BA%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AE%E6%8E%A8%E8%AB%96%E5%AE%9F%E7%8F%BE%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6%E3%82%A2%E3%83%89%E3%83%90%E3%82%A4%E3%82%B9%E3%82%92%E3%81%8A%E9%A1%98%E3%81%84%E3%81%97%E3%81%BE%E3%81%99%E3%80%82%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%26nbsp%3B%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%E3%82%88%E3%82%8D%E3%81%97%E3%81%8F%E3%81%8A%E9%A1%98%E3%81%84%E3%81%97%E3%81%BE%E3%81%99%EF%BC%81%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%3E%3CSPAN%3E%E3%83%AF%E3%83%B3%E3%83%BB%E3%82%BF%E3%82%AA%E3%82%BF%E3%82%AA%3C%2FSPAN%3E%3C%2FDIV%3E%3C%2FDIV%3E%3CBR%20%2F%3E%3CBR%20%2F%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-2148289%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%20translate%3D%22no%22%3ERe%3A%20How%20to%20use%20the%20object%20detection%20model%20trained%20by%20eiq%20on%20imx8mp%20board%20or%20pc%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-2148289%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AF%3CA%20href%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2Fuser%2Fviewprofilepage%2Fuser-id%2F151788%22%20target%3D%22_blank%22%3E%40Zhiming_Liu%3C%2FA%3E%3C%2FP%3E%3CP%3E%3CSTRONG%3EeIQ%20%E3%83%89%E3%82%AD%E3%83%A5%E3%83%A1%E3%83%B3%E3%83%88%3C%2FSTRONG%3E%E3%81%A7%E3%81%AF%E3%81%93%E3%81%AE%E6%83%85%E5%A0%B1%E3%81%AF%E8%A6%8B%E3%81%A4%E3%81%8B%E3%82%8A%E3%81%BE%E3%81%9B%E3%82%93%E3%81%A7%E3%81%97%E3%81%9F%E3%80%82%3C%2FP%3E%3CP%3Eimx8mp%20NPU%20%E7%94%A8%E3%81%AE%20mobilenet%20ssd%20v3%20%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6%20object_detection%20%E3%83%A2%E3%83%87%E3%83%AB%E3%82%92%E3%83%88%E3%83%AC%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%81%99%E3%82%8B%E3%81%9F%E3%82%81%E3%81%AB%20eiqtool%20%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%BE%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3EeIQ_Toolkit_v1.16.0%5Cworkspace%5C%E3%83%A2%E3%83%87%E3%83%AB%5Cmobilenet_ssd_v3%5Cmobilenet_ssd_v3.ipynb%E3%81%AB%E7%A4%BA%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E4%BE%8B%3C%2FP%3E%3CP%3E%E6%8E%A8%E8%AB%96%E3%81%AF%20RTview%20%E3%81%A8%20tensorflow%20%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%A6%E8%A1%8C%E3%82%8F%E3%82%8C%E3%81%BE%E3%81%99%E3%81%8C%E3%80%81imx8mp%20%E3%81%AB%E3%81%AF%E5%90%AB%E3%82%81%E3%81%BE%E3%81%9B%E3%82%93%E3%80%82Tensorflow%20Lite%E6%8E%A8%E8%AB%96%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%97%E3%81%9F%E3%81%84%E3%81%A8%E6%80%9D%E3%81%84%E3%81%BE%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%E3%83%86%E3%83%B3%E3%82%BD%E3%83%AB%E3%81%AE%E5%87%BA%E5%8A%9B%E3%81%8C%E5%BE%97%E3%82%89%E3%82%8C%E3%81%BE%E3%81%99%EF%BC%88%E3%82%AF%E3%83%A9%E3%82%B9%E3%81%8C1%E3%81%A4%E3%81%82%E3%82%8B%E3%81%9F%E3%82%81%EF%BC%89%3C%2FP%3E%3CDIV%20class%3D%22%22%3E%3CSPAN%20class%3D%22%22%3E%E5%90%8D%E5%89%8D%3A%20%3CSTRONG%3EStatefulPartitionedCall%3A0%3C%2FSTRONG%3E%3C%2FSPAN%3E%3C%2FDIV%3E%3CDIV%20class%3D%22%22%3E%E3%83%86%E3%83%B3%E3%82%BD%E3%83%AB%EF%BC%9A%3CSPAN%3E%26nbsp%3B%3C%2FSPAN%3E%3CSTRONG%3Efloat32%5B1%2C2034%2C6%5D%3C%2FSTRONG%3E%3C%2FDIV%3E%3CDIV%20class%3D%22%22%3E%E4%BD%8D%E7%BD%AE%EF%BC%9A%3CSPAN%3E%26nbsp%3B%3C%2FSPAN%3E%3CSTRONG%3E392%3C%2FSTRONG%3E%3C%2FDIV%3E%3CDIV%20class%3D%22%22%3E%26nbsp%3B%3C%2FDIV%3E%3CP%3E%EF%BC%881%2C%202034%2C%202%EF%BC%89%E3%80%81%EF%BC%881%2C%202034%2C%204%EF%BC%89%E3%81%AE%E3%82%B9%E3%82%B3%E3%82%A2%E3%81%A8%E5%A2%83%E7%95%8C%E3%83%9C%E3%83%83%E3%82%AF%E3%82%B9%E3%81%AB%E5%88%86%E5%89%B2%E3%81%99%E3%82%8B%E3%81%93%E3%81%A8%E3%81%AB%E3%82%88%E3%82%8A%E3%80%81%3C%2FP%3E%3CP%3E%E3%81%9D%E3%81%97%E3%81%A6%E3%80%81mobilenet_ssd_v3.ipynb%E3%81%A8%E5%90%8C%E3%81%98%E5%87%BA%E5%8A%9B%E5%87%A6%E7%90%86%E3%81%AB%E5%BE%93%E3%81%84%E3%81%BE%E3%81%99%E3%80%82%E5%A2%83%E7%95%8C%E3%83%9C%E3%83%83%E3%82%AF%E3%82%B9%E3%81%A8%E3%82%B9%E3%82%B3%E3%82%A2%E3%81%8C%E6%9C%9F%E5%BE%85%E3%81%A9%E3%81%8A%E3%82%8A%E3%81%AB%E5%BE%97%E3%82%89%E3%82%8C%E3%81%BE%E3%81%9B%E3%82%93%E3%80%82%3C%2FP%3E%3CP%3ESO%E3%80%81%E5%87%BA%E5%8A%9B%E5%BD%A2%E5%BC%8F%E3%81%AE%E3%82%B7%E3%82%B0%E3%83%8D%E3%83%81%E3%83%A3%E3%81%A8%E3%81%AF%E4%BD%95%E3%81%A7%E3%81%97%E3%82%87%E3%81%86%E3%81%8B%3F%3C%2FP%3E%3CP%3E%E6%8E%A8%E6%B8%AC%E3%81%99%E3%82%8B%E3%81%93%E3%81%A8%E3%81%AF%E3%81%A7%E3%81%8D%E3%81%BE%E3%81%99%EF%BC%88%20%3CA%20href%3D%22https%3A%2F%2Fcommunity.nxp.com%2Ft5%2FeIQ-Machine-Learning-Software%2FHow-to-interpret-the-output-from-a-mobilenet-V3-correctly%2F%22%20target%3D%22_blank%22%3Ehttps%3A%2F%2Fcommunity.nxp.com%2Ft5%2FeIQ-Machine-Learning-Software%2FHow-to-interpret-the-output-from-a-mobilenet-V3-correctly%2F%3C%2FA%3E%E3%82%88%E3%82%8A%EF%BC%89%3C%2FP%3E%3CP%3E%3CSPAN%3E%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AF%E3%82%AF%E3%83%A9%E3%82%B9%E3%81%94%E3%81%A8%E3%81%AB2034%E5%80%8B%E3%81%AE%E6%A4%9C%E5%87%BA%E3%82%92%E4%BA%88%E6%B8%AC%E3%81%97%E3%81%BE%E3%81%99%E3%80%82%5B1%2C2034%2C4%5D%E3%83%86%E3%83%B3%E3%82%BD%E3%83%AB%E3%81%AF%E3%80%81%3C%2FSPAN%3E%3CSPAN%3E%E6%A4%9C%E5%87%BA%E3%81%95%E3%82%8C%E3%81%9F%E3%82%AA%E3%83%96%E3%82%B8%E3%82%A7%E3%82%AF%E3%83%88%E3%81%AE%3C%2FSPAN%3E%E3%83%9C%E3%83%83%E3%82%AF%E3%82%B9%E3%81%AE%E4%BD%8D%E7%BD%AE%EF%BC%88%E3%83%94%E3%82%AF%E3%82%BB%E3%83%AB%E5%8D%98%E4%BD%8D%5B%3CSPAN%3E%E4%B8%8A%E3%80%81%E5%B7%A6%E3%80%81%E4%B8%8B%E3%80%81%E5%8F%B3%5D%EF%BC%89%3C%2FSPAN%3E%E3%81%AB%E5%AF%BE%E5%BF%9C%E3%81%97%E3%81%BE%E3%81%99%E3%80%82%3C%2FP%3E%3CP%3E%3CSPAN%3E%E3%81%9D%E3%81%97%E3%81%A6%5B1%2C2034%2C2%5D%E3%83%86%E3%83%B3%E3%82%BD%E3%83%AB%E3%81%AF%E7%A7%81%E3%81%9F%E3%81%A1%E3%81%AE%E3%82%AF%E3%83%A9%E3%82%B9%E3%81%A8%E8%83%8C%E6%99%AF%E3%81%AE%E3%82%B9%E3%82%B3%E3%82%A2%E3%81%AB%E5%AF%BE%E5%BF%9C%E3%81%97%E3%81%BE%E3%81%99%E3%80%82%3C%2FSPAN%3E%3C%2FP%3E%3CBR%20%2F%3E%3CP%3E%3CSPAN%3Eeiq%20%E3%83%84%E3%83%BC%E3%83%AB%E3%81%A7%E3%83%88%E3%83%AC%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%81%97%E3%81%9F%E3%83%A2%E3%83%87%E3%83%AB%E3%81%8B%E3%82%89%E3%81%AF%E3%80%81%E6%AD%A3%E3%81%97%E3%81%8F%E6%84%8F%E5%91%B3%E3%81%AE%E3%81%82%E3%82%8B%E5%87%BA%E5%8A%9B%E3%82%92%E5%8F%96%E5%BE%97%E3%81%A7%E3%81%8D%E3%81%BE%E3%81%9B%E3%82%93%E3%81%A7%E3%81%97%E3%81%9F%E3%80%82%E3%81%93%E3%81%AE%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AF%E3%80%81%E5%87%BA%E5%8A%9B%E3%81%AE%E5%A2%83%E7%95%8C%E3%83%9C%E3%83%83%E3%82%AF%E3%82%B9%E3%82%92%E7%B5%84%E3%81%BF%E5%90%88%E3%82%8F%E3%81%9B%E3%82%8B%E7%8B%AC%E8%87%AA%E3%81%AE%E6%96%B9%E6%B3%95%E3%81%AB%E5%BE%93%E3%81%A3%E3%81%A6%E3%81%84%E3%82%8B%E3%82%88%E3%81%86%E3%81%A7%E3%80%81rtview%20%E3%82%A8%E3%83%B3%E3%82%B8%E3%83%B3%E3%81%A7%E3%81%AE%E3%81%BF%E8%A7%A3%E9%87%88%E3%81%A7%E3%81%8D%E3%81%BE%E3%81%99%E3%80%82%E3%81%97%E3%81%8B%E3%81%97%E3%80%81%E5%87%BA%E5%8A%9B%E3%81%AE%E8%A9%B3%E7%B4%B0%E3%81%AA%E8%AA%AC%E6%98%8E%E3%82%92CAN%E3%81%BE%E3%81%99%E3%81%8B%E3%80%82rtview%20%E3%81%BE%E3%81%9F%E3%81%AF%20tensorflow%20%E3%83%A9%E3%82%A4%E3%83%96%E3%83%A9%E3%83%AA%E3%82%92%E4%BD%BF%E7%94%A8%E3%81%9B%E3%81%9A%E3%81%AB%E8%A1%A8%E7%A4%BA%E3%81%99%E3%82%8B%E4%BE%8B%E3%81%AF%E3%81%82%E3%82%8A%E3%81%BE%E3%81%99%E3%81%8B%3F%3C%2FSPAN%3E%3C%2FP%3E%3CP%3E%3CSPAN%3E%E3%81%82%E3%82%8A%E3%81%8C%E3%81%A8%E3%81%86%E3%81%94%E3%81%96%E3%81%84%E3%81%BE%E3%81%99%E3%80%82%3C%2FSPAN%3E%3C%2FP%3E%3C%2FLINGO-BODY%3E%3CLINGO-SUB%20id%3D%22lingo-sub-1740795%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%20translate%3D%22no%22%3ERe%3A%20How%20to%20use%20the%20object%20detection%20model%20trained%20by%20eiq%20on%20imx8mp%20board%20or%20pc%3F%3C%2FLINGO-SUB%3E%3CLINGO-BODY%20id%3D%22lingo-body-1740795%22%20slang%3D%22en-US%22%20mode%3D%22CREATE%22%3E%3CP%3E%3CSTRONG%3EHELP--%26gt%3BeIQ%20Documentation%3C%2FSTRONG%3E%E3%81%A7%20eIQ%20%E3%83%89%E3%82%AD%E3%83%A5%E3%83%A1%E3%83%B3%E3%83%88%E3%82%92%E5%8F%82%E7%85%A7%E3%81%97%E3%81%A6%E3%81%8F%E3%81%A0%E3%81%95%E3%81%84%E3%80%82%3C%2FP%3E%3C%2FLINGO-BODY%3E