Wireless Connectivity Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Wireless Connectivity Knowledge Base

Discussions

Sort by:
The connectivity software is an add-on of the Kinetis SDK, therefore the demos are referenced to a KSDK path variable named "KSDK_PATH" in IAR. The KSDK_PATH variable contains the path of the installation folder for the KSDK version in your PC. Taking as an example the MRB-KW01 SMAC Connectivity Software, we can realize that this variable is used to reference for libraries. In particular, this SMAC software for the MRB-KW01 works with KSDK 1.2, that is why you could have troubles if the variable is referenced to another KSDK version (for example KSDK 1.1). Follow the next steps to modify the KSDK_PATH variable in your computer: 1. Right click on "computer", then click "properties" 2. A Control Panel window will be opened. Click on "Advanced system settings" 3. A system Properties windows will be opened. Select the "Advanced" tab, then click "Environment Variables". 4. Select the KSDK_PATH variable and assure that it stores the correct path needed for your project. In case that you need to modify the variable, then click "Edit" 5. Finally click "Ok" to close all tabs and you will be able to run your connectivity software without problems. Best regards, Luis Burgos.
View full article
Our customer, who is considering MKW40, is asking NXP regarding max input voltage of PSWITCH and DCDC_CFG pins. Especially they plan to use buck mode with input voltage 4.2[v] as shown below. Would you comment if max voltage of PSWITCH and DCDC_CFG pins is 4.2[v] as well as DCDC_IN pin? Regards, Koichi
View full article
Introduction In some applications, is it necessary to keep updated the software running in many MCU's that take part in the system, fortunately, Over The Air Programming, it's a custom Bluetooth LE service developed to send "over the air" software updates for the KW MCU series. FRDM-KW36 SDK already provides the "otap_client" software, that can be used together with the "otap_bootloader" such as it is described in the following community post: Reprogramming a KW36 device using the OTAP Client Software to reprogram the KW36. This example can be modified to store code for another MCU and later send the software update to this device as depicted in the figure below. This post guides you on modifying the OTAP client software to support software updates for other MCU's. Preparing the OTAP client software The starting point of the following modifications is supposing that there is no need to perform over the air updates for the KW36 MCU, so the use of the "otap_bootloader" is obsolete and will be removed in this example. In other words, KW36 will be programmed only with the "otap_client" code. Open the MCUXpresso settings window (Project->Properties->"C/C++ Build->MCU settings") and configure the following fields. Save the changes. For external storage: For internal storage: Locate the "app_preinclude.h" file, and set the storage method, as follows: For external storage: #define gEepromType_d       gEepromDevice_AT45DB041E_c For internal storage: #define gEepromType_d        gEepromDevice_InternalFlash_c Locate the "main_text_section.ldt" linker script into the "linkscripts" folder, and delete it from the project.  Search in the project for "OTA_SetNewImageFlag();" and "ResetMCU();" functions in the "otap_client.c" file (source->common->otap_client->otap_client.c) and delete or comment. (For reference, there are 4 in total). Locate the following code in "OtaSupport.h" (framework->OtaSupport->Interface) and delete or comment. extern uint16_t gBootFlagsSectorBitNo;‍‍‍‍‍‍ void OTA_SetNewImageFlag(void);‍‍‍‍‍‍‍ Locate the following code in "OtaSupport.c" (framework->OtaSupport->Source) and delete or comment. extern uint32_t __BootFlags_Start__[]; #define gBootImageFlagsAddress_c ((uint32_t)__BootFlags_Start__)‍‍‍‍‍‍‍‍‍‍‍‍ #if !gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d) /*! Variables used by the Bootloader */ #if defined(__IAR_SYSTEMS_ICC__) #pragma location = "BootloaderFlags" const bootInfo_t gBootFlags = #elif defined(__GNUC__) const bootInfo_t gBootFlags __attribute__ ((section(".BootloaderFlags"))) = #elif defined(__CC_ARM) volatile const bootInfo_t gBootFlags __attribute__ ((section(".BootloaderFlags"))) = #else #error "Compiler unknown!" #endif { {gBootFlagUnprogrammed_c}, {gBootValueForTRUE_c}, {0x00, 0x02}, {gBootFlagUnprogrammed_c}, #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) {PLACEHOLDER_SBKEK}, {BOOT_MAGIC_WORD} #endif }; #endif /* !gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d) */‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ uint16_t gBootFlagsSectorBitNo; gBootFlagsSectorBitNo = gBootImageFlagsAddress_c/(uint32_t)((uint8_t*)FSL_FEATURE_FLASH_PFLASH_BLOCK_SECTOR_SIZE);‍‍‍‍ gBootFlagsSectorBitNo = gBootImageFlagsAddress_c/(uint32_t)((uint8_t*)FSL_FEATURE_FLASH_PAGE_SIZE_BYTES);‍‍‍‍ void OTA_SetNewImageFlag(void) { #if (gEepromType_d != gEepromDevice_None_c) && (!gEnableOTAServer_d || (gEnableOTAServer_d && gUpgradeImageOnCurrentDevice_d)) /* OTA image successfully written into the non-volatile storage. Set the boot flag to trigger the Bootloader at the next CPU Reset. */ union{ uint32_t value; uint8_t aValue[FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE]; }bootFlag; #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) uint8_t defaultSBKEK[SBKEK_SIZE] = {DEFAULT_DEMO_SBKEK}; #endif uint32_t status; if( mNewImageReady ) { NV_Init(); bootFlag.value = gBootValueForTRUE_c; status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.newBootImageAvailable, sizeof(bootFlag), bootFlag.aValue); if( (status == kStatus_FLASH_Success) && FLib_MemCmpToVal(gBootFlags.internalStorageAddr, 0xFF, sizeof(gBootFlags.internalStorageAddr)) ) { bootFlag.value = gEepromParams_StartOffset_c + gBootData_ImageLength_Offset_c; status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.internalStorageAddr, sizeof(bootFlag), bootFlag.aValue); } #if defined(CPU_K32W032S1M2VPJ_cm4) && (CPU_K32W032S1M2VPJ_cm4 == 1) if( status == kStatus_FLASH_Success ) { /* Write the default SBKEK for secured OTA */ status = NV_FlashProgramUnaligned((uint32_t)&gBootFlags.sbkek, SBKEK_SIZE, defaultSBKEK); } #endif if( status == kStatus_FLASH_Success ) { mNewImageReady = FALSE; } } #endif }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   At this point, the FRDM-KW36 can receive and store any image for any MCU and can request a further software update from the OTAP server device.    Adding API's to reprogram the "MCU X" on OTAP client software Once the software update has been downloaded from the OTAP Server into the OTAP Client, the developer should request the software update from the OTAP Client to the "MCU X" through a serial protocol such as UART, SPI, CAN, etc. You should develop the API's and the protocol according to the requirements for your system to send the software update to the "MCU X" (as well as the bootloader for the MCU X). The handling your protocol can be integrated into the OTAP client code replacing "ResetMCU()" (The same code removed in step 4) in the code by "APISendSoftwareUpdateToMCUX()" for instance, since at this point the image was successfully sent over the air and stored in the memory of the KW36. 
View full article
       My customer asks if QN9080 can be tested with MT887x. We co-work with Anritsu Taiwan to integrate QN9080 and MT887x to perform 1M bps, 2M bps and Frame error rate test. This document will address the QN9080 setup and MT887x connection setup. We show the 1M bps, 2M bps and frame error rate results. The Anritsu equipment is applied to MT8870, MT8872 model name.        If you would like to perform the same test environment. You may contact Anritsu to get the latest "Auto-test tool " released by Anritsu and follow their SOP document to install "Auto-test tool" into PC to perform this RF validation test. 
View full article
By default, FRDM-KW36 board includes a 32MHz XTAL (YI) as shown in Figure 1 but there are cases where a 26MHz XTAL is needed instead of 32MHz XTAL for FRDM-KW36 or a custom KW36 board.   Figure 1. 32MHz XTAL from FRDM-KW36 schematics Wireless connectivity demos from FRDM-KW36 Sofware Development Kit are configured to run with a 32MHz XTAL by default, but it's very easy to modify the software to operate with a 26MHz XTAL. Follow next steps to configure a FRDM-KW36 wireless connectivity demo to operate with a 26MHz XTAL: 1. In clock_config.h file, change BOARD_XTAL0_CLK_HZ define from 32000000U to 26000000U as shown in Figure 2.   Figure 2. BOARD_XTAL0_CLK_HZ define in clock_config.h 2. Add RF_OSC_26MHZ=1 line in preprocessor: If using IAR IDE: Right click on your project, then click options (Figure 3). Figure 3. IAR project options Go to C/C++ Compiler tab, then Preprocessor, and add RF_OSC_26MHZ=1 line in defined symbols window (Figure 4). Figure 4. IAR Preprocessor If using MCUXpresso IDE: Right click on your project, select Properties, go to Settings under C/C++ Build, then Preprocessor under MCU C Compiler (Figure 5). Figure 5. MCUXpresso Preprocessor Click on add button from Defined symbols, write RF_OSC_26MHZ=1 and click OK to finish (Figure 6). Figure 6. MCUXpresso Defined symbols To finish, re-compile your project and it will be ready to operate with a 26MHz XTAL. FRDM-KW36 SDK can be downloaded from the MCUXpresso webpage.
View full article
Regarding to the "Reprogramming a KW36 device using the OTAP Client Software" and "Reprogramming a KW35 device using the OTAP Client Software" documents, there are some additional steps to debug the OTAP client software in the specific case when you use MCUXpresso together with a P&E micro debug probe. Just before to program the OTAP client project (the second software), the user must do the following: Open the "Debug Configurations" view clicking on the green bug as depicted below. Go to the "Debugger" perspective and search the "Advanced Options" button. Enable the "Preserve this range (Memory Range 0)" checkbox, and edit the textbox "From: 0" To: 1fff" for the KW36 device or "From: 0 To: 3fff" for the KW35 device. After to flash the device, disconnect and connect again. If everything it's OK, the RGB LED must blink (If you are using an FRDM board). Then, test the demo as described in the document.
View full article
This video shows how to load the Open SDA software from PE micro to the TWR-KW2x in order to debug applications using USB port and without needing external JTAG debuggers. Required downloads: TWR-KW2x Board Support Package:Kinetis KW2x Tower System Modules|Freescale PE Micro - Open SDA: P&E Microcomputer Systems
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-332703
View full article