|
|
||||
|
Product Release Announcement Automotive Embedded Systems NXP Model-Based Design Toolbox for BMS – version 1.2.0 |
||||
|
|
||||
|
The Automotive Embedded Systems, Model-Based Design Tools Team at NXP Semiconductors, is pleased to announce the release of the Model-Based Design Toolbox for Battery Management System version 1.2.0 RFP. This release is an Add-On for the NXP Model-Based Design Toolbox for S32K3xx 1.4.0, which supports automatic code generation for battery cell controllers and applications prototyping from MATLAB/Simulink. This product adds support for MC33775A, MC33774A, MC33772C, MC33664, and MC33665A and part of their peripherals, based on BMS SDK components (Bcc_772c, Bcc_772c_SL, Bcc_775a, Bcc_774a, Bms_TPL3_SL_E2E, Bms_common, Phy_664, Phy_665a). In this release, we have enhanced the integration with the Model-Based Design Toolbox for S32K3xx version 1.4.0, added support for the BMS SDK 1.0.3 and BMS SDK 1.0.3 SL DEMO, and MATLAB support for the latest versions. This product comes with battery cell controller ready-to-run examples, targeting the NXP HVBMS Reference Design Bundle Using ETPL (RD-HVBMSCTBUN), the 800 V Battery Management System (BMS) Reference Designs Using ETPL (RD-HVBMSCT800BUN) and the 14 V Battery Management System (BMS) Reference Design, Lead-Acid Replacement (RD33772C14VEVM).
Target audience: This product is part of the Automotive SW – Model-Based Design Toolbox.
FlexNet Location: https://nxp.flexnetoperations.com/control/frse/download?element=6477171
Technical Support: NXP Model-Based Design Toolbox for BMS issues will be tracked through the NXP Model-Based Design Tools Community space.
Release Content:
The toolbox provides support for the MC33775A, MC33774A, MC33772C, MC33664 and MC33665A. The MC33775A, MC3774A, and MC33772C are lithium-ion battery cell controller ICs designed for automotive applications performing ADC conversions of the differential cell voltages and battery temperatures, while the MC3366 and MC33665A are transceiver physical layer transformer drivers, designed to interface the microcontroller with the battery cell controllers through a high-speed isolated communication network. The ready-to-run examples provided with the MBDT for BMS show how to communicate between the S32K344/S32K358 and the MC33775A, MC33774A, and MC33772C via the MC33664/MC33665 transceivers. For the MC33775A and MC33774A, the examples show how to configure the battery cell controllers to perform Primary and Secondary chain conversions and read the cell voltage conversion results from the MC33775A/MC33774A, while for the MC33772C the examples show how to configure the Battery cell controller to read the pack current. All the converted values are displayed to the user over the FreeMASTER application.
For more details, features, and how to use the new functionalities, please refer to the Release Notes and Quick Start Guides documents attached.
MATLAB® Integration: The NXP Model-Based Design Toolbox extends the MATLAB® and Simulink® experience by allowing customers to evaluate and use NXP’s Battery Cell Controllers together with S32K3xx MCUs and evaluation board solutions out-of-the-box. NXP Model-Based Design Toolbox for BMS version 1.2.0 is fully integrated with MATLAB® environment.
Target Audience: This release (1.2.0 RFP) is intended for technology demonstration, evaluation purposes, and battery management systems prototyping using NXP Battery Cell Controllers and S32K3xx MCUs and Evaluation Boards.
Useful Resources: Examples, Trainings, and Support: https://community.nxp.com/community/mbdt
DEMO Electrification Solutions (High Voltage Battery Management System and Motor Control) with Model-Based Design: The Electrification Solutions with Model-Based Design, shows how the NXP Tools Ecosystem can be used together with the MathWorks ecosystem of toolboxes and solutions to develop complex applications, like the powertrain for electric vehicles, as shown in our demo diagram below. For BMS, virtual battery packs can be created in Simulink and various simulation testing scenarios can be applied to the BMS algorithms, before deploying on the hardware. The Battery Management System, running on the NXP HVBMS Reference Design and NXP GoldBox, combines the MathWorks Simulink application example Design and Test Lithium Ion Battery Management Algorithms together with the NXP’s Model-Based Design Toolbox for BMS Blocks to automatically generate, build, and deploy standalone BMS applications on the NXP targets. Here are the main highlights of this demo:
|
||||
|
|
||||