Wireless Connectivity Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Wireless Connectivity Knowledge Base

Discussions

Sort by:
The TWR-KW2x board's OpenSDA is programmed with PE Micro's OpenSDA firmware which enables MSD, debugging and CDC Serial port. This firmware can be easily modified by putting the K20 part in bootloader mode and load another firmware to it with a simple drag and drop. Follow these steps to modify the OpenSDA firmware on the TWR-KW2x board. Segger's OpenSDA v2.1 will be used as an example of the new OpenSDA firmware (Instead of the default PE Micro's) 1. Unplug the board 2. Insert a Jumper in J30 to put the device in Bootloader mode 3. Plug in the board (Mini-USB) 4. Device will be enumerated as a "Drive Disk" But now with a "Bootloader" label 5. Drag and Drop the Segger's JLink_OpenSDA_V2_1.bin firmware (https://segger.com/opensda.html) into the Bootloader unit 6. Unplug the board 7. Remove Jumper 8. Plug in the board (Mini-USB) Now you should see the board being enumerated as "JLink CDC UART Port", allowing serial port communication. You should also be able to debug your application using J-Link debugging interface through the OpenSDA interface, no need of external hardware. Note1: Drivers can be found at Segger's website (https://segger.com/opensda.html) Note2: Jumper has to be in place in J29 for debugging Note3: IDE options must be set to use J-Link Driver
View full article
This document describes the implementation of the Connected Home Gateway for the Internet of Things (IoT) and its controller implemented in a Smart device (tablet) running Android OS. The gateway is intended to serve as a communication bridge between WiFi/Ethernet and ZigBee Protocol, making every ZigBee-enabled device accessible and controllable from any smart device with Wi-Fi capabilities such as a smart phone or tablet. This will remove the need of having a ZigBee transceiver in every mobile device attempting to control the house appliances. In general, users will be able to: Remote control of Home Appliances using ZigBee protocol Any WiFi-enabled device could control the appliances without a ZigBee transceiver Achieve bi-directional communication between users and appliances Real system implementation would require a powerful MCU to manage all WiFi/Ethernet communication and a second MCU to manage all ZigBee communications. The Kinetis K60 and KW24 were selected among the different options available.
View full article
This document describes how to sniff ZigBee packets to identify messages and layers from the ZigBee stack using the MC1322x USB dongle and Wireshark protocol analyzer. --------------------------------------------------------------------------------------------------------- Pre-Requisites If not done yet, download & Install Wireshark protocol analyzer http://www.wireshark.org/download.html Download the Wireshark ZigBee Utility Zip file from Sourceforge http://sourceforge.net/projects/wiresharkzigbee/ Unzip the file in a known location -------------------------------------------------------------------------------------------------------- 1. Install MC1322x dongle Plug-in MC1322xUSB dongle and wait for Windows to install the driver. If the driver was not found, steer Windows manually to the directory         C:\Program Files\Freescale\Drivers If BeeKit is not installed, be aware of the following: The 1322x USB Dongle uses the FTDI serial to USB converter, Virtual COM Port (VCP) driver for Windows, available at www.ftdichip.com/ftdrivers.htm. The FTDI web site offers drivers for other platforms including Windows® (98 through Vista x64 and CE), MAC OS (8 through X) and Linux. Download the appropriate driver and follow the instructions to complete driver installation. 2. Check COM port Once installed, the MC1322xUSB dongle should be listed in the available COM ports in Widows device manager. Verify the board’s drivers were successfully installed and take note of the COM port assigned      3. Run the ZigBee Utility Open a command console and navigate to the directory where Wireshark Zigbee utility files were unzipped. c:\<path> Then start the .exe utility and set the serial port and ZigBee channel to monitor, for instance:     4. Setting Wireshark Start Wireshark and open Capture>Options Dialog Click on “Manage Interfaces” and add a new pipe with ‘\\.\pipe\wireshark’. Save it and start capture. 5. Start sniffing
View full article
When having several ZigBee Networks in the same area, and therefore several potential parents, it may become necessary to join one of them and discard the rest. While having a mechanism to only accept joining devices when desired is the best method (like using a button to trigger the joining), it might not always be possible since the parent nodes could be commercial devices or another vendor’s product without this feature. Below are some mechanisms that could be used for this purpose. In general, when searching for suitable parents, the process is as follows: ZDO of device to join sends a MAC scan request. The MAC layer starts scan. For every beacon it receives, it sends a beacon notify indication that is processed in ParseBeaconNotifincaiton() function from AppStackImpl.c The ParseBeaconNotifincaiton() function will add the relevant information in the discovery table and for this it needs a free entry, so it calls GetFreeEntryInDiscoveryTable() function with reuse parameter as FALSE. If the table is full, it will call GetFreeEntryInDiscoveryTable() with reuse set to TRUE to literally re-use low priority entries. When the MAC scan has finished, it will send a MAC scan confirm. When this reaches ZDO, the SearchForSuitableParent() function is called. At this point, there are several approaches that could be used: Use a specific Extended PAN ID to search only for a specific parent node Use a specific PAN ID to prioritize the network’s ID Search in a specific Channel where network is supposed to be operating in All these parameters are configurable in ApplicationConf.h file of the project’s Configure Folder and used in SearchForSuitableParent() function to filter Discovery table entries. Nevertheless, those solutions are not always the best for all applications since it may require hard-coding the network’s parameters. Fortunately, BeeStack leaves all this open for any modification in case it is necessary. In brief, if the discovery table gets full with suitable parents that you DO NOT want to use, you should update the "if(reuse)" statement of the GetFreeEntryInDiscoveryTable() function to replace an entry. In other words, if you think that the desired parent is not present in the discovery table (due to its size limitation or other reason), you should update the GetFreeEntryInDiscoveryTable() function to make sure discovery table contains only devices that are of interest to your node. Please note that the criteria used to select the desired parents is totally application specific. As mentioned, it is always best having a way to trigger the joining such as a button so the rest of parents have permit join set to FALSE and therefore join only to the desired parent without having to implement custom code. Anyway, you may select the solution that meets your application’s requirements the most.
View full article
This video shows how to load the Open SDA software from PE micro to the TWR-KW2x in order to debug applications using USB port and without needing external JTAG debuggers. Required downloads: TWR-KW2x Board Support Package:Kinetis KW2x Tower System Modules|Freescale PE Micro - Open SDA: P&E Microcomputer Systems
View full article
Hello All, I designed a ultra low low cost evaluation board (ULC-Zigbee) based in Kinetis wireless MCUs, take a look at the attached PDF for the brief description.  I was able to build three of them at ~$10USD each. The ULC-Zigbee is covered under the GNU General Public License. The required files to build the board are attached, it measures 30 x 50mm. My partner AngelC   wrote a sample code. The software basically communicates wirelessly the ULC-Zigbee board with a USB-KW24D512. An FXOS8700 is externally connected through the prototype board connector and the magnetic and acceleration values are then wirelessly transmitted to the USB stick, then the values can be printed in a HyperTerminal. The attached zip file contains the following files: File name Description ULC-Zigbee-EBV_V10.pdf Brief description of the ULC-Zigbee board MKW2x_Eagle_library.lbr  Required EAGLE CADSOFT LIBRARY ULC-Zigbee-EBV_V10.brd EAGLE v6.5 Board ULC-Zigbee-EBV_V10.sch EAGLE v6.5 Schematic ULC-Zigbee-EBV_V10_SCH.pdf ULC-Zigbee board schematic ULC-Zigbee-EBV_V10_BOM.xlsx Bill of materials ULC-Zigbee-EBV_V10_GERBER_FILES.zip Gerber files WirelessUART_MKW2x_v1.3_eCompass_TX_v1.zip ULC-Zigbee board sample software WirelessUART_MKW2x_v1.3_eCompass_RX_v1.zip USB-KW24D512 sample software     Hope it helps!   -Josh   Este documento fue generado desde la siguiente discusión:Ultra Low Cost Zigbee Evaluation Board
View full article
This document and the attached files are maintained up to date in collaboration with Dragos Musoiu. This document is a supplement for USB MSC device bootloader revision for FRDM-KL25Z (IAR) written by Kai Liu and describes the bootloader support for USB-KW24D512. How to use 1) Connect the USB-KW24D512 to the PC USB port; 2) Download the attached file ‘USB_KW24D512_MSD_Bootloader.bin’ to the flash memory of the MKW24D512 SiP following the next steps: Connect a J-Link programmer to the PC USB port (other than the one used for the USB-KW24D512 dongle); Navigate to your J-Link driver folder using a command console and type ‘jlink.exe’ followed by enter; After the apparition of the J-Link prompter, type ‘unlock kinetis’ followed by enter; Wait for the unlock command confirmation and after, type ‘device mkw24d512xxx5’ followed by enter; After the J-Link prompter appears type ‘loadbin USB_KW24D512_MSD_Bootloader.bin 0’ followed by enter; (Be sure you copied the ‘USB_KW24D512_MSD_Bootloader.bin’ file in the same directory with jlink.exe otherwise, type the command specifying the full path of the binary file); After the flashing process successfully finished type ‘exit’ followed by enter. 3) Reset or reconnect the USB-KW24D512; 4) The OS will prompt MSD device connecting and then BOOTLOADER drive will appear. The bootloader software was tested on Microsoft Windows 10, Microsoft Windows 8.1, Microsoft Windows 7, Ubuntu 14.04 and MAC operating systems. 5) Copy and paste any user application .SREC or .bin file into BOOTLOADER drive; 6) If a valid .SREC or .bin file was given, the board restarts and starts to run the user application. Please refer to the Notes section in order to create valid .SREC or .bin files. Note:            The bootloader has conditional jump to user application. The condition is the state of the SW1 button (PTC4). If the button is pressed (PTC4 grounded) during reset, the bootloader sequence will start, installing BOOTLOADER drive, as described before. Else if the button is released during reset, the SP and PC will be updated from address 0xC000. This means, the user application has to use a linker file which forces the application start address to 0xC000. If a valid SP and PC value is found at address 0xC000, the user application is launched. The bootloader application is located in the flash memory of the MKW24D512 SiP, from address 0x0000 to 0xBFFF, so the user application should not put any code in this memory region. Avoid using .SREC or .bin files having program bytes or fill patterns in the bootloader section. Attached files: USB_KW24D512_MSD_Bootloader.bin – bootloader binary file for USB-KW24D512; Pflash_512KB_0xC000.icf – IAR linker file for user application development; 802.15.4SnifferOnUSB.bin – user application demo binary file for KW24D512-USB. Be aware that the file ‘802.15.4SnifferOnUSB.srec’ is linked according to the above memory restrictions and is working only with the bootloader presented in this document.
View full article