i.MX RT Crossover MCUs Knowledge Base

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

i.MX RT Crossover MCUs Knowledge Base

讨论

排序依据:
This document describes how to use I2S (Inter-IC Sound Bus) and DMA to record and playback audio using NXP's i.MX RT600 crossover MCUs. It also includes the process of how to use the codec chip to process audio data on the i.MX RT600 Evaluation Kit (EVK) based on the Cadence® Tensilica® HiFi4 Audio DSP. Click here to access the full application note.
查看全文
RT1050 HAB Encrypted Image Generation and Analysis 1, Introduction      The NXP RT series can support multiple boot modes, it incluses: unsigned image mode, HAB signed image mode, HAB encryption image mode, and BEE encryption  image mode.       In order to understand the specific structure of the HAB encryption app, this article will generate a non-XIP app image, then generate the relevant burning file through the elftosb.exe tool in the flashloader i.MX-RT1050, and use MFGTOOL to enter the serial download mode to download the .sb file.       This article will focus on the download steps of RT1050 HAB encryption related operations, and analyze the structure of the HAB encrypted app image.     2, RT1050 HAB Encypted Operation Procedure At first, we analyze the steps of MFGtool burning, which files are needed, so as to give specific preparation, open the ucl2.xml file in the following path of the flashloader: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\mfgtools-rel\Profiles\MXRT105X\OS Firmware Because we need to use the HAB encrypated boot mode, then we will use MXRT105X-SecureBoot, from the ucl2.xml file, we will find the following related code: Fig 1. MXRT1050-SecureBoot structure As you can see from the above, to implement the secure boot of RT1050, you need to prepare these three files: ivt_flashlloader_signed.bin: it is the signed flashloader binary file enable_hab.sb: it is used to modify the SRK and HABmode in the fuse map boot_image.sb: HAB encrypted app program file       Here is a flow chart of the overall HAB encryption operation step, after checking this figure, then we will follow it step by step.     Fig 2. MXRT1050 HAB encrypted image flow chart     The app image we used in this article is the RAM app, so, at first, we need to prepare one RAM based app image. In this document, we are directly use the prepared  RAM based app image: evkbimxrt1050_led_softwarereset_0xa000.s19, this app code function is: After download the code to the MIMXRT1050-EVKB(qspi flash) board, the on board led D18 will blinky and printf the information, after pressing the WAKEUP button SW8, the code will implement software reset and printf the related information. The unsigned code test print result are as follows:      BOARD RESET start.  Helloworld. WAKEUP key pressed, will do software system reset.    BOARD RESET start.  Helloworld. 2.1 CST tool preparation      Because the contains a lot of steps, then customer can refer to the following document do the related configuration, this document, we won’t give the CST configuration detail steps. Please check these documents: https://www.cnblogs.com/henjay724/p/10219459.html https://community.nxp.com/docs/DOC-340904 Security Application Note AN12079 After the CST tool configuration, please copy the cst.exe, crts folder, key folder from cst folder to the same folder that holds elftosb executable files: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Please also copy SRK_1_2_3_4_fuse.bin and SRK_1_2_3_4_table.bin to the above folder. 2.2  Sign flashloader    Please refer to application note AN12079 chapter 3.3.1, copy flashloader.elf from folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Flashloader And the imx-flexspinor-normal-signed.bd  from folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\bd_file\imx10xx to the folder: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Please open commander window under the elftosb folder, then input this commander: elftosb.exe -f imx -V -c imx-flexspinor-flashloader-signed.bd -o ivt_flashloader_signed.bin flashloader.elf   Fig 3.  Sign flashloader  This steps will generate the  ivt_flashlaoder_signed.bin, which is needed to put under the MFGtool OS Firmware folder, just used for enter the signed flashloader mode. 2.3 SRK and HAB mode fuse modification files Please refer to AN12079 chapter 4.3, copy the enable_hab.bd file from folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\bd_file\imx10xx to this folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Please refer to the chapter 2.1 generated SRK_1_2_3_4_fuse.bin, modify the enable_hab.bd like the following picture: Fig 4. enable_hab.bd SRK and HAB mode fuse modification Then,  in the elftosb window, please input the following command, just used to generate the enable_hab.sb program file: elftosb.exe -f kinetis -V -c enable_hab.bd -o enable_hab.sb   Fig 5. SRK and HAB mode program files generation 2.4 APP Encrypted Image      If you want to do the HAB encrypted image download, you need to prepare one non-XIP app image, here we prepared one RAM based APP srec files.      Because the app file is the RAM files, then we also need the related RAM encrypted .bd files, please copy imx-itcm-encrypted.bd from the folder path:      Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\bd_file\imx10xx to this folder path: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\elftosb\win Open imx-itcm-encrypted.bd, then modify the following content: options {     flags = 0x0c;     # Note: This is an example address, it can be any non-zero address in ITCM region     startAddress = 0x8000;     ivtOffset = 0x1000;     initialLoadSize = 0x2000;     # Note: This is required if the cst and elftsb are not in the same folder     # Note: This is required if the default entrypoint is not the Reset_Handler     #       Please set the entryPointAddress to Reset_Handler address   entryPointAddress = 0x0000a2dd; } Here, we need to note these two points: (1)    ivtOffset = 0x1000; If the external flash is flexspi flash, then we need to modify ivtOffset as 0X1000, if it is the nandflash, we need to use the 0X400. (2) entryPointAddress = 0x0000a2dd; The entryPointsAddress should be the app code reset handlder, it is the app start address+4 data, the entry address is also OK, but we suggest you to use the app Reset_Handler address. Fig 6. App reset handler address Then input the following commander in the elftosb windows: elftosb.exe -f imx -V -c imx-itcm-encrypted.bd -o ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin evkbimxrt1050_led_softwarereset_0xa000.s19 Fig 7. App HAB Encrypted file generation Please note, we need to record the generated key blob offset address, it is 0XA00, just like the above data in the red frame, this address will be used in the next chapter’s .bd file. After this step, it will generate 7 files:          (1)  ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin, this file includes the FDCB which is filled with 0, IVT, BD, DCD, APP HAB encrypted image data, CSF data (2)  ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted_nopadding.bin, compare with ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin, this file deletes the 0s which is above IVT range. (3)  Csf.bin, it is the HAB data area, you can find the data contains the csf data, it is from 0X8000 to 0X8F80 in the generated ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin. Fig 8. Csf data and the encrypted app relationship      (4) dek.bin Fig 9. Dek data DEK data is the AES-128 bits key, it is not defined by the customer, it is random generated automatically by the HAB encrypted tool. (5) input.csf Open it, you can find the following content: Fig10. Input csf file content (6) rawbytes.bin,  this is the app image plaintext data, it doesn’t contains the FDCB,IVT,BOOTDATA, DCD, csf etc.    (7) temp.bin, it is the temporary file, compare with ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin, no csf files.   2.5 HAB Encrypted QSPI program file    Here we need to prepare one program_flexspinor_image_qspinor_keyblob.bd file, and put it under the same folder as elftosb, this file is used to generate the HAB encrypted program .sb file. Because the flashloader package didn’t contains it, then we paste all the related content, and I will also attach it in the attachment. # The source block assign file name to identifiers sources { myBinFile = extern (0); dekFile = extern (1); } constants { kAbsAddr_Start= 0x60000000; kAbsAddr_Ivt = 0x60001000; kAbsAddr_App = 0x60002000; } # The section block specifies the sequence of boot commands to be written to the SB file section (0) { #1. Prepare Flash option # 0xc0000006 is the tag for Serial NOR parameter selection # bit [31:28] Tag fixed to 0x0C # bit [27:24] Option size fixed to 0 # bit [23:20] Flash type option # 0 - QuadSPI SDR NOR # 1 - QUadSPI DDR NOR # 2 - HyperFLASH 1V8 # 3 - HyperFLASH 3V # 4 - Macronix Octal DDR # 6 - Micron Octal DDR # 8 - Adesto EcoXIP DDR # bit [19:16] Query pads (Pads used for query Flash Parameters) # 0 - 1 # 2 - 4 # 3 - 8 # bit [15:12] CMD pads (Pads used for query Flash Parameters) # 0 - 1 # 2 - 4 # 3 - 8 # bit [11: 08] Quad Mode Entry Setting # 0 - Not Configured, apply to devices: # - With Quad Mode enabled by default or # - Compliant with JESD216A/B or later revision # 1 - Set bit 6 in Status Register 1 # 2 - Set bit 1 in Status Register 2 # 3 - Set bit 7 in Status Register 2 # 4 - Set bit 1 in Status Register 2 by 0x31 command # bit [07: 04] Misc. control field # 3 - Data Order swapped, used for Macronix OctaFLASH devcies only (except MX25UM51345G) # 4 - Second QSPI NOR Pinmux # bit [03: 00] Flash Frequency, device specific load 0xc0000006 > 0x2000; # Configure QSPI NOR FLASH using option a address 0x2000 enable flexspinor 0x2000; #2 Erase flash as needed. erase 0x60000000..0x60020000; #3. Program config block # 0xf000000f is the tag to notify Flashloader to program FlexSPI NOR config block to the start of device load 0xf000000f > 0x3000; # Notify Flashloader to response the option at address 0x3000 enable flexspinor 0x3000; #5. Program image load myBinFile > kAbsAddr_Ivt; #6. Generate KeyBlob and program it to flexspinor # Load DEK to RAM load dekFile > 0x10100; # Construct KeyBlob Option #--------------------------------------------------------------------------- # bit [31:28] tag, fixed to 0x0b # bit [27:24] type, 0 - Update KeyBlob context, 1 Program Keyblob to flexspinor # bit [23:20] keyblob option block size, must equal to 3 if type =0, # reserved if type = 1 # bit [19:08] Reserved # bit [07:04] DEK size, 0-128bit 1-192bit 2-256 bit, only applicable if type=0 # bit [03:00] Firmware Index, only applicable if type = 1 # if type = 0, next words indicate the address that holds dek # the 3rd word #---------------------------------------------------------------------------- # tag = 0x0b, type=0, block size=3, DEK size=128bit load 0xb0300000 > 0x10200; # dek address = 0x10100 load 0x00010100 > 0x10204; # keyblob offset in boot image # Note: this is only an example bd file, the value must be replaced with actual # value in users project load 0x0000a000 > 0x10208; enable flexspinor 0x10200; #7. Program KeyBlob to firmware0 region load 0xb1000000 > 0x10300; enable flexspinor 0x10300; }‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Please note, in the above chapter, fig 7, we mentioned the keyblob offset address, we need to modify it in the following code:     load 0x0000a000 > 0x10208; Now, combine program_flexspinor_image_qspinor_keyblob.bd, ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted_nopadding.bin and dek.bin file together, we use the following commander to generate the boot_image.sb: elftosb.exe -f kinetis -V -c program_flexspinor_image_qspinor_keyblob.bd -o boot_image.sb ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted_nopadding.bin dek.bin Fig 11. App HAB encrypted program file generation Until now, we will find, all the related HAB encrypted files is prepared. 2.6 MFG Tool program HAB Encrypted files to RT1050-EVKB        Before we program it, please copy the following 3 files which is in the elftosb folder: ivt_flashloader_signed.bin enable_hab.sb boot_image.sb to this folder: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\mfgtools-rel\Profiles\MXRT105X\OS Firmware Please modify cfg.ini, the file path is: Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\mfgtools-rel Modify the content as: [profiles] chip = MXRT105X [platform] board = [LIST] name = MXRT105X-SecureBoot Choose MXRT105X-SecureBoot program mode. Then open the tool MfgTool2.exe, the board MIMXRT1050-EVKB(need to modify the on board resistor, use the qspi flash) mode should be serial download mode, just modify SW7:1-OFF,2-OFF,3-OFF, 4-ON, connect two usb cable between PC and the board J28 and J9. After the connection, you will find the MfgTool2.exe can detect the HID device: Fig 12. MFG tool program After the program is finished, power off the board, modify the boot mode to internal boot, it is SW7:1-OFF,2-OFF,3-ON, 4-OFF,connect the COM terminal, power on the EVKB board, after reset, you will find the D18 led is blinking, after you press the SW8, you will find the following printf information: BOARD RESET start. Helloworld. WAKEUP key pressed, will do software system reset. ? BOARD RESET start. Helloworld.‍‍‍‍‍‍‍‍‍‍‍‍‍ So, the HAB encrypted image works OK now. 3. App HAB encrypted image structure analysis 3.1 MCUBootUtility Configuration to check the RT Encrypted image      Here, we can also use  MCUBootUtility tool to check the RT chip encrypted image and the fuse data.      If the cst is your own configured, please do the following configuration at first:     (1)Copy the configured cst folder to folder: NXP-MCUBootUtility-2.0.0\tools Delete the original cst folder. (2)Copy SRK_1_2_3_4_fuse.bin and SRK_1_2_3_4_table.bin to folder:  NXP-MCUBootUtility-2.0.0\gen\hab_cert Now, you can use the new MCUBootutility to connect your board which already done the HAB encrypted method. 3.1 RT1050 fuse map comparation Before do the HAB encrypted image program, I have read out the whole fuse map as follows: Fig 13. MIMXRT1050-EVKB fuse map before HAB encrypted image Fig 14. MIMXRT1050-EVKB fuse map after HAB encrypted image Compare the fuse map between do the HAB encrypted image and no HAB encrypted image, we can find two difference: HAB mode, 0X460 bit1:0 open, 1 close SRK area We can find, after program the HAB encrypted image, the SRK fuse data is the same as the SRK data which is defined in the enable_hab.bd. 3.2  Readout HAB encrypted QSPI APP image structure analysis From MCUBootUtility tool, we can find the HAB Encypted image structure should be like this: Fig 15. HAB Encrypted image structure What about the real example image case? Now, we use the MCUbootUtility tool to read out our HAB encrypted image, from address 0X60000000, the readout size is 0XB000. The detail image structure is like following:   Fig 16. HAB Encypted image example structure   1): IVT:  hdr,  IVT header, more details, check hab_hdr 2):    IVT: entry, the app entrypointAddress, it should be the reset_handler address, in this document example, it is the address 0xa004 data, the plaintext is 0X00A2DD, but after the HAB encrypted, we can find the address -x60002004 data is the encrypted data 3):  IVT: reserved 4):  IVT: DCD, it is used for the DRAM SEMC configuration, in this example, we didn’t use the SDDRAM, so the data is 0. 5):  IVT: BOOT_DATA, used to indicate the BOOT_DATA  RAM start address 0X9020. 6):  IVT: self, ivt self RAM start address is 0X9000 7):  IVT:CSF, it is used to indicate the CST start address, this example csf ram address is 0X00010000. 8):  IVT:reserved 9): BOOT_DATA:  RAM image start,  the whole image RAM start address, this RAM example BOOT_DATA is 0X8000,0XA000-0X2000=0X8000 10): BOOT_DATA: size, APP file size, it is 0X0000A200, after checking the file generated HAB encrypted app image size, you can find the image end size is really 0XA200, just like the fig 16. 11):  HAB  Encypted app data,  please check ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin file, the address 0X2000-0X7250 data, you will find it is the same.   12): HAB data, it incluses the csf, certificate etc data, you can compare the file ivt_evkbimxrt1050_led_softwarereset_0xa000_encrypted.bin address 0X8000-0x8f70 data, it is the same. 13):DEK blob, it is the DEK key blob related data, the offset address is 0XA000, the same as fig 7. FDCB,IVT,BOOT DATA are all plaintext, but app image area is the HAB encrypted data, HAB and the DEK blob is the generated data put in the related memory. Conclusion     This document we mainly use the elftosb and the MFGTool to generate the HAB encrypted image, and download it to the RT1050 EVKB board, document give the whole detail steps, and us ethe MCUBootutility tool to read out the HAB encrypted image, and analysis the HAB encrypted image structure with the examples.  After compare with the generated mid files, we can find all the data is consist, and all the encrypted data range is the same. The test result also demonstrate the HAB encrypted code function works, the HAB encrypted boot has no problems. All the related files is in the attachment.      
查看全文
When design a project, sometimes CCM_CLKO1 needs to output different clocks to meet customer needs. This customer does not need to buy a separate crystal, which can reduce costs。The document describe how to make CCM_CLKO1 output different clock on I.MXRT1050. According to  selection of the clock to be generated on CCM_CLKO1(CLKO1_SEL) and setting the divider of CCM_CLKO1(CLKO1_DIV) in I.MXRT1050reference manual. CCM_CLKO1 can output different clock. If CCM_CLKO1 output different clock via SYS PLL clock. We can get the different clock for the application. CLKO1_DIV 000 001 010 011 100 101 110 111 Freq(MHz) 264 132 88 66 52.8 44 37.714 33 For example we want to get 88Mhz output via SYS PLL clock. We can follow the steps as the below(led_blinky project in SDK 😞       1. PINMUX GPIO_SD_B0_04 as CCM_CLKO1 signal.       IOMUXC_SetPinConfig(       IOMUXC_GPIO_SD_B0_04_CCM_CLKO1,              0x10B0u; 2.Enable CCM_CLKO1 signal. CCM->CCOSR |= CCM_CCOSR_CLKO1_EN_MASK; 3.Set CLKO1_DIV to get 88MHZ the clock for the application. CCM->CCOSR = (CCM->CCOSR & (~CCM_CCOSR_CLKO1_DIV_MASK)) | CCM_CCOSR_CLKO1_DIV(2); CCM->CCOSR = (CCM->CCOSR & (~CCM_CCOSR_CLKO1_SEL_MASK)) | CCM_CCOSR_CLKO1_SEL(1); 4 We will get the clock as the below. Note: In principle, it is not recommended to output CLOCK in CCM_CLKO1, if necessary, Please connect an 8-10pf capacitor to GPIO_SD_B0_04, and connect a 22 ohm resistor in series to prevent interference.
查看全文
Using a different Flash with the RT1050 In IAR/Keil environment , when you change to other flash(not default flash on EVK board), please refer to below AN to modify the code for it. https://www.nxp.com/docs/en/nxp/application-notes/AN12183.pdf
查看全文
RT1015 APP BEE encryption operation method 1 Introduction    NXP RT product BEE encryption can use the master key(the fixed OTPMK SNVS key) or the User Key method. The Master key method is the fixed key, and the user can’t modify it, in the practical usage, a lot of customers need to define their own key, in this situation, customer can use the use key method. This document will take the NXP RT1015 as an example, use the flexible user key method to realize the BEE encryption without the HAB certification.     The BEE encryption test will on the MIMXRT1015-EVK board, mainly three ways to realize it: MCUBootUtility tool , the Commander line method with MFGTool and the MCUXPresso Secure Provisioning tool to download the BEE encryption code.   2 Preparation 2.1  Tool preparation    MCUBootUtility download link:     https://github.com/JayHeng/NXP-MCUBootUtility/archive/v2.3.0.zip    image_enc2.zip download link: https://www.cnblogs.com/henjay724/p/10189602.html After unzip the image_enc2.zip, will get the image_enc.exe, put it under the MCUBootUtility tool folder: NXP-MCUBootUtility-2.3.0\tools\image_enc2\win RT1015 SDK download link: https://mcuxpresso.nxp.com/ 2.2 app file preparation    This document will use the iled_blinky MCUXpresso IDE project in the SDK_2.8.0_EVK-MIMXRT1015 as an example, to generate the app without the XIP boot header. Generate evkmimxrt1015_igpio_led_output.s19 will be used later. Fig 1 3 MCUbootUtility BEE encryption with user key   This chapter will use MCUBootUtility tool to realize the app BEE encryption with the user key, no HAB certification. 3.1 MIMXRT1015-EVK original fuse map    Before doing the BEE encryption, readout the original fuse map, it will be used to compare with the fuse map after the BEE encryption operation. Use the MCUbootUtility tool effuse operation utility page can read out all the fuse map. Fig 2 3.2 MCUbootutility BEE encryption configuration Fig 3 This document just use the BEE encryption, without the HAB certificate, so in the “Enable Certificate for HAB(BEE/OTFAD) encryption”, select: No.    Check Fig4, Select the”Key storage region” as flexible user keys, the protect region 0 start from 0X60001000, length is 0x2000, didn’t encrypt all the app region, just used to compare the original app with the BEE encrypted app code, we can find from 0X60003000, the code will be the plaintext code. But from 0X60001000 to 0X60002FFF will be the BEE encrypted code. After the configuration, Click the button”all in one action”, burn the code to the external QSPI flash. Fig 4 Fig 5 SW_GP2 region in the fuse can be burned separated, click the button”burn DEK data” is OK. Fig 6 Then read out all the fuse map again, we can find in the cfg1, BEE_KEY0_SEL is SW-GP2, it defines the BEE key is using the flexible use key method, not the fixed master key. Fig 7 Then, readout the BEE burned code from the flash with the normal burned code from the flash, and compare with it, the detail situation is: Fig 8 Fig 9 Fig 10 Fig 11 Fig 12    We can find, after the BEE encryption, 0X60001000 to 0X60002FFF is the encrypted code, 0X6000400 area add the EKIB0 data, 0X6000480 area add the EPRDB0 data. Because we just select the BEE engine 0, no BEE engine 1, then we can find 0X60000800 EKIB1 and EPRDB1 are all 0, not the valid data. From 0X60003000, we can find the app data is the plaintext data, the same result with our expected BEE configuration app encrypted range.    Until now, we already realize the MCUBootUtility tool BEE encryption. Exit the serial download mode, configure the MIMXRT10150-EVK on board SW8 as: 1-ON, 2-OFF, 3-ON, 4-OFF, reset the board, we can find the on board user LED is blinking, the BEE encrypted code is working. 4 BEE encryption with the Commander line mode    In practical usage, a lot of customers also need to use the commander line mode to realize the BEE encryption operation, and choose MFGTool download method. So this document will also give the way how to use the SDK SDK_2.8.0_EVK-MIMXRT1015\middleware\mcu-boot\bin\Tools and image_enc tool to realize the BEE commander line method encryption operation, then use the MFGTool download the BEE encrypted code to the RT1015 external QSPI flash.     Because from SDK2.8.0, blhost, elftosb related tools will not be packed in the SDK middleware directly, the customer need to download it from this link: www.nxp.com/mcuboot   4.1 Commander line file preparation     Prepare one folder, put elftosb.exe, image_enc.exe,app file evkmimxrt1015_iled_blinky_0x60002000.s19,RemoveBinaryBytes.exe to that folder. RemoveBinaryBytes.exe is used to modify the bin file, it can be downloaded from this link: https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/imxrt/8733/2/Test.zip (https://community.nxp.com/t5/i-MX-RT/RT1015-BEE-XIP-Step-Confirm/m-p/1070076/page/2)    Then prepare the following files: imx-flexspinor-normal-unsigned.bd imxrt1015_app_flash_sb_gen.bd burn_fuse.bd 4.1.1 imx-flexspinor-normal-unsigned.bd imx-flexspinor-normal-unsigned.bd files is used to generate the app file evkmimxrt1015_iled_blinky_0x60002000.s19 related boot .bin file, which is include the IVT header code: ivt_evkmimxrt1015_iled_blinky_0x60002000.bin ivt_evkmimxrt1015_iled_blinky_0x60002000_nopadding.bin bd file content is   /*********************file start****************************/ options {     flags = 0x00;     startAddress = 0x60000000;     ivtOffset = 0x1000;     initialLoadSize = 0x2000;     //DCDFilePath = "dcd.bin";     # Note: This is required if the default entrypoint is not the Reset_Handler     #       Please set the entryPointAddress to Reset_Handler address     // entryPointAddress = 0x60002000; }   sources {     elfFile = extern(0); }   section (0) { } /*********************file end****************************/‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   4.1.2 imxrt1015_app_flash_sb_gen.bd    This file is used to configure the external QSPI flash, and realize the program function, normally use this .bd file to generate the .sb file, then use the MFGtool select this .sb file and download the code to the external flash.   /*********************file start****************************/ sources {     myBinFile = extern (0); }   section (0) {     load 0xc0000007 > 0x20202000;     load 0x0 > 0x20202004;     enable flexspinor 0x20202000;     erase  0x60000000..0x60005000;     load 0xf000000f > 0x20203000;     enable flexspinor 0x20203000;     load  myBinFile > 0x60000400; } /*********************file end****************************/‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   4.1.3 burn_fuse.bd     BEE encryption operation need to burn the fuse map, but the fuse data is the one time operation from 0 to 1, here will separate the burn fuse operation, only do the burn fuse operation during the first time which the RT chip still didn’t be modified the fuse map. Otherwise, in the next operation, just modify the app code, don’t need to burn the fuse. Burn_fuse.bd is mainly used to configure the fuse data which need to burn the related fuse map, then generate the .sb file, and use the MFGTool burn it with the app together.   /*********************file start****************************/ # The source block assign file name to identifiers sources { }   constants { }   #                !!!!!!!!!!!! WARNING !!!!!!!!!!!! # The section block specifies the sequence of boot commands to be written to the SB file # Note: this is just a template, please update it to actual values in users' project section (0) {     # program SW_GP2     load fuse 0x76543210 > 0x29;     load fuse 0xfedcba98 > 0x2a;     load fuse 0x89abcdef > 0x2b;     load fuse 0x01234567 > 0x2c;         # Program BEE_KEY0_SEL     load fuse 0x00003000 > 0x6;     } /*********************file end****************************/‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ 4.2 BEE commander line operation steps  Create the rt1015_bee_userkey_gp2.bat file, the content is:   elftosb.exe -f imx -V -c imx-flexspinor-normal-unsigned.bd -o ivt_evkmimxrt1015_iled_blinky_0x60002000.bin evkmimxrt1015_iled_blinky_0x60002000.s19 image_enc.exe hw_eng=bee ifile=ivt_evkmimxrt1015_iled_blinky_0x60002000.bin ofile=evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted.bin base_addr=0x60000000 region0_key=0123456789abcdeffedcba9876543210 region0_arg=1,[0x60001000,0x2000,0] region0_lock=0 use_zero_key=1 is_boot_image=1 RemoveBinaryBytes.exe evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted.bin evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted_remove1K.bin 1024 elftosb.exe -f kinetis -V -c program_imxrt1015_qspi_encrypt_sw_gp2.bd -o boot_image_encrypt.sb evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted_remove1K.bin elftosb.exe -f kinetis -V -c burn_fuse.bd -o burn_fuse.sb pause‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Fig 13 Fig 14 it mainly has 5 steps: 4.2.1 elftosb generate app file with IVT header elftosb.exe -f imx -V -c imx-flexspinor-normal-unsigned.bd -o ivt_evkmimxrt1015_iled_blinky_0x60002000.bin evkmimxrt1015_iled_blinky_0x60002000.s19 After this commander, will generate two files with the IVT header: ivt_evkmimxrt1015_iled_blinky_0x60002000.bin,ivt_evkmimxrt1015_iled_blinky_0x60002000_nopadding.bin Here, we will use the ivt_evkmimxrt1015_iled_blinky_0x60002000.bin 4.2.2 image_enc generate the app related BEE encrypted code image_enc.exe hw_eng=bee ifile=ivt_evkmimxrt1015_iled_blinky_0x60002000.bin ofile=evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted.bin base_addr=0x60000000 region0_key=0123456789abcdeffedcba9876543210 region0_arg=1,[0x60001000,0x2000,0] region0_lock=0 use_zero_key=1 is_boot_image=1 About the keyword meaning in the image_enc, we can run the image_enc directly to find it. Fig 15 This commander line run result will be the same as the MCUBootUtility configuration. The encryption area from 0X60001000, the length is 0x2000, more details, can refer to Fig 4. After the operation, we can get this file: evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted.bin   4.2.3 RemoveBinaryBytes remove the BEE encrypted file above 1024 bytes RemoveBinaryBytes.exe evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted.bin evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted_remove1K.bin 1024 This commaner will used to remove the BEE encrypted file, the above 0X400 length data, after the modification, the encrypted file will start from EKIB0 directly. After running it, will get this file: evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted_remove1K.bin   4.2.4 elftosb generate BEE encrypted app related sb file elftosb.exe -f kinetis -V -c program_imxrt1015_qspi_encrypt_sw_gp2.bd -o boot_image_encrypt.sb evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted_remove1K.bin This commander will use evkmimxrt1015_iled_blinky_0x60002000_bee_encrypted_remove1K.bin and program_imxrt1015_qspi_encrypt_sw_gp2.bd to generate the sb file which can use the MFGTool download the code to the external flash After running it, we can get this file: boot_image_encrypt.sb   4.2.5 elftosb generate the burn fuse related sb file elftosb.exe -f kinetis -V -c burn_fuse.bd -o burn_fuse.sb This commander is used to generate the BEE code related fuse bits sb file, this sb file will be burned together with the boot_image_encrypt.sb in the MFGTool. But after the fuse is burned, the next app modify operation don’t need to add the burn fuse operation, can download the add directly. After running it, can get this file: burn_fuse.sb   4.3 MFGTool downloading   MIMXRT1015-EVK board enter the serial downloader mode, find two USB cable, plug it in J41 and J9 to the PC. MFGTool can be found in folder: SDK_2.8.0_EVK-MIMXRT1015\middleware\mcu-boot\bin\Tools\mfgtools-rel   If need to burn the burn_fuse.sb, need to modify the ucl2.xml, folder path: \SDK_2.8.0_EVK-MIMXRT1015\middleware\mcu-boot\bin\Tools\mfgtools-rel\Profiles\MXRT1015\OS Firmware    Add the following list to realize it. <LIST name="MXRT1015-beefuse_DevBoot" desc="Boot Flashloader"> <!-- Stage 1, load and execute Flashloader -->        <CMD state="BootStrap" type="boot" body="BootStrap" file="ivt_flashloader.bin" > Loading Flashloader. </CMD>     <CMD state="BootStrap" type="jump"  onError = "ignore"> Jumping to Flashloader. </CMD> <!-- Stage 2, burn BEE related fuse using Flashloader -->      <CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD> <!--Used to test if flashloader runs successfully-->     <CMD state="Blhost" type="blhost" body="receive-sb-file \"Profiles\\MXRT1015\\OS Firmware\\burn_fuse.sb\"" > Program Boot Image. </CMD>     <CMD state="Blhost" type="blhost" body="reset" > Reset. </CMD> <!--Reset device--> <!-- Stage 3, Program boot image into external memory using Flashloader -->       <CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD> <!--Used to test if flashloader runs successfully-->     <CMD state="Blhost" type="blhost" timeout="15000" body="receive-sb-file \"Profiles\\MXRT1015\\OS Firmware\\ boot_image_encrypt.sb\"" > Program Boot Image. </CMD>     <CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD> </list>‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍     If already have burned the Fuse bits, just need to update the app, then we can use MIMXRT1015-DevBoot   <LIST name="MXRT1015-DevBoot" desc="Boot Flashloader"> <!-- Stage 1, load and execute Flashloader -->        <CMD state="BootStrap" type="boot" body="BootStrap" file="ivt_flashloader.bin" > Loading Flashloader. </CMD>     <CMD state="BootStrap" type="jump"  onError = "ignore"> Jumping to Flashloader. </CMD> <!-- Stage 2, Program boot image into external memory using Flashloader -->       <CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD> <!--Used to test if flashloader runs successfully-->     <CMD state="Blhost" type="blhost" timeout="15000" body="receive-sb-file \"Profiles\\MXRT1015\\OS Firmware\\boot_image.sb\"" > Program Boot Image. </CMD>     <CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD> </list>‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Which detail list is select, it is determined by the cfg.ini name item [profiles] chip = MXRT1015 [platform] board = [LIST] name = MXRT1015-DevBoot‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   Because my side do the MCUbootUtility operation at first, then the fuse is burned, so in the commander line, I just use MXRT1015-DevBoot download the app.sb Fig 16 We can find, it is burned successfully, click stop button, Configure the MIMXRT1015-EVK on board SW8 as 1-ON,2-OFF,3-ON,4-OFF, reset the board, we can find the on board LED is blinking, it means the commander line also can finish the BEE encryption successfully.   5  MCUXpresso Secure Provisioning BEE unsigned operation      This part will use the MCUXPresso Secure Provisioning tool to finish the BEE unsigned image downloading BEE unsigned image is just use the BEE, no certification. 5.1 Tool downloading MCUXPresso Secure Provisioning download link is: https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING Download it and install it, it’s better to read the tool document at first: C:\nxp\MCUX_Provi_v2.1\MCUXpresso Secure Provisioning Tool.pdf 5.2 Operation Steps Step1: Create the new tool workspace File->New Workspace, select the workspace path. Fig 17 Step2: Chip boot related configuration Fig 18 Here, please note, the boot type need to select as XIP Encrypted(BEE User Keys) unsigned, which is not added the HAB certification function. Step3: USB connection Connect Select USB, it will use the USB HID to connect the board in serial download mode, so the MIMXRT1015-EVK board need insert the USB port to the J9, and the board need to enter the serial download mode: SW8:1-ON,2-OFF,3-OFF,4-ON Connect Test Connection Button, the connection result is: Fig 19 We can see the connection is OK, due to this board has done the BEE operation in the previous time, so the related BEE fuse is burned, then we can find the BEE key and the key source SW-GP2 fuse already has data. Step4: image selection Just like the previous content, prepare one app image. Step 5: XIP Encryption(BEE user keys) configuration Fig 20 Here, it will need to select which engine, we select Engine0, BEE engine KEY use zero key, key source use the SW-GP2, then the detail user key data: 0123456789abcdeffedcba9876543210 Will be wrote to the swGp2 fuse area. Because my board already do that fuse operation, so here it won’t burn the fuse again. Step 6: build image Fig 21 Here, we will find, after this operation, the tool will generate 5 files: 1) evkmimxrt1015_iled_blinky_0x60002000.bin 2) evkmimxrt1015_iled_blinky_0x60002000_bootable.bin 3) evkmimxrt1015_iled_blinky_0x60002000_bootable_nopadding.bin 4) evkmimxrt1015_iled_blinky_0x60002000_nopadding.bin 5) evkmimxrt1015_iled_blinky_0x60002000_nopadding_ehdr0.bin 1), 2), 3) is the plaintext file, 1) and 2) are totally the same, this file maps the data from base 0, from 0x1000 it is IVT+BD+DCD, from 0X2000 is app, so these files are the whole image, just except the FlexSPI Configuration block data, which should put from base address 0. 3) it is the 2) image just delete the first 0X1000 data, and just from IVT+BD+DCD+app. 4) ,5) is the BEE encrypted image, 4) is related to 3), just the BEE encrypted image, 5) is the EKIB0, EPRDB0 data, which should be put in the real address from 0X60000400, it is the BEE Encrypted Key Info Block 0 and Encrypted Protection Region Descriptor Block 0 data, as we just use the engine0, so just have the engin0 data. In fact, the BEE whole image contains : FlexSPI Configuration block data +IVT+BD+DCD+APP FlexSPI Configuration block data is the plaintext, but from 0X60001000 to 0X60002fff is the encrypted image. Step 7: burn the encrypted image Fig 22 Click the Write Image button, to finish the BEE image program. Here, just open the bee_user_key0.bin, we will find, it is just the user key data which is defined in Fig 20, which also should be written to the swGp2 fuse. Check the log, we will find it mainly these process: Erase image from 0x60000000, length is 0x5000. Generate the flexSPI Configuration block data, and download from 0x60000000 Burn evkmimxrt1015_iled_blinky_0x60002000_nopadding_ehdr0.bin to 0X60000400 Burn evkmimxrt1015_iled_blinky_0x60002000_nopadding.bin to 0x60001000 Modify the MIMXRT1015-EVK SW8:1-ON,2-OFF,3-ON,4-OFF, reset or repower on the board, we will find the on board led is blinking, it means the bee encrypted image already runs OK. Please note: SW8_1 is the Encrypted XIP pin, it must be enable, otherwise, even the BEE encrypted image is downloaded to the external flash, but the boot will be failed, as the ROM will use normal boot not the BEE encrypted boot. So, SW8_1 should be ON.    Following pictures are the BEE encrypted image readout file to compare with the tool generated files. Fig 23 Fig 24 Fig 25 Fig 26 Fig 27 About the MCUBootUtility lack the BEE tool image_enc.exe, we also can use the MCUXPresso Secure Provisioning’s image_enc.exe: Copy: C:\nxp\MCUX_Provi_v2.1\bin\tools\image_enc\win\ image_enc.exe To the MCUbootUtility folder: NXP-MCUBootUtility-3.2.0\tools\image_enc2\win Attachment also contains the video about this tool usage operation.    
查看全文
Source code: https://github.com/JayHeng/NXP-MCUBootUtility   【v2.0.0】 Features: > 1. Support i.MXRT5xx A0, i.MXRT6xx A0 >    支持i.MXRT5xx A0, i.MXRT6xx A0 > 2. Support i.MXRT1011, i.MXRT117x A0 >    支持i.MXRT1011, i.MXRT117x A0 > 3. [RTyyyy] Support OTFAD encryption secure boot case (SNVS Key, User Key) >     [RTyyyy] 支持基于OTFAD实现的安全加密启动(唯一SNVS key,用户自定义key) > 4. [RTxxx] Support both UART and USB-HID ISP modes >     [RTxxx] 支持UART和USB-HID两种串行编程方式(COM端口/USB设备自动识别) > 5. [RTxxx] Support for converting bare image into bootable image >     [RTxxx] 支持将裸源image文件自动转换成i.MXRT能启动的Bootable image > 6. [RTxxx] Original image can be a bootable image (with FDCB) >     [RTxxx] 用户输入的源程序文件可以包含i.MXRT启动头 (FDCB) > 7. [RTxxx] Support for loading bootable image into FlexSPI/QuadSPI NOR boot device >     [RTxxx] 支持下载Bootable image进主动启动设备 - FlexSPI/QuadSPI NOR接口Flash > 8. [RTxxx] Support development boot case (Unsigned, CRC) >     [RTxxx] 支持用于开发阶段的非安全加密启动(未签名,CRC校验) > 9. Add Execute action support for Flash Programmer >     在通用Flash编程器模式下增加执行(跳转)操作 > 10. [RTyyyy] Can show FlexRAM info in device status >       [RTyyyy] 支持在device status里显示当前FlexRAM配置情况 Improvements: > 1. [RTyyyy] Improve stability of USB connection of i.MXRT105x board >     [RTyyyy] 提高i.MXRT105x目标板USB连接稳定性 > 2. Can write/read RAM via Flash Programmer >    通用Flash编程器里也支持读写RAM > 3. [RTyyyy] Provide Flashloader resident option to adapt to different FlexRAM configurations >     [RTyyyy] 提供Flashloader执行空间选项以适应不同的FlexRAM配置 Bugfixes: > 1. [RTyyyy] Sometimes tool will report error "xx.bat file cannot be found" >     [RTyyyy] 有时候生成证书时会提示bat文件无法找到,导致证书无法生成 > 2. [RTyyyy] Editing mixed eFuse fields is not working as expected >     [RTyyyy] 可视化方式去编辑混合eFuse区域并没有生效 > 3. [RTyyyy] Cannot support 32MB or larger LPSPI NOR/EEPROM device >     [RTyyyy] 无法支持32MB及以上容量的LPSPI NOR/EEPROM设备 > 4. Cannot erase/read the last two pages of boot device via Flash Programmer >    在通用Flash编程器模式下无法擦除/读取外部启动设备的最后两个Page
查看全文
The i.MX RT600 MCU includes a Cadence® Tensilica® HiFi 4 DSP running at frequencies of up to 600 MHz.The XOS embedded kernel from Cadence is designed for efficient operation on embedded system built using the Xtensa architecture. Although various parts of XOS continue to be tuned for efficient performance on the Xtensa hardware, most of the code is written in standard C and is not Xtensa-specific. Click here to access the full application note.
查看全文
[中文翻译版] 见附件 原文链接: https://community.nxp.com/docs/DOC-342297
查看全文
Introduction  This document is an extension of section 3.1.3, “Software implementation” from the application note AN12077, using the i.MX RT FlexRAM. It's important that before continue reading this document, you read this application note carefully.  Link to the application note.  Section 3.1.3 of the application note explains how to reallocate the FlexRAM through software within the startup code of your application. This document will go into further detail on all the implications of making these modifications and what is the best way to do it.  Prerequisites RT10xx-EVK  The latest SDK which you can download from the following link: Welcome | MCUXpresso SDK Builder MCUXpresso IDE Internal SRAM  The amount of internal SRAM varies depending on the RT. In some cases, not all the internal SRAM can be reallocated with the FlexRAM.  RT  Internal SRAM FlexRAM RT1010 Up to 128 KB Up to 128 KB RT1015 Up to 128 KB Up to 128 KB RT1020 Up to 256 KB Up to 256 KB RT1050 Up to 512 KB Up to 512 KB RT1060 Up to 1MB  Up to 512 KB RT1064 Up to 1MB Up to 512 KB   In the case of the RT106x, only 512 KB out of the 1MB of internal SRAM can be reallocated through the FlexRAM as DTCM, ITCM, and OCRAM. The remaining 512 KB are from OCRAM and cannot be reallocated. For all the other RT10xx you can reallocate the whole internal SRAM either as DTCM, ITCM, and OCRAM. Section 3.1.3.1 of the application note explains the limitations of the size when reallocating the FlexRAM. One thing that's important to mention is that the ROM bootloader in all the RT10xx parts uses the OCRAM, hence you should keep some  OCRAM when reallocating the FlexRAM, this doesn't apply to the RT106x since you will always have the 512 KB of OCRAM that cannot be reallocated. To know more about how many OCRAM each RT family needs please refer to section 2.1.1.1 of the application note. Implementation in MCUXpresso IDE First, you need to import any of the SDK examples into your MCUXpresso IDE workspace. In my case, I imported the igpio_led_output example for the RT1050-EVKB. If you compile this project, you will see that the default configuration for the FlexRAM on the RT1050-EVKB is the following:  SRAM_DTC 128 KB SRAM_ITC 128 KB SRAM_OC 256 KB   Now we need to go to the Reset handler located in the file startup_mimxrt1052.c. Reallocating the FlexRAM has to be done before the FlexRAM is configured, this is why it's done inside the Reset Handler.  The registers that we need to modify to reallocate the FlexRAM are IOMUXC_GPR_GPR16, and IOMUXC_GPR_GPR17. So first we need to have in hand the addresses of these three registers. Register Address IOMUXC_GPR_GPR16 0x400AC040 IOMUXC_GPR_GPR17 0x400AC044   Now, we need to determine how we want to reallocate the FlexRAM to see the value that we need to load into register IOMUXC_GPR_GPR17. In my case, I want to have the following configuration:  SRAM_DTC 256 KB SRAM_ITC 128 KB SRAM_OC 128 KB   When choosing the new sizes of the FlexRAM be sure that you choose a configuration that you can also apply through the FlexRAM fuses, I will explain the reason for this later. The configurations that you can achieve through the fuses are shown in the Fusemap chapter of the reference manual in the table named "Fusemap Descriptions", the fuse name is "Default_FlexRAM_Part".  Based on the following explanation of the IOMUXC_GPR_GPR17 register: The value that I need to load to the register is 0xAAAAFF55. Where the first  4 banks correspond to the 128KB of SRAM_OC, the next 4 banks correspond to the 128KB of SRAM_ITC and the last 8 banks are the 256KB of SRAM_DTC.  Now, that we have all the addresses and the values that we need we can start writing the code in the Reset handler. The first thing to do is load the new value into the register IOMUXC_GPR_GPR17. After, we need to configure register IOMUXC_GPR_GPR16 to specify that the FlexRAM bank configuration should be taken from register IOMUXC_GPR_GPR17 instead of the fuses. Then if in your new configuration of the FlexRAM either the SRAM_DTC or SRAM_ITC are of size 0, you need to disable these memories in the register IOMUXC_GPR_GPR16. At the end your code should look like the following:    void ResetISR(void) { // Disable interrupts __asm volatile ("cpsid i"); /* Reallocating the FlexRAM */ __asm (".syntax unified\n" "LDR R0, =0x400ac044\n"//Address of register IOMUXC_GPR_GPR17 "LDR R1, =0xaaaaff55\n"//FlexRAM configuration DTC = 265KB, ITC = 128KB, OC = 128KB "STR R1,[R0]\n" "LDR R0,=0x400ac040\n"//Address of register IOMUXC_GPR_GPR16 "LDR R1,[R0]\n" "ORR R1,R1,#4\n"//The 4 corresponds to setting the FLEXRAM_BANK_CFG_SEL bit in register IOMUXC_GPR_GPR16 "STR R1,[R0]\n" #ifdef FLEXRAM_ITCM_ZERO_SIZE "LDR R0,=0x400ac040\n"//Address of register IOMUXC_GPR_GPR16 "LDR R1,[R0]\n" "AND R1,R1,#0xfffffffe\n"//Disabling SRAM_ITC in register IOMUXC_GPR_GPR16 "STR R1,[R0]\n" #endif #ifdef FLEXRAM_DTCM_ZERO_SIZE "LDR R0,=0x400ac040\n"//Address of register IOMUXC_GPR_GPR16 "LDR R1,[R0]\n" "AND R1,R1,#0xfffffffd\n"//Disabling SRAM_DTC in register IOMUXC_GPR_GPR16 "STR R1,[R0]\n" #endif ".syntax divided\n"); #if defined (__USE_CMSIS) // If __USE_CMSIS defined, then call CMSIS SystemInit code SystemInit(); ...‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   If you compile your project you will see the memory distribution that appears on the console is still the default configuration.  This is because we did modify the Reset handler to reallocate the FlexRAM but we haven't modified the linker file to match these new sizes. To do this you need to go to the properties of your project. Once in the properties, you need to go to C/C++ Build -> MCU settings. Once you are in the MCU settings you need to modify the sizes of the SRAM memories to match the new configuration.  When you make these changes click Apply and Close. After making these changes if you compile the project you will see the memory distribution that appears in the console is now matching the new sizes.  Now we need to modify the Memory Protection Unit (MPU) to match these new sizes of the memories. To do this you need to go to the function BOARD_ConfigMPU inside the file board.c. Inside this function, you need to locate regions 5, 6, and 7 which correspond to SRAM_ITC, SRAM_DTC, and SRAM_OC respectively. Same as for register IOMUXC_GPR_GPR14, if the new size of your memory is not 32, 64, 128, 256, or 512 you need to choose the next greater number. Your configuration should look like the following:    /* Region 5 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(5, 0x00000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_128KB); /* Region 6 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(6, 0x20000000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_256KB); /* Region 7 setting: Memory with Normal type, not shareable, outer/inner write back */ MPU->RBAR = ARM_MPU_RBAR(7, 0x20200000U); MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1, 0, ARM_MPU_REGION_SIZE_128KB);‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍   We need to change the image entry address to the Reset handler. To do this, you need to go to the file fsl_flexspi_nor_boot.c inside the xip folder. You need to declare the ResetISR and change the entry address in the image vector table.  Finally, we need to place the stack at the start of the DTCM memory. To do this, we need to go to the properties of your project. From there, we have to C/C++ Build and Manage Linker Script.  From there, we will need to add two more assembly instructions in our ResetISR function. We have to add these two instructions at the beginning of our assembly code:  In the attached c file, you'll find all the assembly instructions mentioned above.  That's it, these are all the changes that you need to make to reallocate the FlexRAM during the startup.  Debug Session  To verify that all the modifications that we just did were correct we will launch the debug session. As soon as we reach the main, before running the application, we will go to the peripheral view to see registers IOMUXC_GPR_GPR16, and IOMUXC_GPR_GPR17 and verify that the values are the correct ones. In register IOMUXC_GPR_GPR16 as shown in the image below we configure the FLEXRAM_BANK_CFG_SEL as 1 to use the use register IOMUXC_GPR_GPR17 to configure the FlexRAM.  Finally, in register IOMUXC_GPR_GPR17 we can see the value 0xAAAAFF55 that corresponds to the new configuration.  Reallocating the FlexRAM through the Fuses  We just saw how to reallocate the FlexRAM through software by writing some code in the Reset Handler. This procedure works fine, however, it's recommended that you use this approach to test the different sizes that you can configure but once you find the correct configuration for your application we highly recommend that you configure these new sizes through the fuses instead of using the register IOMUXC_GPR_GPR17. There are lots of dangerous areas in reconfiguring the FlexRAM in code. It pretty much all boils down to the fact that any code/data/stack information written to the RAM can end up changing location during the reallocation.  This is the reason why once you find the correct configuration, you should apply it through the fuses. If you use the fuses to configure the FlexRAM, then you don't have the same concerns about moving around code and data, as the fuse settings are applied as a hardware default.  Keep in mind that once you burn the fuses there's no way back! This is why it's important that you first try the configuration through the software method. Once you burn the fuses you won't need to modify the Reset handler, you only need to modify the MPU to change the size of regions as we saw before and the MCU settings of your project to match the new memory sizes that you configured through the fuses.  The fuse in charge of the FlexRAM configuration is Default_FlexRAM_Part, the address of this fuse is 0x6D0[15:13]. You can find more information about this fuse and the different configurations in the Fusemap chapter of the reference manual.  To burn the fuses I recommend using either the blhost or the MCUBootUtility.  Link to download the blhost.  Link to the MCUBootUtility webpage.    I hope you find this document helpful!  Víctor Jiménez 
查看全文
A small project I worked on was to understand how RT1050 boot-up performs from different memory types. I used the LED_blinky code from the SDK as a baseline, and ran some tests on the EVKB board. The data I gathered is described below, as well as more detailed testing procedures. Testing Procedure The boot-up time will be defined as the time from which the processor first receives power, to when it executes the first line of code from the main() function. Time was measured using an oscilloscope (Tektronix TDS 2014) between the rising edge of the POR_B* signal to the following two points: FlexSPI_CS asserted (first read of the FlexSPI by the ROM)** GPIO Toggle in application code (signals beginning of code execution).*** *The POR_B signal was available to scope through header J26-1 **The FlexSPI_CS signal is available through a small pull-up resistor on the board, R356. A small wire was soldered alongside this resistor, and was probed on the oscilloscope. ***The GPIO pin that was used was the same one that connected to USER_LED (Active low). This pin could be scoped through header J22-5. TP 2, 3, 4, and 5 are used to ground the probe of the oscilloscope. This was all done in the EVKB evaluation board. Here are a couple of noteworthy points about the test ran: This report mostly emphasizes the time between the rise of the POR_B signal, and the first line of execution of code. However, there is a time between when power is first provided to the board and the POR_B system goes up. This is a matter of power electronics and can vary depending on the user application and design. Because of this, this report will not place a huge emphasis on this. The first actual lines of code of the application is actually configuring several pins of the processor. Only after these pins are executed, does the GPIO toggle low and the time is taken on the oscilloscope. However, these lines of configuration code are executed so rapidly, that the time is ignored for the test.   Clock Configurations The bootable image was flashed to the RT1050 in all three cases. Afterwards, in MCUXpresso, the debugger was configured with “Attach Only” set to true. A debug session was then launched, and after the processor finished executing code, it was paused and the register values were read according to the RT1050 Reference Manual, chapter 18, CCM Block Diagram.  Boot Configuration: Core Clock (MHz) * FlexSPI Clock (MHz) SEMC Clock (MHz) FlexSPI 130 99 SDRAM 396 130 99 SRAM 396 130 99 *The Core Clock speed was also verified by configuring clko1 as an output with the clock speed divided by 8. This frequency was measured using an oscilloscope and verified to be 396 MHz. Results The time to chip select pin represents the moment when the first flash read happens from the RT1050 processor. The time to GPIO output represents the boot-up time.   As expected, XiP Hyperflash boots faster than other memories. SRAM and SDRAM memories must copy to executable memory before executing which will take more time and therefore boot slower. In the sections below, a more thorough explanation is provided of how these tests were ran and why Hyperflash XiP is expected to be the fastest. Hyperflash XiP Boot Up Below is an outline of the steps of what we expect the Hyperflash XiP boot-up process to look like: Power On Reset (J26-1) Begin access to Flash memory (FlexSPI_SS0) Execute in place in flash (XiP) First line of code is exectuted (USER_LED) In MCUXpresso, the map file showed the following: The oscilloscope image is below:   SDRAM Boot Up The processor will bootup from ROM, which will be told to copy an application image from the serial NOR flash memory to SDRAM (serial NOR flash uses Hyperflash communication). The RT flashloader tool will let me load up the application to the flash to be configured to copy over memory to the SDRAM and execute to it.   It is expected that copying to SDRAM will be slower than executing in place from Hyperflash since an entire copying action must take place.   The SDRAM boot-up process looks like the following: Power On Reset (J26-1) Begin access to Flash memory (FlexSPI_SS0) Copy code to SDRAM Execute in place in SDRAM (FlexSPI_SS0) First line of code is executed (USER_LED)   In MCUXpresso, the map file showed the following:   In order to run this test, I followed these instructions: https://community.nxp.com/docs/DOC-340655. SRAM Boot Up For SRAM, a similar process to that of SDRAM is expected. The processor will first boot from internal ROM, and then go to Hyperflash. It will then copy over everything from Hyperflash to internal SRAM DTC memory and then execute from there.  The SRAM Boot Up Process follows as such: Power On Reset (J26-1) Begin access to Flash memory (FlexSPI_SS0) Copy code to SRAM Execute in place in SRAM (FlexSPI_SS0) First line of code is executed (USER_LED)   In MCUXpresso, the map file showed the following:   This document was generated from the following discussion: javascript:;
查看全文
The RT600 is a family of dual-core microcontrollers for embedded applications featuring an Arm® Cortex®-M33 CPU combined with a Cadence® Tensilica ® HiFi 4 audio DSP core.  Check out this latest app note to learn about communication and debugging of these two cores.  For list of all i.MX RT600 app notes, visit: nxp.com/imxrt600
查看全文
[中文翻译版] 见附件   原文链接: https://community.nxp.com/community/imx/blog/2019/04/17/do-you-have-a-minute 
查看全文
This document describes how to program a bootable image into the recovery Flash device using i.MX RT600 MCUs. Click here to access the full application note.
查看全文
[中文翻译版] 见附件 原文链接: https://community.nxp.com/docs/DOC-342954
查看全文
[中文翻译版] 见附件 原文链接: https://community.nxp.com/docs/DOC-341316
查看全文
Goal Our goal is to train a model that can take a value, x, and predict its sine, y. In a real-world application, if you needed the sine of x, you could just calculate it directly. However, by training a model to approximate the result, we can demonstrate the basics of machine learning. TensorFlow and Keras TensorFlow is a set of tools for building, training, evaluating, and deploying machine learning models. Originally developed at Google, TensorFlow is now an open-source project built and maintained by thousands of contributors across the world. It is the most popular and widely used framework for machine learning. Most developers interact with TensorFlow via its Python library. TensorFlow does many different things. In this post, we’ll use Keras, TensorFlow’s high-level API that makes it easy to build and train deep learning networks. To enable TensorFlow on mobile and embedded devices, Google developed the TensorFlow Lite framework. It gives these computationally restricted devices the ability to run inference on pre-trained TensorFlow models that were converted to TensorFlow Lite. These converted models cannot be trained any further but can be optimized through techniques like quantization and pruning. Building the Model To building the Model, we should follow the below steps. Obtain a simple dataset. Train a deep learning model. Evaluate the model’s performance. Convert the model to run on-device. Please navigate to the URL in your browser to open the notebook directly in Colab, this notebook is designed to demonstrate the process of creating a TensorFlow model and converting it to use with TensorFlow Lite. Deploy the mode to the RT MCU Hardware Board: MIMXRT1050 EVK Board Fig 1 MIMXRT1050 EVK Board Template demo code: evkbimxrt1050_tensorflow_lite_cifar10 Code /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Copyright 2018 NXP. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "board.h" #include "pin_mux.h" #include "clock_config.h" #include "fsl_debug_console.h" #include <iostream> #include <string> #include <vector> #include "timer.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model.h" #include "tensorflow/lite/optional_debug_tools.h" #include "tensorflow/lite/string_util.h" #include "Sine_mode.h" int inference_count = 0; // This is a small number so that it's easy to read the logs const int kInferencesPerCycle = 30; const float kXrange = 2.f * 3.14159265359f; #define LOG(x) std::cout void RunInference() { std::unique_ptr<tflite::FlatBufferModel> model; std::unique_ptr<tflite::Interpreter> interpreter; model = tflite::FlatBufferModel::BuildFromBuffer(sine_model_quantized_tflite, sine_model_quantized_tflite_len); if (!model) { LOG(FATAL) << "Failed to load model\r\n"; exit(-1); } model->error_reporter(); tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder(*model, resolver)(&interpreter); if (!interpreter) { LOG(FATAL) << "Failed to construct interpreter\r\n"; exit(-1); } float input = interpreter->inputs()[0]; if (interpreter->AllocateTensors() != kTfLiteOk) { LOG(FATAL) << "Failed to allocate tensors!\r\n"; } while(true) { // Calculate an x value to feed into the model. We compare the current // inference_count to the number of inferences per cycle to determine // our position within the range of possible x values the model was // trained on, and use this to calculate a value. float position = static_cast<float>(inference_count) / static_cast<float>(kInferencesPerCycle); float x_val = position * kXrange; float* input_tensor_data = interpreter->typed_tensor<float>(input); *input_tensor_data = x_val; Delay_time(1000); // Run inference, and report any error TfLiteStatus invoke_status = interpreter->Invoke(); if (invoke_status != kTfLiteOk) { LOG(FATAL) << "Failed to invoke tflite!\r\n"; return; } // Read the predicted y value from the model's output tensor float* y_val = interpreter->typed_output_tensor<float>(0); PRINTF("\r\n x_value: %f, y_value: %f \r\n", x_val, y_val[0]); // Increment the inference_counter, and reset it if we have reached // the total number per cycle inference_count += 1; if (inference_count >= kInferencesPerCycle) inference_count = 0; } } /* * @brief Application entry point. */ int main(void) { /* Init board hardware */ BOARD_ConfigMPU(); BOARD_InitPins(); BOARD_InitDEBUG_UARTPins(); BOARD_BootClockRUN(); BOARD_InitDebugConsole(); NVIC_SetPriorityGrouping(3); InitTimer(); std::cout << "The hello_world demo of TensorFlow Lite model\r\n"; RunInference(); std::flush(std::cout); for (;;) {} } ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍ Test result On the MIMXRT1050 EVK Board, we log the input data: x_value and the inferenced output data: y_value via the Serial Port. Fig2 Received data In a while loop function, It will run inference for a progression of x values in the range 0 to 2π and then repeat. Each time it runs, a new x value is calculated, the inference is run, and the data is output. Fig3 Test result In further, we use Excel to display the received data against our actual values as the below figure shows. Fig4 Dot Plot You can see that, for the most part, the dots representing predicted values form a smooth sine curve along the center of the distribution of actual values. In general, Our network has learned to approximate a sine curve.
查看全文
This application note describes how to develop an H.264 video decoding application with the NXP i.MX RT1050 processor. Click here to access the full application note. Click here to access the github repo of FFMPEG(code, no GPL). state: the code is for evaluation purpose only.
查看全文
INTRODUCTION REQUIREMENTS UTILITY USAGE INTEGRATION FUNCTIONAL DEMONSTRATION     1. INTRODUCTION   This document explains how to create an emWin application using as reference the emwin_temperature_control demo included on MCUXpresso SDK, and the emWin Utilities. The custom application for this example, is a Tic-Tac-Toe game, using the emWin GUI as user input, adding the proper logic for game implementation on the emWin generated code, and running on a MIMXRT1060-EVK board. 2. REQUIREMENTS   For the demonstration of this demo, the following material is required: MIMXRT1060-EVK board with the RK043FN02H-CT 4.3" LCD Panel. MCUXpresso IDE v11.0. MCUXpresso SDK v2.6.2 for EVK-MIMXRT1060, including the emWin middleware. Segger emWin 5.38b Libraries and Utilities. emWin 5.30 documentation. 3. UTILITY USAGE   For this demo, just GUIBuilder utility is used, and from this utility, just four widget elements are implemented on the application: Window, Text, Button and Image. At the beginning, one Window is added, configuring its xSize and ySize to 480 x 272, matching with screen's resolution. Over this Window, all the other elements are placed. Each Widget have proprieties that could be added/modified with the right click menu. The overall number of used widgets elements are the following: Three Text widgets, one for the title, other to indicate the next turn, and a third that is empty, because it will be dynamically updated to indicate the winner of the game (or indicating a Draw). Two Image widgets, on where BPM files are loaded and converted to constant arrays, to have the Cross/Circle icons indicating the current turn of the game. Ten Button widgets, one to reinitialize the game, and the other nine to build the 3x3 array used for the game. The complete application layout is shown on the following figure: Then, click on "File->Save" menu, and a file named "WindowDLG.c" file should be created on the same folder on where GUIBuilder utility is located. The "WindowDLG.c" file of this demo, as well as the BMP files for the cross/circle icons could be found on the attachments of this document. Additionally, you could also click on "File->Open" to open the downloaded "WindowDLG.c" file and modify it by your own. 4. INTEGRATION   1) First of all, it is required to import the "emwin_temperature_control" demo included on MCUXpresso SDK for MIMXRT1060-EVK board: Import SDK example(s) -> evkmimxrt1060 -> emwin_examples -> emwin_temperature_control 2) Just after importing the demo, by convenience we have renamed the project and the "source->emwin_temperature_control.c" to "evkmimxrt1060_emwin_tictactoe" and "emwin_tictactoe.c" (right click -> rename). After applying these changes, the demo should be able to be compiled and downloaded without errors and running without issues: 3) Then, open the "WindowDLG.c" file generated by the GUIBuilder and locate the "Defines" section. Copy all of them and replace the Definitions for Widgets IDs already included on the "emwin_tictactoe.c" file. 4) Also remove the "Some dimension defines" and "Colors" sections of the "emwin_tictactoe.c" file, and also the content of "Structures", "Static data". From the same file, also remove the sections for "_aGradient", "_GetSelectedRoom", "_SetFanButtonState", "_cbButton", "_cbButtonFan", "_cbKnob", "_DrawKnob", "_OnRelease". 5) Add the "_acImage_0" and "_acImage_1" arrays from the "WindowDLG.c" file to the "Static data" section of "emwin_tictactoe.c" file. 6) Replace all the elements from the "_aDialogCreate" array from the "emwin_tictactoe.c" with the ones from the "WindowDLG.c" file. 7) Add the function "_GetImageById" and replace the function "_cbDialog" from the "WindowDLG.c" file to the "emwin_tictactoe.c" file. 😎 Until here, the application should be compiled and downloaded without issues, although there is not included any functionality to perform the match. The downloaded layout is shown on the following image: 9) Now, for the implementation of the game itself, the following variables are added to the "Static data" section of "emwin_tictactoe.c" file. "player_turn" indicates who is the current player on move ("X" or "O"). "slots_free" is a counter to know how many remaining slots are free. "winner_player" stores who is the winner, or if the game is a Draw. "slot_status" array is in charge to store the current statusof each slot U8 i, player_turn=0, slots_free=9, winner_player=0; const U32 player_colors[] = {GUI_RED, GUI_BLUE}; enum {SLOT_FREE, SLOT_X, SLOT_O, SLOT_LOCK}; U8 slot_status[] = {SLOT_FREE, SLOT_FREE, SLOT_FREE,                               SLOT_FREE, SLOT_FREE, SLOT_FREE,                               SLOT_FREE, SLOT_FREE, SLOT_FREE}; 10) It was also implemented a function that checks all the possible Slot combinations to define the winner or if the match is a draw. It is the function "CheckWinner" and could be ckeched in the "emwin_tictactoe.c" file of the attachments, that already have all the required changes to have the Tic-Tac-Toe demo running. It is also required adding its function prototype to the "Prototypes" section of "emwin_tictactoe.c" file. 11) Basically, almost all of the game mechanics are defined by the "WM_NOTIFICATION_CLICKED" event of the 9x9 Buttons widgets, so, it is implemented inside the "_cbDialog" function. Below you could find the code for "ID_BUTTON_0"; the red highlights are what change for each Button event:     case ID_BUTTON_0: // Notifications sent by 'Button'       switch(NCode) {       case WM_NOTIFICATION_CLICKED:         // USER START (Optionally insert code for reacting on notification message)         if (slot_status[0] == SLOT_FREE){             hItem = WM_GetDialogItem(pMsg->hWin, ID_BUTTON_0);             BUTTON_SetTextColor(hItem, 0, player_colors[player_turn]);             if (!player_turn){                 BUTTON_SetText(hItem, "X");                 slot_status[0] = SLOT_X;             }             else{                 BUTTON_SetText(hItem, "O");                 slot_status[0] = SLOT_O;             }             player_turn ^= 1;             slots_free--;         }         // USER END         break; 12) For the Restart Button, the implemented logic is in charge of revert back all the Slots status to "Free", erase the content of all the Slots, and also restart the counter of free Slots to nine. 13) After polling all the GUI widgets events, the "CheckWinner" function is called, and then, the winner is defined, indicating it on the "Text_Winner" widget (on the upper-left corner of the screen) that was originally empty. 14) It is also implemented a functionality to directly draw a green rectangle (using emWin Draw functions) around the Cross/Circle icons, depending who is the player on move (also implemented inside the "_cbDialog" function, at the end).   //Draw green rectangle to indicate the player on move   if (!player_turn)   {     GUI_SetColor(GUI_GREEN);     GUI_DrawRoundedFrame(6, 106, 83, 183, 0, 4);     GUI_SetColor(GUI_BLACK);     GUI_DrawRoundedFrame(6, 186, 83, 263, 0, 4);   }   else   {       GUI_SetColor(GUI_GREEN);       GUI_DrawRoundedFrame(6, 186, 83, 263, 0, 4);       GUI_SetColor(GUI_BLACK);       GUI_DrawRoundedFrame(6, 106, 83, 183, 0, 4);   } 15) Finally, a printf with a welcome message was added to "main" function, just before initializing the GUI.     PRINTF("Tic-Tac-Toe demo on i.MXRT1060.\r\n"); 5. FUNCTIONAL DEMONSTRATION   Below are shown captures of the application running, when Cross wins, when Circle wins, and when the match is a draw.  
查看全文
MCUXPRESSO SECURE PROVISIONING TOOL是官方今年上半年推出的一个针对安全的软件工具,操作起来非常的简单便捷而且稳定可靠,对于安全功能不熟悉的用户十分友好。但就是目前功能还不是很完善,只能支持HAB的相关操作,后续像BEE之类的需等待更新。 详细的介绍信息以及用户手册请参考官方网址:MCUXpresso Secure Provisioning Tool | Software Development for NXP Microcontrollers (MCUs) | NXP | NXP  目前似乎知道这个工具的客户还不是很多,大部分用的更多的还是MCU BOOT UTILITY。那么如果已经用了MCU BOOT UTILITY烧录了FUSE,现在想用官方工具了怎么办了?其实对两者进行研究对比后,他们最原始的执行部分都是一样的,所以我们按照如下步骤进行相应的简单替换就能把新工具用起来: 首先是crts可keys的替换, MCU BOOT UTILITY的路径是在: ..\NXP-MCUBootUtility-2.2.0\NXP-MCUBootUtility-2.2.0\tools\cst MCUXPRESSO SECURE PROVISIONING的对应路径是在对应workspace的根目录: 另外还有一个就是encrypted模式会用到的hab_cert,需要将下面这两个文件对应替换,而且两个工具的命名不同,注意修改。 MCU BOOT UTILITY的路径是在: ..\NXP-MCUBootUtility-2.2.0\NXP-MCUBootUtility-2.2.0\gen\hab_cert MCUXPRESSO SECURE PROVISIONING的路径是workspace里: ..\secure_provisioning_RT1050\gen_hab_certs MCU BOOT UTILITY里命名为:SRK_1_2_3_4_table.bin; SRK_1_2_3_4_fuse.bin MCUXPRESSO SECURE PROVISIONING里命名为:SRK_fuses.bin; SRK_hash.bin 至此,就能够在新工具上用起来了 最后提一下,就是这个新工具是可以建不同的workspace来相应存储不同秘钥的项目,能够方便用户区分。在新工具下建的项目也是可以互相替换秘钥的,参考上术步骤中的secure provisioning部分即可。
查看全文