University Programs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

University Programs Knowledge Base

Labels

Discussions

Sort by:
Model provided by the Mathworks Academic support team to manage wide angle lenses on the default Freescale Cup car camera.
View full article
First and foremost, be creative!! Below are just a few inspirational ideas. Option #1 - I cut-down (miter saw) a 4-position TWR-ELEVATOR to make this 2-position design. With the intent of having two boards mounted 1) TWR-PROTO and 2) MCU of choice (K40). If cutting PCB's with power tools is not your thing, you can buy a 2-position Tower Elevator here: http://wavenumber.net/twr-elev-2/ I just marked the holes on the back supportand drilled holes into the TWR-PROTO, a few stand-offs and viola! Option #2 - This option requires the removal of the rear spring. I am not sure how much value that spring honestly provides since most of the track is nice and flat. If you have a newer TWR-ELEVATOR you usually find some way to mount it to the screw holes with some form of L-Bracket. If you have an older TWR-ELEVATOR you can drill a hole in the Secondary Elevator (less PCB traces to worry about) and then mount it to the chassis with a L-Bracket. Option #3 - Check out this gallery of images: https://plus.google.com/u/0/photos/106056936857240793028/albums/5598207628299505201
View full article
Instructions There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. Install the included battery into the VBAT (RTC) battery holder. Then, connect one end of the USB cable to the PC and the other end to the Power/OSJTAG mini-B connector on the TWRK40x256 module. Allow the PC to automatically configure the USB drivers if needed. Before updating the firmware, it is necessary to start a CodeWarrior Project. Open Codewarrior Navigate to File-> New ->Bareboard Project Select Kinetis K40->MK40X256VMD100 , P&E Open Source Jtag, C Language, No Rapid Application Development ,Finish Click on the main.c To get project focus Selection Project->Build Configurations->MK40X256VMD100_INTERNAL_FLASH Project-»Build All Run->Debug Configurations—> Use the Codewarrior download Filter and Select "PROJECTNAME_MK40XD256VMD100_INTERNAL_FLASH_PnE_OSJTAG" Additional step is required if the firmware is out of date: Firmware Upgrade Instructions (if needed) Firmware may change after an evaluation board has been manufactured and shipped. As a result, an alert will be displayed during the first attempt to download software to the board. Follow the instructions carefully. Unplug the USB cable. Look for the two pins labeled JM60 Boot and put a jumper on those pins Note: As it comes from the factory, the K40 board has a free jumper on the board. . Jumper J13 is labeled "JM60 BOOT." It connects two header pins which set the evaluation board in the firmware programming mode. This jumper is behind the LCD screen, and right next to LED/Touch Sensor "E3". Remove the LCD creen to gain access to the jumper. Reconnect the USB cable and click OK. Wait for the new firmware to download. A new dialog will appear when the process is complete. Unplug the cable, remove the jumper, and reconnect the cable. Then click OK. (You can store the jumper on the board, just set it so that it does not connect pins.) You may or may not encounter the firmware issue, or the multiple configurations issue. Once resolved, you should not see them again. With propertly set up hardware, users can return to Step 3: Import the LED Project of the Blink a LED on Kinetis Tutorial
View full article
This article serves you as an introduction of Kinetis TWR K40 microcontroller. At the end of this part, you shall be able to answer some basic questions such as: what is Kinetis K40, and what is a Tower System. 2. Kinetis K40 32-bit Kinetis MCUs represent the most scalable portfolio of ARM® Cortex™-M4 MCUs in the industry. Enabled by innovative 90nm Thin Film Storage (TFS) flash technology with unique FlexMemory (configurable embedded EEPROM), Kinetis features the latest low-power innovations and high performance, high precision mixed-signal capability. For the Freescale Cup Challenge, we have provided several tutorials, example code and projects based on the twr-k40x256-kit. This board is part of the Freescale tower-system, a modular, reusable development platform that allows engineers to quickly prototype new designs. The K40 chip is a 144 pin package with 512KB of Flash, 245Kb of Program Flash, 4KB of EEProm, and 64KB of SRAM.      Important Documents:           Kinetis K40 Reference Manual           Besides the Reference manual and the Datasheet, the most useful document for learning to program the K40 chip is the:           Kinetis Peripheral Module Quick Reference           Data sheet           Errata      External Links           Freescale's Kinetis K40 Product Page (You can find all the information you want about Kinetis K40 over here) 3. TWR-K40X256 Kit The TWR-K40X256 Kit is a Freescale evaluation board powered by the Kinetis K40 microcontroller. The Kinetis microcontroller family is a set of 32 bit ARM Cortex M4 chips which feature flexible storage, lower power usage, high performance and optional Floating Point Unit with many useful peripherals. For more information on the Kinetis family see Freescale's Kinetis website. The Tower System is a prototyping platform with interchangeable and reusable modules along with open source design files. Freescale K40 MCU Tower Module: TWR K40X256 Hardware Setup There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. TWR K40X246 Hardware Setup Instructions Board Tips The TWR-K40X256 features a socket that can accept a variety of different Tower Plug-in modules featuring sensors, RF transceivers, and more. The General Purpose TWRPI socket provides access to I2C, SPI, IRQs, GPIOs, timers, analog conversion signals, TWRPI ID signals, reset, and voltage supplies. The pinout for the TWRPI Socket is defined in Table 3 of the TWR-K40X256 User's Manual, but the user manual does not describe how to order a connector. A Samtec connector, part number: SFC-110-T2-L-D-A is the proper female mating connector for the TWR-K40X256 TWRPI socket. SIDE A/SIDE B White DOTS for counting Pins Solder Wire to GND, and to MCU VDD Pin for testing purposes      Important Documents           TWR-K40X256 User's Manual           TWR-K40X256 Schematics      External Links           TWR-K40X256-KIT Webpage           Kinetis Discussion Forum           Tower Geeks Community Website           Tower Geeks Freescale Cup Group .
View full article
The TRK-MPC560xB: MPC560xB StarterTRAK (Development Kit) is a Freescale evaluation board powered by the qorivva chip. The Qorivva microcontrollers family is a set of 32 bit Power Architecture chips. Which Chip do you have? The chipset mounted on the boards for the Freescale Cup can vary. Always validate your chipset to know it's full capabilities. MPC560xB Product Information Page Difference Highlights: 5604B = 512MB Code Flash; no DMA 5606B = 1MB Code Flash; Has 16-Channel DMA 5607B = 1.5Mb Code Flash; Has 16-Channel DMA TRK-MPC5604B Hardware Setup There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. TRK-MPC5604B Hardware Setup Instructions Lectures: The Freescale Cup – Lecture 5: MPC5607B Overview Overview Slides from lecture Overview Slides from Lecture (PDF) other Lectures from the Freescale Cup Lecture Series Other Qorivva Tutorials: qorivva-blink-led qorivva-drive-dc-motor qorivva-turn-a-servo qorivva-line-scan-camera Board Tips Important Documents TRK-MPC5604B User's Manual TRK-MPC5604BQuick Reference Guide TRK-MPC5604B Schematics Reference manual External Links TRK-MPC5604B Webpage
View full article
After completing the LED, Motor Control and servo tutorials, students should be comfortable with many of the subjects necessary to enable and input data from the Line Scan Camera. The line scan camera module consists of a CMOS linear sensor array of 128 pixels and an adjustable lens. This camera has a 1x128 resolution. The camera is mounted on a boom above the car to ensure the greatest field of view. Determining the angle of orientation about the pivot at the top of the boom will change the “look ahead” distance of the camera and enable more efficient steering algorithms Solution Overview One method of implementation is to take the entire readout of the camera and store it in the memory. Then a line detection algorithm can be used to locate the position of the black line. Due to varying lighting conditions, some level of pixel thresholding may be necessary as the intensity differences across the data may not always produce a clear indication of the line location. A good approach is to use an algorithm that looks for changes in the magnitude of voltage from one portion of the array to another, since the camera’s AO magnitude is directly related to the brightness the pixel array senses. If the microcontroller finds a significant decrease in magnitude followed by large increase in magnitude this would give us a good indication of the location of the line. For this a derivative function can be utilized. Once we have successfully determined the position of the black line, immediately adjust the wheels to adjust the direction of the car so that the black line will remain in the center of the camera’s view. Sample camera output (for illustrative purposes only) The camera outputs an analog signal from 0 to 5V depending on the grey-scale value of the image. to simplify our sample we will assume that we have set limits for the line and have transformed the data to digital bits using a threshold value. 0’s are high intensity (non-line locations), 1’s are low intensity (black or line locations) 10000000000000000000000000000000001111101000000000000000000010000000000000000 Since the camera provides a 128x1 bit picture, and the camera will be pointing down at the track which is a fixed width. A control algorithm should be developed to line up the 1’s in the center of the 128 bits. The center of the field of view will be require calibration and testing, but it is assumed that the camera will remain in a fixed location pointing down the center of the forward looking axis of rotation. Usage For normal operation of the camera, the following signals must be produced and processed: CK (clock) - latches SI and clocks pixels out (low to high) continuous signal SI (serial input to sensor) begins a scan / exposure discrete pulses, pulse must go low before rising edge of next clock pulse AO (analog output) - Analog pixel input from the sensor (0-Vdd) or or tri-stated The CK and SI signals are simple ON/OFF signals which can be produce using a GPIO Pin, setting the pin high and low corresponding to the desired exposure time of the camera. The only other requirement is to read the Analog Output of the camera which requires the initialization of the Analog Module and setting it to the proper pinout.  Actual camera output, below:                                                                                                                        Yellow = SI, Green = Camera Signal, Purple = clock More camera waveforms and information (Power Point) available here This link shows a video of the camera connected to the oscilloscope http://www.youtube.com/watch?v=YOAd3ERnXiQ To obtain this signal, connect channel 1, 2 and 3 of an oscilloscope to the SI pulse (Trigger off this signal), CLK, and AO signals. GPIO Details are provided in the LED tutorial. The timing for creation and read of the signals is crucial and is detailed in the diagram below. This information can also be found in the Line Scan Datasheet. Analog Read: The Analog Output (AO) signal from the camera needs to be processed and read by the microcontroller's Analog to Digital Converter (ADC). This ADC device converts a continuous signal into a discrete number which is proportional to the signal voltage. An 8 bit ADC has 256 discrete levels (2^8). If a analog signal between 0 and 5 volts is sampled, a digital discrete number of 0 would correspond to zero volts, and a digital discrete number of 255 would correspond to 5 volts. A number such as 145w would correspond to about 2.8 volts. The maximum signal sample rate is limited by the microcontroller. Proper configuration of the ADC peripheral and the multiplexer of the chip will configure a pin to read in an analog signal when calling the function. More details on analog to digital converters can be found on the wikipedia site here. Read/Write In write mode, the GPIO pin can be set, cleared, or toggled via software initiated register settings. Microcontroller Reference Manual: Analog to Digital Converter You will find high level information about GPIO usage in several different areas of a reference manual. See the reference-manual article for more general information. Relevant Chapters: (see GPIO chapters for clock and SI Creation)  Introduction: System Modules: System Integration Modules (SIM) - provides system control and chip configuration registers Chip Configuration: Signal Multiplexing: Port control and interrupts Hardware The device discussed within this tutorial is the Line Scan Camera featuring TAOS 1401  Focusing the camera: Once the sensor is perfectly working the next step is to find the best position of the lens that will generate the clearest images. The best way to do it is using an oscilloscope: Connect the SI and AO signals to the oscilloscope Set the SI pulse so that it can be clearly seen and then trig the AO signal with the SI signal using the trig function Fix the camera looking at a sheet of paper with a black line in the center The image of the black line will appear on the oscilloscope screen Screw the camera until you find the position where the line seems the clearest Camera Circuit   5 wires must be connected  ground power SI CLK AO Camera Limitations According to the datasheet:  "The sensor consists of 128 photodiodes arranged in a linear array. Light energy impinging on a photodiode generates photocurrent, which is integrated by the active integration circuitry associated with that pixel. During the integration period, a sampling capacitor connects to the output of the integrator through an analog switch. The amount of charge accumulated at each pixel is directly proportional to the light intensity and the integration time." Integration Time: T T = (1/fmax)*(n-18)pixels + 20us, where n is the number of pixels Minimum integration time: 33.75us Maximum integration time: capacitors will saturate if exceeding 100ms frequency range 5 Khz - 8 Mhz (8 Mhz is fmax in equation above) The integration time is the following: It occurs between the 19th CLK cycle and the next SI pulse. The CLK frequency itself has little to do with the integration time. One each rising edge, the clock outputs one of the previously sampled intensity values. This means that integration time should be set by varying the time between SI pulses, not changing the clock frequency. Make the CLK frequency high, and have as much time as needed between the two SI pulses to obtain the desired intensity value. Helpful Hints Light can be transmitted through the pcb on the back of the camera. This unwanted extra light shining on the CMOS linear sensor can induce significant errors into your signals received. A shroud or housing for the camera unit can easily eliminate this problem. One of the easiest solutions is to place a piece of electrical tape across the back of the camera in the highlighted area indicated in the picture below. When testing the car on the track or transporting it, it is not uncommon for the focus on the camera to loosen or change. Therefore it is recommended that after adjusting your camera focus for maximum performance you make mark (ex. metallic sharpie) between the lens and its body so you can realign the camera lens to it's proper position easily if it does shift.   *When hooking up the linescan camera, regardless of position or focus there is a drop off at each end of the image data. This is easily viewed with an oscilloscope. This effect is undesirable, particularly when you are finding your line position utilizing a derivative approach. These fallouts cause erroneous derivative values, and hence a poor line position solution. Two solutions we found useful were: (1) Ignoring the first 10-15 pixels and last 10-15 pixels of the image data array, and then determining the line position; (2) Often when making decisions in the code as to where the line was at it was found useful to use a threshold value for the difference in the derivative position, and secondly a binary threshold on the camera data. Note that the falloff depends on camera focus, position, etc. Therefore, these threshold values and pixels in which to ignore are relative to a specific instance. The problem however is common to the camera.  * Saving previous line position values Since the camera can read the line very quickly while the servo can only update every 20ms, there are multiple camera reads before the servo can update, if you are reading the camera fast and then overriding without saving them in some form then those camera reads are being wasted and are better off not having occurred. What can help is to create some sort of filter by bringing new values into an array with previous values and preforming some sort of averaging. The following code will take the new line position value and place it in a 1xA array where A is defined by CAMERA_AVG. NO AVERAGING IS OCCURRING HERE all that is happening is the camera values are being saved in a simple array, what is done with them is up to you. The way this works is that it shifts the entire array so the oldest data point is discarded in order to make room for the new line position at the other end of the array. It will only adds the new value if there is one available if not it copies the previous first position value to the new first position value. CAMERA_AVG => an integer value for how long the averaging length will occur gfpLineAverage => global floating point array of camera center line values fpLinePos => returned from read camera this is the center line position ReadCamera() => is the read camera function call returns a floating point value of fpLinePos // this will shift the values up and throw away the oldest value // then add a new reading for (i=CAMERA_AVG;i>0;i—) { gfpLineAverage[i]=gfpLineAverage[i-1]; } // if no line was detected the previous camera value will be passed on if (fpLinePos=ReadCamera()) { gfpLineAverage[0]= fpLinePos; } For example an array of of center line position values ranging from 0-127 could look like. Initial values [51 50 52 54 58 55] New position of 45 read [45 51 50 52 54 58] New position of 44 read [44 45 51 50 52 58] No value read [44 44 45 51 50 52] No value read [44 44 44 45 51 50] New position of 50 read [50 44 44 44 45 51] Tutorials Line Scan Camera: Kinetis ARM Cortex M4 Tutorial Specifics of how to configure the K40 ADC, to create the delay code is covered in the K40: Line Scan Camera Tutorial. Line Scan Camera: Qorivva Tutorial Specifics of how to configure and program the trk-mpc5604b board to blink an LED is covered in the qorivva:line-scan-camera Tutorial. Additional Resources Freescale app note on interfacing with a linescan camera Freescale app note on interfacing with an RCA camera
View full article
Photos Videos
View full article
In this training video we will examine some concepts in approaching a vehicle control system.  This includes the stages in data flow and update rates of the control software.   The concept of differential steering will be introduced.
View full article
Notes: Will ask - Do you want to add the Remote System to your workspace? Click yes Build - select flash Plug in your K40 board to the usb (tower is not needed in this step) Click on debug as it will ask you which configuration you want to launch: Select the internal flash one. Bottom right you will see it "Launching with a little green light indicating that it is programming your board. After clicking debug as, you will enter the debug Eclipse "view" nothing will happen until you press "resume" Download the Zip file which is located: LED BLINK 96MHZ How to: Set up a debug: Program the FLASH Click on project in codewarrior projects menu There is noe issue with the Kinetis chips errata 2448. The code which is in our zip file already has these changes made, but if you download Kinetis example code from the official freescale site instead of using the wiki code - it may not work. Read more about the work - around here: here ++ Test to make sure everything is working properly CodeWarrior typically defaults to a "pause" setting when the debug is first started. To test wheter the code is working you will need to press "resume"
View full article
In this video we will look at the example code provided for the FRDM-TFC for use with the mbed development environment. Alternatively, you can see the same example code as it is used with CodeWarrior here:
View full article
One of the finalist vehicles for the Freescale Cup China 2012 event. In 2012, we switched the black lines to the outer edges for a new challenge twist for the students to adapt to.
View full article
This guide provides all the participants of the Freescale Cup finals with the key information to get organised during the event. This is the final version
View full article
Overview An H-Bridge circuit has a control circuit, usually PWM, which then determines the switching of high-voltage supply to drive a current. Typical embedded H-Bridges can drive about 5A of current. In the case, of the Freescale Cup car the motors can sustain much more current resulting in more toque and faster speeds. Performance Tuning Tips 1. You can place H-Bridges in parallel to balance the current load. For example, if you place two 5A (peak) H-Bridge outputs in parallel, the system can support up to 10A current. 2. Keep it Cool. H-Bridge's dissipate A LOT of heat. Heat = increases inefficiency of a semiconductor, so the better job you do keeping it cool, the better (and longer) it will work for you. Operation Theory This is the simplest H-bridge, where the four gates represent for transistors. By manipulating these gates and connecting the upper and lower terminals to a voltage supply, you can control the motor in all the behaviors as below. H-Bridge States
View full article
On September 14-15, 2015, The Freescale Cup Worldwide Finals will be held at the Fraunhofer Institute of Integrated Circuits (Fraunhofer IIS) in Erlangen, Germany You can follow along and see the regional champion teams from South Korea, China, India, Taiwan, Malaysia, Mexico, Brazil, USA and Switzerland train and compete for the World Title. Agenda of the event covered by the LiveCast is (all times are Central Europe Time): September 14th 14:00 - 15:00 Opening Ceremony 15:00 - 17:30 Training Session 17:30 - 18:00 High Schools and Innovation Challenge Demonstrations September 15th 9:00 - 13:00 Training Session 13:00 - 14:30 Technical Inspection and preparation for the Finals Race 14:30 - 15:00 Finals Race 15:00 - 15:45 Preparation for the Awards 15:45 - 17:30 Awards Ceremony Download and print the attached poster with the embedded QR-Code for posting the link of the LiveCast Direct LiveCast URL is http://www2.iis.fraunhofer.de/freescale
View full article
Below is one example process of creating a PCB. Create a Bill of Materials (BOM) In other words, decide which devices you want to use and what you will need to construct your circuit. If space is a constraint, picking the right device package is crucial. Create a Pin List Once you have all your devices. Create a simple Excel sheet of the various pin-outs from each of these devices. The goal here is to create a reference of which pin goes to which. This will greatly increase your accuracy in the next step… Create a Schematic You will need to download and install a schematic-and-layout-program. Using your schematic program create any needed device libraries and then create the schematic for the board. Create a Layout Once your done with the schematic, layout is just routing the traces around the PCB as efficiently as possible. Some tips for good routing. Use a ground plane (aka solid fill) - This helps with transient signals, and reduces trace congestion. Keep any noisy signals away from data signals (keep the motor driving lines away from data lines) Generate Gerbers and Drill Files Read the website of the Manufacturer that will be building your boards. Most of them do a good job of explaining what format the design needs to be in for them to do the job correctly. Some manufactures support the layout files from certain software toolsets (usually their own). Gerbers are pretty much the universal language though. Send to Board Manufacturer and order your BOM. Below are some of the most popular ones in the USA. If you have a resource in your area please add to the list below. pcbexpress.com sunstonecircuits.com Related Links Training by Freescale on Effective PCB Design General PCB design Engineering Articles from Quick-teck PCBs
View full article
In this training video we will examine some concepts in approaching a vehicle control system.  This includes the stages in data flow and update rates of the control software.   The concept of differential steering will be introduced.
View full article
Congratulations to all the teams to making it this far.  Last minute tweaks made and broke a few teams shooting for the top spot. Best times: (in seconds) 14.89 - Beijing University of Science and Technology [China] 17.60 - Swinburne University of Technology [Malaysia] 19.08 - National Taiwan University of Science and Technology [Taiwan] 19.57 - Escola Politecnica da Universidade de Sao Paulo [Brazil] 20.54 - University of California Berkeley [USA] 22.14 - Slovak University of Technology [Slovakia] DNF - The University of Tokyo [Japan] DNF - Bannari Amman Institute of Technology [India] DNF - Instituto Politecnico Nacional [Mexico] Read more: Day 1: Freescale Cup 2013 Worldwide Championship and China Regional Finals Day 2:  (coming soon)
View full article
Congratulations to all teams of the inaugural West Coast Freescale Cup event!  Our three fastest times, covering a total distance of 147 feet.  Full collection of event photos and videos!! Top 3 Teams: * First Place - UC Berkeley - 21.27 seconds Second Place - UC Davis - 27.92 seconds Third Place -  UC Davis - 28.00 seconds
View full article
Overview: The TWR-TFC-K20  is an all-in-one tower CPU card that can be used to create an autonomous race vehicle for the the Freescale Cup.   It has all the interfaces necessary for the car to sense the track and control the vehicle    This card is also a great platform for teaching embedded systems.   The TWR-TFC-K20 uses a Freescale Kinetis K20 MCU and has some really cool I/O to keep students interested. Features: Servo Outputs 3-pin Header to connector directly to steering Servo 1 Extra Servo header. Camera Interfaces 1. 5-pin header to connect directly to a Freescale Line Scan Camera 2. Header for 2nd linescan camera (optional) 3. RCA Camera Interface. Includes an LMH1981 Sync Extraction chip and connection to MCU to allow for low resolution (64x64) image capture at 60FPS Power Accepts direct battery power – onboard switching regulator 5-18v All circuitry except for motor controller can be optionally powered over USB Connector DC Motor Drivers QTY 2 MC33887APVW : Dual, Independent 5A Motor Driving Circuit. Supports forward, reverse and braking. Independent control over each drive motor allows for an active differential implementation Current Feedback to MCU ADC to allow for closed loop torque control CPU/ Programming Integrated Kinetis MK20DN512ZVLL10MCU with OSJTAG Additional I/O Some basic I/O for debugging. 4-poistion DIP Switch + 4 LEDs + 2 pushbuttons. Inputs for Tach Signal/Speed Sensor Design Files Rev Beta [B] (Current Production version) Schematics, Assembly Prints, BOM, etc. - Includes 3d view Rev B Errata: None known! Example Code: All software relating to the TWR-TFC-K20 is held in an Google Code Subversion repository.   This is the only way the source is distributed.   Never used a version control system yet?   Now is the time to learn (Google is your friend)!   All "real" software development processes use some form of version control.  TortoiseSVN is a nice client for SVN! Google Code Repository: https://code.google.com/p/tfc-twr/ This code works with Rev B of the board. All major interfaces & peripherals have been tested. At some point we will make a video going through the code. By default, the Linescan camera code is enabled. The code in main.c is pretty easy to follow. There is also code for the NTSC camera but must enabled in the TFC_Config.h file via a pre-processor directive. There is also code used for the OSTAG interface, Labview demo applications and drivers for the USB Videos:
View full article
The TWR-K40X256 Kit is a Freescale evaluation board powered by the Kinetis K40 microcontroller. The Kinetis microcontroller family is a set of 32 bit ARM Cortex M4 chips which feature flexible storage, lower power usage, high performance and optional Floating Point Unit with many useful peripherals. For more information on the Kinetis family see Freescale's Kinetis website. The Tower System is a prototyping platform with interchangeable and reusable modules along with open source design files. Freescale K40 MCU Tower Module: TWR K40X256 Hardware Setup There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. TWR K40X246 Hardware Setup Instructions Board Specific Tutorials K40 Blink LED K40 Drive DC Motor K40 Drive Servo Motor K40 Line Scan Camera Board Tips The TWR-K40X256 features a socket that can accept a variety of different Tower Plug-in modules featuring sensors, RF transceivers, and more. The General Purpose TWRPI socket provides access to I2C, SPI, IRQs, GPIOs, timers, analog conversion signals, TWRPI ID signals, reset, and voltage supplies. The pinout for the TWRPI Socket is defined in Table 3 of the TWR-K40X256 User's Manual, but the user manual does not describe how to order a connector. A Samtec connector, part number: SFC-110-T2-L-D-A is the proper female mating connector for the TWR-K40X256 TWRPI socket. SIDE A/SIDE B White DOTS for counting Pins Solder Wire to GND, and to MCU VDD Pin for testing purposes Important Documents TWR-K40X256 User's Manual TWR-K40X256 Schematics External Links TWR-K40X256-KIT Webpage Kinetis Discussion Forum Tower Geeks Community Website Tower Geeks Freescale Cup Group
View full article