恩智浦基于模型的设计工具知识库

取消
显示结果 
显示  仅  | 搜索替代 
您的意思是: 

NXP Model-Based Design Tools Knowledge Base

讨论

排序依据:
General Installer and Setup  External mode External mode example wouldn't compile after update  Others MPC57xx MBD Toolbox not appears in Simulink Library Browser  Peripherals Apps Motor Control BMS Request for HSD/LSD/MSDI Communication Examples for MPC5775B BMS and VCU Reference Design 
查看全文
  Product Release Announcement Automotive Processing NXP Model-Based Design Toolbox for S32K3xx – version 1.4.0 RFP   The Automotive Processing, Model-Based Design Tools Team at NXP Semiconductors, is pleased to announce the release of the Model-Based Design Toolbox for S32K3xx version 1.4.0. This release supports automatic code generation for S32K3xx peripherals and applications prototyping from MATLAB/Simulink for NXP S32K3xx Automotive Microprocessors. This new product adds support for S32K310, S32K311, S32K312, S32K314, S32K322, S32K324, S32K328, S32K338, S32K341, S32K342, S32K344, S32K348, S32K358 and S32K396 MCUs and part of their peripherals, based on RTD MCAL components (ADC, PWM, MCL, DIO, CAN, SPI, UART, LIN, GPT). To enable BMS applications development, the toolbox offers support for MC33775A and MC33772C battery cell controllers (& MC33665PHY). In this release, we have also updated RTD, AMMCLib, and MATLAB support for the latest versions. The product comes with over 120 examples, covering everything that is supported, including demos for battery cell controllers (BCC) and motor control.   Target audience: This product is part of the Automotive SW – S32K3 Standard Software Package.   FlexNet Location: https://nxp.flexnetoperations.com/control/frse/download?element=14146527   Technical Support: NXP Model-Based Design Toolbox for S32K3xx issues will be tracked through the NXP Model-Based Design Tools Community space. https://community.nxp.com/community/mbdt   Release Content Automatic C code generation from MATLAB® for NXP S32K3xx derivatives: S32K310 S32K311 S32K312 S32K314 S32K322 S32K324 S32K328 S32K338 S32K341 S32K342 S32K344 S32K348 S32K358 S32K396   Support for the following peripherals (MCAL components): ADC PWM MCL LIN CAN SPI UART GPT DIO   Board initialization: The Model-Based Design Toolbox for S32K3xx generates the component’s peripherals initialization function calls as configured in the Board Initialization window. The toolbox provides a default configuration including function calls for initializing the clocks, followed by pins and a custom order for the rest of the peripherals which have been configured in the project associated to the model. Moreover, the toolbox provides the option to save and export the initialization sequence to a file which can be later used for other models as well – in this way, the customization of the board initialization sequence can be done only once, even if applicable for other models as well. Such a file can be then imported as an external Board Initialization Template.   Custom Linker Files and Startup Code: The toolbox allows the selection of custom linker files and startup code to be used during the build process. By enabling the Use Custom Linker or/and Use Custom Startup Code checkboxes, this feature is activated, allowing the users to Browse for specific files.   Support for Referenced Configurations The Model-Based Design Toolbox for S32K3xx enables the usage of Referenced Configurations, a Simulink feature which allows users to share the configuration of an application with multiple models.   Support for MC33775A and MC33772C battery cell controllers & MC33665PHY The toolbox provides support for the MC33775A, MC33772C, and MC33665. The MC33775A and MC33772C are lithium-ion battery cell controller ICs designed for automotive applications which perform ADC conversions of the differential cell voltages and battery temperatures, while the MC33665 is a transceiver physical layer transformer driver, designed to interface the microcontroller with the battery cell controllers through a high-speed isolated communication network. The ready-to-run examples provided with the MBDT for S32K3 show how to communicate between the S32K344 and the MC33775A and MC33772C via the MC33665 transceiver. For the MC33775A, the examples show how to configure the battery cell controller to perform Primary and Secondary chains conversion, and read the cell voltages conversion results from the MC33775A, while for the MC33772C the examples show how to configure the Battery cell controller to read current. All the converted values are displayed to the user over the FreeMaster application.       Support for AUTOSAR blockset (SW-C deployment) New RTD version supported  (3.0.0) Provides 2 modes of operation: Basic – using pre-configured configurations for peripherals; useful for quick hardware evaluation and testing Advanced – using S32 Configuration Tools or EB Tresos to configure peripherals/pins/clocks Integrates the Automotive Math and Motor Control Library release 1.1.32: All functions in the Automotive Math and Motor Control Functions Library v1.1.32 are supported as blocks for simulation and embedded target code generation.   FreeMASTER Integration We provide several Simulink example models and associated FreeMASTER projects to demonstrate how our toolbox interacts with the real-time data visualization tool and how it can be used for tuning embedded software applications.   Support for MATLAB versions We added support for the following MATLAB versions: R2021a R2021b R2022a R2022b R2023a   S32Design Studio Integration We provide a simple mechanism for the users to export the code generated from Simulink and import it directly into S32Design Studio. This functionality can be useful if the model needs to be integrated into an already existing project or for debugging purposes.   Support for custom default project configuration The toolbox provides support for users to create their custom default project configurations. This could be very useful when having a custom board design – only needing to create the configuration for it once. After it is saved as a custom default project, it can be used for every model that is being developed.   Support for component restore to default settings The toolbox allows users to restore the configuration of a component (for models which use the EB Tresos configuration tool) to the settings corresponding to the Default Configuration Template the model uses. This allows reverting changes (if made) to the default values.   Simulation modes: We provide support for the following simulation modes (each of them being useful for validation and verification): Software-in-Loop (SIL) Processor-in-Loop (PIL) External mode     Examples for every peripheral/function supported: We have added over 120 examples, including: Battery Management Systems examples Motor control applications (including eTPU example on S32K396) Communication (LIN, SPI, CAN, UART) AMMCLib Timer control (GPT) DIO FreeMASTER SIL / PIL / External mode For more details, features, and how to use the new functionalities, please refer to the Release Notes document attached. MATLAB® Integration The NXP Model-Based Design Toolbox extends the MATLAB® and Simulink® experience by allowing customers to evaluate and use NXP’s S32K3xx MCUs and evaluation board solutions out-of-the-box with: NXP Model-Based Design Toolbox for S32K3xx version 1.4.0 is fully integrated with MATLAB® environment in terms of installation:       Target Audience This release (1.4.0) is intended for technology demonstration, evaluation purposes, and prototyping S32K3xx MCUs and Evaluation Boards.   Useful Resources Examples, Trainings, and Support: https://community.nxp.com/community/mbdt          
查看全文
This page summarizes all Model-Based Design Toolbox videos related to S32K3 Product Family.  NXP MBDT - S32K3 Updates In this video, we discuss the Model-Based Design paradigm and how to take advantage of the MathWorks ecosystem to generate C code automatically for the NXP S32K3xx. We start our discussion with details about MBDT Concept, Development flow, and Advantages. Then we compare the NXP's MBDT for S32K1 vs MBDT for S32K3 where we introduce the usage of an "external configuration" tool to handle the MCU Clocks, Pins, and Components configuration particular the NXP S32 Configuration Tools and EB tresos Studio. We then explain how the new paradigm matches a "true" Model-Based Design Approach and helps the development engineers. Finally, we discuss the Toolbox for S32K3, what NXP products integrate, and what applications look like. Deploying AUTOSAR ™  and Non-AUTOSAR Software Components on NXP S32K3 with MathWorks ®  Tools Link to the recording here AUTOSAR ™  Classic is the proven standard for traditional automotive applications such as powertrain, chassis, body and interior electronics and more. More frequently, OEMs and suppliers would prefer to reuse the tested and proven legacy (non- AUTOSAR) ECU software in next-generation AUTOSAR ECUs. In this webinar, NXP and MathWorks will show how to use NXP Model-Based Design Toolbox (MBDT) together with MathWorks ®  Simulink ®  and Embedded Coder ®  to develop and deploy MCAL configured (non-AUTOSAR) applications on NXP S32K3 microcontrollers for general purpose. Furthermore, we will illustrate how to convert tested non-AUTOSAR application components to AUTOSAR and then verify and deploy MCAL configured AUTOSAR compliant production code on an S32K3 MCU. Deploying a Deep Learning-Based State-of-Charge (SoC) Estimation Algorithm to NXP S32K3 Microcontrollers Link to the recording here Battery management systems (BMS) ensure safe and efficient operation of battery packs in electric vehicles, grid power storage systems, and other battery-driven equipment. One major task of the BMS is estimating state of charge (SoC). Traditional methods for SoC estimation require accurate battery models that are difficult to characterize. An alternative to this is to create data driven models of the cell using AI methods such as neural networks. This webinar shows how to use Deep Learning Toolbox, Simulink, and Embedded Coder to generate C code for AI algorithms for battery SoC estimation and deploy them to an NXP S32K3 microcontroller. Based on previous work done by McMaster University on Deep Learning workflows for battery state estimation, we use Embedded Coder to generate optimized C code from a neural network imported from TensorFlow and run it in processor-in-the-loop mode on an NXP S32K3 microcontroller. The code generation workflow will feature the use of the NXP Model-Based Design Toolbox, which provides an integrated development environment and toolchain for configuring and generating all the necessary software to execute complex applications on NXP MCUs.  A Model-Based Design (MBDT) Environment for Motor Control Algorithm Development Link to the recording here  This webinar, co-hosted with MathWorks, shows how to design and develop Motor Control algorithms with Simulink ® , using the Embedded Coder and Model-Based Design Toolbox for S32K3xx. We will introduce the scalable S32K3 MCU family and present its specific motor control modules. We will show how to access and configure the MCU peripherals making the Simulink model hardware aware, and ready to generate, build and deploy the application on the hardware. We will focus on Field Oriented Control (FOC) algorithm and implement a sensorless control of a permanent magnet synchronous motor (PMSM). The FreeMASTER application will be used to control and monitor the algorithm running on the S32K344. NXP MBDT for S32K3 provides an integrated development environment and toolchain for configuring and generating all the necessary software to execute complex applications on NXP MCUs directly from Simulink ® .   Speed-Up BMS Application Development with NXP's High-Voltage Battery Management System Reference Design and Model-Based Design Toolbox (MBDT) Link to the recording here  This webinar shows how to design and develop Battery Management Systems, with NXP's High-Voltage BMS Reference Design and Model-Based Design Toolbox for S32K3xx, with Simulink® and Embedded Coder. During this webinar, we will introduce the ASIL D High Voltage Battery Management System Reference Resign that comprises a Battery Management Unit (BMU), Cell Monitoring Units (CMU), and a Battery Junction Box (BJB). NXP's HV-BMS Reference Design is a robust and scalable solution including hardware designs, production-ready software drivers, and safety libraries, as well as extensive ISO 26262 Functional Safety documentation. The design significantly reduces the development effort and enables an improved time to market with the latest chipset innovations. Speed Up Electrification Solutions Using NXP Tools Link to the recording here  This video provides an overview of the NXP Software and Tools solutions, designed to help customers to speed up application development with design, simulation, implementation, deployment, testing, and validation. During this session, you will learn about all the steps required to build complete solutions like battery management systems with NXP in-house solutions and NXP Model-Based Design Toolbox with simulation and code generation.
查看全文
The content of this article is identical to the AN13902: 3-Phase Sensorless PMSM Motor Control Kit with S32K344 using MBDT Blocks
查看全文
This page summarizes all Model-Based Design Toolbox videos related to HCP Product Family. Deploying Radar Applications to NXP´s S32R41 Processor Using Simulink® Link to the recording here This webinar shows how to use Radar Toolbox, Simulink ®  , and Embedded Coder ®  to generate C code for radar signal processing algorithms for range and speed estimation and deploy them to NXP ® ´s S32R41 high-performance processor for high-resolution radar. Based on MathWorks´ radar example models, we use Embedded Coder to generate optimized C code and run it in Processor-in-the-Loop (PIL) mode on the S32R41 processor. The code generation workflow will feature the use of NXP´s Model-Based Design Toolbox (MBDT), which provides an integrated development environment and toolchain for configuring and generating all the necessary software to execute complex applications on NXP MCUs and processors.
查看全文
    Product Release Announcement Automotive Processing NXP Model-Based Design Toolbox for S32K3xx – version 1.3.0 EAR   The Automotive Processing, Model-Based Design Tools Team at NXP Semiconductors, is pleased to announce the release of the Model-Based Design Toolbox for S32K3xx version 1.3.0. This release supports automatic code generation for S32K3xx peripherals and applications prototyping from MATLAB/Simulink for NXP S32K3xx Automotive Microprocessors. This new product adds support for S32K311, S32K312, S32K314, S32K322, S32K324, S32K341, S32K342, S32K344, S32K358 and S32K396 MCUs and part of their peripherals, based on RTD MCAL components (ADC, PWM, MCL, DIO, CAN, SPI, UART, GPT). To enable BMS applications development, we have added support for MC33775A and MC33772C battery cell controllers (& MC33665PHY). In this release, we have also updated S32 Configuration Tools, RTD, AMMCLib, and MATLAB support for the latest versions. The product comes with over 115 examples, covering everything that is supported, including demos for battery cell controllers (BCC) and motor control.   Target audience: This product is part of the Automotive SW – S32K3 Standard Software Package.   FlexNet Location: https://nxp.flexnetoperations.com/control/frse/download?element=13957417   Technical Support: NXP Model-Based Design Toolbox for S32K3xx issues will be tracked through the NXP Model-Based Design Tools Community space. https://community.nxp.com/community/mbdt     Release Content Automatic C code generation from MATLAB® for NXP S32K3xx derivatives: S32K311 S32K312 S32K314 S32K322 S32K324 S32K341 S32K342 S32K344 S32K358 S32K396   Support for the following peripherals (MCAL components): ADC PWM MCL CAN SPI UART GPT DIO   Support for MC33775A and MC33772C battery cell controllers & MC33665PHY The toolbox provides support for the MC33775A, MC33772C, and MC33665. The MC33775A and MC33772C are lithium-ion battery cell controller ICs designed for automotive applications which perform ADC conversions of the differential cell voltages and battery temperatures, while the MC33665 is a transceiver physical layer transformer driver, designed to interface the microcontroller with the battery cell controllers through a high-speed isolated communication network. The ready-to-run examples provided with the MBDT for S32K3 show how to communicate between the S32K344 and the MC33775A and MC33772C via the MC33665 transceiver. For the MC33775A, the examples show how to configure the battery cell controller to perform Primary and Secondary chains conversion, and read the cell voltages conversion results from the MC33775A, while for the MC33772C the examples show how to configure the Battery cell controller to read current. All the converted values are displayed to the user over the FreeMaster application.       Support for custom default project configuration The toolbox provides support for users to create their custom default project configurations. This could be very useful when having a custom board design – only needing to create the configuration for it once. After it is saved as a custom default project, it can be used for every model that is being developed.       Support for component restore to default settings The toolbox allows users to restore the configuration of a component (for models which use the EB Tresos configuration tool) to the settings corresponding to the Default Configuration Template the model uses. This allows reverting changes (if made) to the default values.   Support for AUTOSAR blockset (SW-C deployment) New RTD version supported  (v3.0.0 CD04) – only for S32K311, S32K358 and S32K396 New S32 Configuration Tools version supported (v1.6) Provides 2 modes of operation: Basic – using pre-configured configurations for peripherals; useful for quick hardware evaluation and testing Advanced – using S32 Configuration Tools or EB Tresos to configure peripherals/pins/clocks Integrates the Automotive Math and Motor Control Library release 1.1.31: All functions in the Automotive Math and Motor Control Functions Library v1.1.31 are supported as blocks for simulation and embedded target code generation.   FreeMASTER Integration We provide several Simulink example models and associated FreeMASTER projects to demonstrate how our toolbox interacts with the real-time data visualization tool and how it can be used for tuning embedded software applications.   Support for MATLAB versions We added support for the following MATLAB versions: R2021a R2021b R2022a R2022b   S32Design Studio Integration We provide a simple mechanism for the users to export the code generated from Simulink and import it directly into S32Design Studio. This functionality can be useful if the model needs to be integrated into an already existing project or for debugging purposes.     Board initialization: The Model-Based Design Toolbox for S32K3xx generates the component’s peripherals initialization function calls as configured in the Board Initialization window. The toolbox provides a default configuration including function calls for initializing the clocks, followed by pins and a custom order for the rest of the peripherals which have been configured in the project associated to the model.     Simulation modes: We provide support for the following simulation modes (each of them being useful for validation and verification): Software-in-Loop (SIL) Processor-in-Loop (PIL) External mode     Examples for every peripheral/function supported: We have added over 115 examples, including: Battery Management Systems examples Motor control applications (including eTPU example on S32K396) Communication (SPI, CAN, UART) AMMCLib Timer control (GPT) DIO FreeMASTER SIL / PIL / External mode For more details, features, and how to use the new functionalities, please refer to the Release Notes document attached.   MATLAB® Integration The NXP Model-Based Design Toolbox extends the MATLAB® and Simulink® experience by allowing customers to evaluate and use NXP’s S32K3xx MCUs and evaluation board solutions out-of-the-box with: NXP Model-Based Design Toolbox for S32K3xx version 1.3.0 is fully integrated with MATLAB® environment in terms of installation:         Target Audience This release (1.3.0) is intended for technology demonstration, evaluation purposes, and prototyping S32K3xx MCUs and Evaluation Boards.   Useful Resources Examples, Trainings, and Support: https://community.nxp.com/community/mbdt                
查看全文
        Product Release Announcement Automotive Processing NXP Model-Based Design Toolbox for HCP – version 1.2.0 RFP       The Automotive Processing, Model-Based Design Tools Team at NXP Semiconductors, is pleased to announce the release of the Model-Based Design Toolbox for HCP version 1.2.0. This release supports automatic code generation from MATLAB/Simulink for S32G2xx, S32S2xx, and S32R41 MPUs. This new product adds support for new MATLAB versions R2022a and R2022b for running in Processor-in-the-Loop mode.   FlexNet Location: https://nxp.flexnetoperations.com/control/frse/download?element=13897177   Technical Support: NXP Model-Based Design Toolbox for HCP issues will be tracked through NXP Model-Based Design Tools Community space. https://community.nxp.com/community/mbdt     Release Content Automatic C code generation from MATLAB® for NXP S32G2xx derivatives: S32G274A Automatic C code generation from MATLAB® for NXP S32S2xx derivatives: S32S247TV Automatic C code generation from MATLAB® for NXP S32R4x derivatives: S32R41 Supported Evaluation Boards GoldBox Development Platform (S32G-VNP-RDB2 Reference Design Board) GreenBox II Development Platform X-S32R41-EVB Development Board Support for MATLAB versions: R2020a R2020b R2021a R2021b R2022a R2022b Tools update for S32R41: S32 Flash Tool v2.1 S32 Debugger v3.5 Simulation mode: We provide support for Software-in-Loop (SIL) and Processor-in-Loop (PIL) simulation mode with code execution profiling: Includes an Example library with 16 examples that cover: Software-in-Loop (SIL), Processor-in-Loop (PIL) GUI to help you setup the toolbox and the evaluation board :     For more details, features, and how to use the new functionalities, please refer to the Release Notes document attached.   MATLAB® Integration The NXP Model-Based Design Toolbox extends the MATLAB® and Simulink® experience by allowing customers to evaluate and use NXP’s S32G2xx, S32S2xx, and S32R41  processors and evaluation board solutions out-of-the-box with: NXP Model-Based Design Toolbox for HCP version 1.2.0 (RFP) is fully integrated with MATLAB® environment in terms of installation:       Target Audience This release (1.2.0 RFP) is intended for technology demonstration, evaluation purposes, and prototyping S32G2xx, S32S2xx, and S32R41 and Evaluation Boards.   Useful Resources Examples, Trainings and Support: https://community.nxp.com/community/mbdt    
查看全文
  Product Release Announcement Automotive Processing NXP Model-Based Design Toolbox for S32K3xx – version 1.2.0 RTM   The Automotive Processing, Model-Based Design Tools Team at NXP Semiconductors, is pleased to announce the release of the Model-Based Design Toolbox for S32K3xx version 1.2.0. This release supports automatic code generation for S32K3xx peripherals and applications prototyping from MATLAB/Simulink for NXP S32K3xx Automotive Microprocessors. This new product adds support for S32K312, S32K314, S32K322, S32K324, S32K341, S32K342, and S32K344 MCUs and part of their peripherals, based on RTD MCAL components (ADC, PWM, MCL, DIO, CAN, SPI, UART, GPT). To enable BMS applications development, we have added support for MC33775A and MC33772C battery cell controllers (& MC33665PHY). In this release, we have also updated FreeMASTER, AMMCLib, and MATLAB support for the latest versions. The product comes with over 130 examples, covering everything that is supported, including demos for battery cell controllers (BCC) and motor control.   Target audience: This product is part of the Automotive SW – S32K3 Standard Software Package.   FlexNet Location: https://nxp.flexnetoperations.com/control/frse/download?element=13593437   Technical Support: NXP Model-Based Design Toolbox for S32K3xx issues will be tracked through the NXP Model-Based Design Tools Community space. https://community.nxp.com/community/mbdt     Release Content Automatic C code generation from MATLAB® for NXP S32K3xx derivatives: S32K312 S32K314 S32K322 S32K324 S32K341 S32K342 S32K344     Support for the following peripherals (MCAL components): ADC PWM MCL CAN SPI UART GPT DIO   Support for MC33775A and MC33772C battery cell controllers & MC33665PHY The toolbox provides support for the MC33775A, MC33772C, and MC33665. The MC33775A and MC33772C are lithium-ion battery cell controller ICs designed for automotive applications which perform ADC conversions of the differential cell voltages and battery temperatures, while the MC33665 is a transceiver physical layer transformer driver, designed to interface the microcontroller with the battery cell controllers through a high-speed isolated communication network. The ready-to-run examples provided with the MBDT for S32K3 show how to communicate between the S32K344 and the MC33775A and MC33772C via the MC33665 transceiver. For the MC33775A, the examples show how to configure the battery cell controller to perform Primary and Secondary chains conversion, and read the cell voltages conversion results from the MC33775A, while for the MC33772C the examples show how to configure the Battery cell controller to read current. All the converted values are displayed to the user over the FreeMaster application.           Support for custom default project configuration The toolbox provides support for users to create their custom default project configurations. This could be very useful when having a custom board design – only needing to create the configuration for it once. After it is saved as a custom default project, it can be used for every model that is being developed.         Support for component restore to default settings The toolbox allows users to restore the configuration of a component (for models which use the EB Tresos configuration tool) to the settings corresponding to the Default Configuration Template the model uses. This allows reverting changes (if made) to the default values.   Support for AUTOSAR blockset (SW-C deployment) New RTD version supported  (v2.0.0) New S32Config Tools version supported (v1.5) Provides 2 modes of operation: Basic – using pre-configured configurations for peripherals; useful for quick hardware evaluation and testing Advanced – using S32Configuration Tool or EB Tresos to configure peripherals/pins/clocks Integrates the Automotive Math and Motor Control Library release 1.1.29: All functions in the Automotive Math and Motor Control Functions Library v1.1.29 are supported as blocks for simulation and embedded target code generation.   FreeMASTER Integration We provide several Simulink example models and associated FreeMASTER projects to demonstrate how our toolbox interacts with the real-time data visualization tool and how it can be used for tuning embedded software applications.     Support for MATLAB versions We added support for the following MATLAB versions: R2020a R2020b R2021a R2021b R2022a   S32Design Studio Integration We provide a simple mechanism to let users the opportunity to export the code generated from Simulink and import it directly into S32Design Studio. This functionality can be useful if the model needs to be integrated into an already existing project or for debugging purposes.          Simulation modes: We provide support for the following simulation modes (each of them being useful for validation and verification): Software-in-Loop (SIL) Processor-in-Loop (PIL) External mode     Examples for every peripheral/function supported: We have added over 130 examples, including: Battery Management Systems examples Motor control applications Communication (SPI, CAN, UART) AMMCLib Timer control (GPT) DIO FreeMASTER SIL / PIL / External mode   For more details, features, and how to use the new functionalities, please refer to the Release Notes document attached.   MATLAB® Integration The NXP Model-Based Design Toolbox extends the MATLAB® and Simulink® experience by allowing customers to evaluate and use NXP’s S32K3xx MCUs and evaluation board solutions out-of-the-box with: NXP Model-Based Design Toolbox for S32K3xx version 1.2.0 is fully integrated with MATLAB® environment in terms of installation:         Target Audience This release (1.2.0) is intended for technology demonstration, evaluation purposes, and prototyping S32K3xx MCUs and Evaluation Boards.   Useful Resources Examples, Trainings, and Support: https://community.nxp.com/community/mbdt            
查看全文
This page summarizes all Model-Based Design Toolbox topics related to the S32K3xx Product Family. Model-Based Design Toolbox for S32K3xx - Release Notes: Rev 1.2.0 - Model-Based Design Toolbox for S32K3xx Automotive MCU rev 1.2.0   Rev 1.1.0 - Model-Based Design Toolbox for S32K3xx Automotive MCU rev 1.1.0  Rev 1.0.0 - Model-Based Design Toolbox for S32K3xx Automotive MCU rev 1.0.0 
查看全文
    Product Release Announcement EDGE PROCESSING   NXP Model-Based Design Toolbox for i.MX RT Crossover MCUs – version 1.3.0     The Edge Processing Tools Team at NXP Semiconductors is pleased to announce the release of the Model-Based Design Toolbox for i.MX RT 1xxx Series version 1.3.0. This release supports automatic code generation for peripherals and applications prototyping from MATLAB/Simulink for NXP’s i.MX RT 117x, 106x, 102x & 101x Series of crossover MCUs.   NXP Download Location https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCTB-EX   MATHWORKS Download Location https://www.mathworks.com/matlabcentral/fileexchange/81051-nxp-support-package-imxrt1xxx   Version 1.3.0 Release Content Automatic C code generation based on MCUXpresso SDK 2.11.0 drivers and MCUXpresso Configuration Tools 11.0 initializations from MATLAB®/Simulink® for: i.MX RT 1076: MIMXRT1176DVMAA,MIMXRT1176AVM8A,MIMXRT1176CVM8A i.MX RT 1075: MIMXRT1175DVMAA,MIMXRT1175AVM8A,MIMXRT1175CVM8A i.MX RT 1073: MIMXRT1173CVM8A i.MX RT 1072: MIMXRT1172DVMAA,MIMXRT1172AVM8A,MIMXRT1172CVM8A i.MX RT 1071: MIMXRT1171DVMAA,MIMXRT1171AVM8A,MIMXRT1171CVM8A i.MX RT 1061: MIMXRT1061CVJ5A,MIMXRT1061CVL5A,MIMXRT1061DVJ6A,MIMXRT1061DVL6A i.MX RT 1062: MIMXRT1062CVJ5A,MIMXRT1062CVL5A,MIMXRT1062DVJ6A,MIMXRT1062DVL6A i.MX RT 1064: MIMXRT1064CVJ5A,MIMXRT1064CVL5A,MIMXRT1064DVJ6A,MIMXRT1064DVL6A i.MX RT 1011: MIMXRT1011CAE4A,MIMXRT1011DAE5A i.MX RT 1024: EVKMIMXRT1024     Multiple options for configuration of MCU packages, Build Toolchain and embedded Target Connections are available via Simulink Model Configuration UI       Multiple MCU peripherals and Drivers are supported. The following subsystems highlighted in red as supported in Simulink environments in various forms: blocks, files, options                           i.MX RT 117x derivatives     i.MX RT 106x derivatives i.MX RT 101x derivatives     Basic and Advanced Simulink Block configuration modes via MCUXpresso Configuration Tools 11.0 UIs for Pins, Clocks, and Peripherals       MATLAB/Simulink versions 2019a – 2021b are supported for Design, Simulation, Code Generation, and Deployment of applications on i.MX RT 117x,106x, 102x & 101x Series. Other i.MX RT devices will be supported in future versions of the toolbox. Support for Software-in-Loop (SiL), Processor-in-Loop (PiL), and External Mode (classic serial, XCP Over Serial, and XCP over Ethernet). RTCESL – Real-Time Control Embedded Software Motor Control and Power Conversion Libraries (limited support designed for Motor Control applications). A future update will enhance the number of functionalities supported by Simulink.     Simulink Example library with more than 200 models to showcase various functionalities:   Integrated PMSM Motor Control Sensor/Sensor-less application for both IMXRT1060-EVK and IMXRT1170-EVK:     Target Applications with MATLAB/Simulink This release of the Model-Based Design Toolbox can be used to design, build, and test applications from multiple domains: INDUSTRIAL AC Meters Motion Control Robotics HMI SMART CITY/HOME Video Surveillance Identification Appliances Speakers   AUTOMOTIVE HVAC ECU     Target Audience This release is intended for technology demonstration, evaluation purposes, and prototyping for i.MX RT 1xxx MCUs and their corresponding Evaluation Boards: EVK-MIMXRT1170 EVK-MIMXRT1060 EVK-MIMXRT1064 EVK-MIMXRT1010 EVK-MIMXRT1024       Useful Resources Examples, Training, and Support: https://community.nxp.com/community/mbdt Technical by System Tools: https://web.microsoftstream.com/channel/618ab630-c8da-4fa8-ade8-5aa70a353124      
查看全文
  Product Release Announcement Automotive Processing NXP Model-Based Design Toolbox for S32K1xx – version 4.3.0 Austin, Texas, USA - September 13, 2022   The Automotive Processing, Model-Based Design Tools Team at NXP Semiconductors, is pleased to announce the release of the Model-Based Design Toolbox for S32K1xx version 4.3.0. This release supports automatic code generation for S32K1xx peripherals and applications prototyping from MATLAB/Simulink for NXP S32K1xx Automotive Microprocessors. This new release adds support for RDDRONE-772B  Battery Management Systems (support for MC3377xC), Code deployment directly from Simulink via JTAG/SWD (OpenSDA, PeMicro Probe, or SEGGER JLink), SIL/PIL support for the latest MATLAB versions, new community and customer requested features (Enhanced support for SBC, FCAN Blocks, UART Blocks, I2C Blocks) and many other various new functionalities to help customers with rapid prototyping with NXP S32K1xx microcontrollers.   FlexNet Location: https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCTB-EX   Activation link: https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCTB-EX   Technical Support: NXP Model-Based Design Toolbox for S32K1xx issues are tracked through the NXP Model-Based Design Tools Community space. https://community.nxp.com/community/mbdt   Release Content Automatic C code generation based on S32K SDK 4.0.0 RTM drivers from MATLAB® for NXP all S32K1xx derivatives: S32K142W MCU Packages with 48/64 LQFP (*updated) S32K144W MCU Packages with 48/64 LQFP (*updated) S32K116 MCU Packages with 32QFN and 48LQFP (*updated) S32K118 MCU Packages with 48/64 LQFP (*updated) S32K142 MCU Packages with 48/64/100LQFP (*updated) S32K144 MCU Packages with 48/64/100LQFP and 100BGA (*updated) S32K146 MCU Packages with 64/100/144LQFP and 100BGA (*updated) S32K148 MCU Packages with 144/176LQFP and 100BGA/QFP (*updated) Multiple options for packages and clock frequencies are available via Model-Based Design Toolbox S32K Simulink Main Configuration Block       Added Support for RDDRONE-BMS772         We added examples for the RDDRONE-BMS772. This is a standalone BMS reference design suitable for mobile robotics such as drones and rovers, supporting 3 to 6-cell batteries. MBDT examples cover applications like BMS, LCD, CAN and SBC.       Battery Management System (BMS) support for MC3377xC – examples, documentation and FreeMASTER UI are available Special Simulink Blocks have been added to simplify the way a user can initialize such a controller, read vital parameters (like cell voltage, stack voltage, temperature, current), and manage the whole system. The entire suite of blocks is easily integrated within the new Battery Management Toolbox from Mathworks, so users can leverage these algorithms on top of our blocks.       Enhanced FCAN Support We improved the FCAN communication support by addressing the following: FCAN communication is now fully functional when external SBC is configured (for both UJA113x and UJA1169) The user is able to retrieve the ‘Error Status’ of an ongoing transfer and abort it in case something is wrong. The ‘Receive’ and ‘Send’ blocks for FCAN now allow the user to specify when the initialization for the message buffers should be executed (during Model Initialization, at each execution of the block, or none). If the ‘NONE’ option is selected, a newly added block ‘FCAN_MBConfig’ can be used to configure the message buffer. The FCAN messages ID can also be provided via an input port for both ‘Send’ and ‘Receive’ operations.   Multiple S32K1xx peripheral support. The peripheral coverage for each of the S32K1xx derivatives is shown below:   S32K116 S32K118       S32K142   S32K144         S32K146 S32K148       Added support for JTAG deployment directly from Simulink We added support for deployment over JTAG directly from Simulink. In the main Config block, under Target Connection, the JTAG option must be selected. Following this action, the JTAG Interface selection becomes active. Here is the following selection: OpenSDA Embedded Debug – the EVB Embedded Debugger is used. USB Multilink PEmicro – an external PEmicro probe is used. SEGGER JLink – this action requires the external selection of the SEGGER JLink     Extended support for MATLAB versions We extended support for our toolbox to cover a wider range of MATLAB releases – starting from R2016a and going up to R2022a. This way we want to avoid locking out users that have constraints regarding MATLAB versions.   New community-requested features In our efforts to make  NXP’s Model-Based Design Toolbox for S32K1xx version 4.3.0 fit the needs of the users, we have added the following requested features/updates: Added OSIF Time Delay Block Added Code Size Report Added NONE option for the SPI SIN/SOUT pins Enabled support for more than one ADC Interleave Block Updated Profiler functionality Updated FCAN Blocks Updated I2C Blocks Updated LPUART Blocks Fixed Registers dropdowns not displaying options on some machines   100% S32K1xx supported peripheral coverage with examples. Approximately 300 examples are available as part of the toolbox that exercises all the functionalities supported.     For more details, features, and how to use the new functionalities, please refer to the Release Notes document attached.   MATLAB® Integration The NXP Model-Based Design Toolbox extends the MATLAB® and Simulink® experience by allowing customers to evaluate and use NXP’s S32K1xx MCUs and evaluation boards solutions out-of-the-box with: NXP Support Package for S32K1xx Online Installer Guide Add-on allows users to install the NXP solution directly from the MathWorks website or directly from MATLAB IDE. The Support Package provides a step-by-step guide for installation and verification. NXP Model-Based Design Toolbox for S32K1xx version 4.3.0 is fully integrated with MATLAB® environment in terms of installation, documentation, help and examples:       Target Audience This release (4.3.0) is intended for technology demonstration, evaluation purposes, and prototyping for S32K116, S32K118, S32K142, S32K144, S32K146, S32K148, S32K142W, and S32K144W MCUs and Evaluation Boards.   Useful Resources Examples, Trainings, and Support: https://community.nxp.com/community/mbdt      
查看全文
General Tip of the day Tip of the day  Licensing MBDT license missing error  Toolbox functionality Registers, Linkers not displaying options  Profiler/Execution S32k144 Simulation Time and Profiler  Peripherals How to put MCU into sleep? Apps Motor Control
查看全文
Get to know NXP Model-Based Design Toolbox™—a connection between MathWorks and NXP ecosystems that allows rapid prototyping of complex embedded designs on NXP microcontrollers. In this presentation, @Irina_Costachescu and @mariuslucianand  will highlight the main features of the NXP Model-Based Design Toolbox. They will demonstrate how to design a BMS application, covering the main development phases from an idea to a running on target prototype. Register here: https://www.matlabexpo.com/online/2022.html 
查看全文
This page summarizes all Model-Based Design Toolbox topics related to the DSC Product Family. Model-Based Design Toolbox for DSC- Release Notes: Rev 1.0.0 - NXP Model-Based Design Toolbox for DSC MC56F8x MCUs - version 1.0.0 
查看全文
    Product Release Announcement EDGE PROCESSING NXP Model-Based Design Toolbox for DSC MC56F8x MCUs - version 1.0.0 Bucharest, Romania  December 15th , 2021   The Edge Processing Tools Team at NXP Semiconductors is pleased to announce the release of the Model-Based Design Toolbox for DSC MC56F8x Series version 1.0.0. This release supports automatic code generation for peripherals and applications prototyping from MATLAB/Simulink for NXP’s DSC MC56F81xxx and MC56F83xxx Series of MCUs based on DSP568000E core. NXP Download Location https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCTB-EX MATHWORKS Download Location https://www.mathworks.com/matlabcentral/fileexchange/103600-nxp-support-package-dsc  Version 1.0.0 Release Content Automatic C code generation based on MCUXpresso SDK 2.7.3 drivers and MCUXpresso Configuration Tools 10.0 initializations from MATLAB®/Simulink® for:   MC56F81xxx        MC56F81868VLH, MC56F81646VLF, MC56F81648VLH, MC56F81663VLC,      MC56F81666VLF, MC56F81668VLH, MC56F81743VLC, MC56F81746VLF,      MC56F81748VLH, MC56F81763VLC, MC56F81766VLF, MC56F81768VLH,             MC56F81866VLF, MC56F81643VLC                                     MC56F83xxx     MC56F83789VLL, MC56F83683VLH, MC56F83686VLL, MC56F83689VLL,     MC56F83763VLH, MC56F83766VLK, MC56F83769VLL, MC56F83783VLH,     MC56F83786VLK, MC56F83663VLH   Multiple options for configuration of MCU packages, Build Toolchain and embedded Target Connections are available via Simulink Model Configuration UI     Multiple MCU peripherals and Drivers supported. The following subsystems highlighted in red as supported in Simulink environments in various forms: blocks, files, options MC56F81xxx derivatives MC56F83xxx derivatives   Basic and Advanced Simulink Block configuration modes via MCUXpresso Configuration Tools 10.0 UIs for Pins, Clocks, and Peripherals   MATLAB/Simulink versions 2020a – 2021b are supported for Design, Simulation, Code Generation, and Deployment of applications on MC56F81xxx and MC56F83xxx Series. Other MC56F8x devices will be supported in future versions of the toolbox. Support for Software-in-Loop (SiL), Processor-in-Loop (PiL); RTCESL – Real-Time Control Embedded Software Motor Control and Power Conversion Libraries for DSP568000E core.     Simulink Example library with more than 100 models to showcase various functionalities:   Integrated PMSM Motor Control Sensor/Sensor-less application for MC56F83000-EVK: Integrated application that uses the on board FXOS8700CQ accelerometer and magnetometer sensor for both MC56F81000-EVK and MC56F83000-EVK.    Target Applications with MATLAB/Simulink This release of the Model-Based Design Toolbox can be used to design, build, and test applications from multiple domains: INDUSTRIAL AC Meters Motion Control Robotics HMI       Target Audience This release is intended for technology demonstration, evaluation purposes, and prototyping for DSC MC56F8x MCUs and their corresponding Evaluation Boards: EVK-MC56F81000 EVK-MC56F83000 Useful Resources Examples, Training, and Support: https://community.nxp.com/community/mbdt    
查看全文
This page summarizes all Model-Based Design Toolbox tutorials and articles related to DSC MCUs Product Family.
查看全文
This page summarizes all Model-Based Design Toolbox videos related to DSC MCUs Product Family.
查看全文
General Tip of the day Tip of the day  Model Reference Model referencing in i.MX RT Toolbox  Peripherals FLEXCAN How to set i.MX RT FlexCAN receive message buffer Mask for range of IDs ?   LPI2C How to use LPI2C in transfer mode in i.MX RT  LPUART Questions about i.MX RT LPUART driver  Apps
查看全文
        Product Release Announcement Automotive Processing NXP Model-Based Design Toolbox for HCP – version 1.1.0 RFP       The Automotive Processing, Model-Based Design Tools Team at NXP Semiconductors, is pleased to announce the release of the Model-Based Design Toolbox for HCP version 1.1.0. This release supports automatic code generation from MATLAB/Simulink for S32G2xx, S32S2xx, and S32R41 MPUs. This new product adds support for running Processor-in-Loop and Software-in-Loop simulation on S32R41 (ARM Cortex-A53).   FlexNet Location: https://nxp.flexnetoperations.com/control/frse/product?child_plneID=683951   Technical Support: NXP Model-Based Design Toolbox for HCP issues will be tracked through NXP Model-Based Design Tools Community space. https://community.nxp.com/community/mbdt     Release Content Automatic C code generation from MATLAB® for NXP S32G2xx derivatives: S32G274A Automatic C code generation from MATLAB® for NXP S32S2xx derivatives: S32S247TV Automatic C code generation from MATLAB® for NXP S32R4x derivatives: S32R41 Supported Evaluation Boards GoldBox Development Platform (S32G-VNP-RDB2 Reference Design Board) GreenBox II Development Platform X-S32R41-EVB Development Board Support for MATLAB versions: R2020a R2020b R2021a R2021b Simulation mode: We provide support for Software-in-Loop (SIL) and Processor-in-Loop (PIL) simulation mode with code execution profiling:   Includes the HEV demo (S32G2xx, S32S2xx):   Includes the RADAR demo - MFSK Radar Range and Speed Estimation on Multiple Targets (S32R41), in collaboration with Gamax Laboratory Solutions Kft.:   Includes an Example library with 16 examples that cover: Software-in-Loop (SIL), Processor-in-Loop (PIL)   GUI to help you setup the toolbox and the evaluation board :     For more details, features and how to use the new functionalities, please refer to the Release Notes document attached.   MATLAB® Integration The NXP Model-Based Design Toolbox extends the MATLAB® and Simulink® experience by allowing customers to evaluate and use NXP’s S32G2xx, S32S2xx, and S32R41  processors and evaluation board solutions out-of-the-box with: NXP Model-Based Design Toolbox for HCP version 1.1.0 (RFP) is fully integrated with MATLAB® environment in terms of installation:       Target Audience This release (1.1.0 RFP) is intended for technology demonstration, evaluation purposes and prototyping S32G2xx, S32S2xx, and S32R41 and Evaluation Boards.   Useful Resources Examples, Trainings and Support: https://community.nxp.com/community/mbdt    
查看全文
          Product Release Announcement Automotive Processing NXP Model-Based Design Toolbox for S32K3xx – version 1.1.0 RTM     Austin, Texas, USA December 20, 2021 The Automotive Processing, Model-Based Design Tools Team at NXP Semiconductors, is pleased to announce the release of the Model-Based Design Toolbox for S32K3xx version 1.1.0. This release supports automatic code generation for S32K3xx peripherals and applications prototyping from MATLAB/Simulink for NXP S32K3xx Automotive Microprocessors. This new product adds support for S32K344 and S32K312 MCUs and part of their peripherals, based on RTD MCAL components (ADC, PWM, MCL, DIO, CAN, SPI, UART, GPT). To enable BMS applications development, we have added support for MC33775A battery cell controller (& MC33664PHY). In this release, we have also added 2 new motor control applications (for both PMSM and BLDC), as well as updated FreeMASTER, AMMCLib, and GCC compiler to the latest versions. The product comes with over 100 examples, covering everything that is supported, including demos for battery cell controllers (BCC) and motor control.   Target audience: This product is part of the Automotive SW – S32K3 Standard Software Package.   FlexNet Location: https://nxp.flexnetoperations.com/control/frse/download?element=12920897   Technical Support: NXP Model-Based Design Toolbox for S32K3xx issues will be tracked through the NXP Model-Based Design Tools Community space. https://community.nxp.com/community/mbdt     Release Content Automatic C code generation from MATLAB® for NXP S32K3xx derivatives: S32K344 S32K312   Support for the following peripherals (MCAL components): ADC PWM MCL CAN SPI UART GPT DIO   Support for MC33775A battery cell controller & MC33664PHY The toolbox provides support for the MC33775A and MC33664. The MC33775A is a lithium-ion battery cell controller IC designed for automotive applications which perform ADC conversions of the differential cell voltages and battery temperatures, while the MC33664 is a transceiver physical layer transformer driver, designed to interface the microcontroller with the battery cell controllers through a high speed isolated communication network. The ready-to-run example provided with the MBDT for S32K3 shows how to communicate between the S32K344 and the MC33775A via the MC33664 transceiver. The MCU configures the battery cell controller to perform Primary and Secondary chains conversion, reads the cell voltages conversion results from the MC33775A, and displays the values to the user over the FreeMaster.     Added new motor control examples The toolbox provides examples for both 3-shunt PMSM and BLDC motor control applications. Each of them has a detailed description of the hardware setup and an associated FreeMASTER project which can be used for control and data visualization.     Support for custom default project configuration The toolbox provides support for users to create their custom default project configurations. This could be very useful when having a custom board design – only needing to create the configuration for it once. After it is saved as a custom default project, it can be used for every model that is being developed.     Support for AUTOSAR blockset (SW-C deployment) Updated to the latest version of RTD (v1.0.0) and GCC(v10.2) Provides 2 modes of operation: Basic – using pre-configured configurations for peripherals; useful for quick hardware evaluation and testing Advanced – using S32Configuration Tool or EB Tresos to configure peripherals/pins/clocks Integrates the Automotive Math and Motor Control Library release 1.1.26: All functions in the Automotive Math and Motor Control Functions Library v1.1.26 are supported as blocks for simulation and embedded target code generation.   FreeMASTER Integration We provide several Simulink example models and associated FreeMASTER projects to demonstrate how our toolbox interacts with the real-time data visualization tool and how it can be used for tuning embedded software applications.   Support for MATLAB versions We added support for the following MATLAB versions: R2020a R2020b R2021a R2021b   S32Design Studio Integration We provide a simple mechanism to let users the opportunity to export the code generated from Simulink and import it directly into S32Design Studio. This functionality can be useful if the model needs to be integrated into an already existing project or for debugging purposes.     Simulation modes: We provide support for the following simulation modes (each of them being useful for validation and verification): Software-in-Loop (SIL) Processor-in-Loop (PIL) External mode     Examples for every peripheral/function supported: We have added over 100 examples, including: Motor control applications (PMSM and BLDC) Communication (SPI, CAN, UART) AMMCLib Timer control (GPT) DIO FreeMASTER SIL / PIL / External mode   For more details, features, and how to use the new functionalities, please refer to the Release Notes document attached.   MATLAB® Integration The NXP Model-Based Design Toolbox extends the MATLAB® and Simulink® experience by allowing customers to evaluate and use NXP’s S32K3xx MCUs and evaluation board solutions out-of-the-box with: NXP Model-Based Design Toolbox for S32K3xx version 1.1.0 is fully integrated with MATLAB® environment in terms of installation:       Target Audience This release (1.1.0) is intended for technology demonstration, evaluation purposes, and prototyping S32K3xx MCUs and Evaluation Boards.   Useful Resources Examples, Trainings, and Support: https://community.nxp.com/community/mbdt    
查看全文