Kinetis Microcontrollers Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Kinetis Microcontrollers Knowledge Base

Discussions

Sort by:
One of the new features that can be found on the FRDM-K82F is the FlexIO header. It’s be specifically designed to interface with the very cost-efficient OV7670 camera, and uses 8 FlexIO lines to read data from the camera. By using the FlexIO feature, it makes it easy to connect a camera to a Kinetis MCU. A demo is included with Kinetis SDK 1.3 which streams the video data from the camera to a host computer over USB. FlexIO: The FlexIO is a highly configurable module found on select Kinetis devices which provides a wide range of functionality including: • Emulation of a variety of serial/parallel communication protocols • Flexible 16-bit timers with support for a variety of trigger, reset, enable and disable conditions • Programmable logic blocks allowing the implementation of digital logic functions on-chip and configurable interaction of internal and external modules • Programmable state machine for offloading basic system control functions from CPU All with less overhead than software bit-banging, while allowing for more flexibility than dedicated IP. Running the Demo: First you’ll need to setup the hardware. An 18 pin header needs to be installed on the *back* of the board. The camera is oriented this way to allow for use of shields on the top, even if the camera is being used. This way the functionality could be extended with WiFi or LCD shields. After the header is soldered on, plug in the camera. It will look like the following when complete: Next we need to program the K82 device with the example firmware. The software can be found in the Kinetis SDK FRDM-K82F stand-alone release, in the C:\Freescale\KSDK_1.3.0_K82\examples\frdmk82f\demo_apps\usb\device\video\flexio_ov7670 folder. Open the project, compile, and program the example specific for your compiler like done for other examples. Make sure you also compile the USB Device library as well. After programming the K82, unplug the USB cable from J5 (OpenSDA) and plug it into J11 (K82 USB). The board will enumerate as a generic USB video device called “USB VIDEO DEMO”. You can then use this device with any video capture software, like Skype or Lync.  Here's a shot of the clock in my cube: The resolution is 160*120, the video image format is RGB565. You may need to manually adjust the focus by rotating the lens on the camera. The frame rate can also be sped up by modifying line 342 in usb_descriptor.c: 5fps: 0x80,0x84,0x1E,0x00, /* Default frame interval is 5fps */ 10fps:  0x40,0x42,0x0F,0x00, 15fps:  0x2A,0x2C,0x0A,0x00, 20fps:  0x20,0xA1,0x07,0x00, The 160*120 max resolution was determined by the amount internal SRAM of the device, as there is not external RAM on the FRDM-K82F board. More Information: One of many places to buy the OV7670 camera module​ OV7670 Reference Manual​ FlexIO Overview ​ FlexIO Training presented at FTF
View full article
Hello Kinetis friends! The launch of new Kinetis devices and development tools called "Kinetis K2" brought some new K22_120 MHz devices to the K22 family portfolio. :smileyinfo: Please notice the name "Kinetis K2" only refers to the Kinetis generation, but it is not related to part number (e.g. K63/K64 are part of K2 generation). Previously existing Kinetis portfolio already had some K22_120 MHz devices, so this  caused confusion regarding the documentation, header files, features, development boards and others, because the part numbers are very similar. I created the next reference table outlining the existing K22_120 MHz parts with their corresponding files and boards. The last column is an overview of the features or peripherals that are either missing or added in each device. :smileyalert: IMPORTANT NOTES:           - I gathered and put together this information as reference, but it is not official. For the most accurate information please visit our webpage www.nxp.com.           - Header files MK22F12.h and MK22FA12.h apply for legacy K22_120 devices. However TWR-K21F120M(A) board has a K21_120 part, so use MK21F12.h or MK21FA12.h instead.      Colleague Carlos Chavez released an Engineering Bulletin (EB811) with good information related to this document:      http://cache.nxp.com/files/microcontrollers/doc/eng_bulletin/EB811.pdf Regards! Jorge Gonzalez
View full article
Test environment: FRDM-K64F Rev.D IAR ARM Workbench IDE V8.30.1 MCUXpresso SDK for FRDM-K64F v2.4.2(2018-08-02) Test project is [ftm_output_compare] located with default path: ..\FRDM-K64F\boards\frdmk64f\driver_examples\ftm\output_compare Test reason to verify the CnV register is updated on the next FTM counter change. Three test signals: FTM0_CH0 pin as output compare pin will generate square signal with 1.33KHz . FTM0_CH1 pin generate 24KHz Edge-Aligned PWM signal(High-true pulses (clear Output on match)) with 50% duty cycle as FTM counter monitor. When FTM counter change, the FTM0_CH1 will toggle to output high voltage. Test using a delay() function to emulate modify FTM0_CH0 output compare mode and CnV value periodically. There is a GPIO pin will toggle after each delay() function to detect/verify the CnV value actual load point. FlexTimer module setting: The FTM0 refer clock is 60MHz For the FTM0_CH1 pin generate 24KHz PWM signal, the FTM0 MOD value is fixed to 0x9C3 (60MHz/24KHz = 2500).   Below is the overall signals: Test Process Record: During FTM0 module initialization, set the FTM0_CH0 pin output compare value to 0xA00 (more than MOD register value (0x9C3)) with below code: Set the CnV value more than MOD register is to avoid the output compare be set during at start. After that,  enable FTM0 counter and toggle GPIO pin to set a mark: After delay, toggle GPIO pin and update CnV register to 0x270 (the match point is half of the PWM high voltage). The actual signal is : After the first CH0 output compare set match, before set CH0 pin clear on match. It need to keep the CH0 pin with same output compare mode and set CnV back to 0xA00 (more than MOD) again with below code: Then we set CH0 with clear on match mode and update CnV value to 0x752 (middle of CH1 PWM low voltage): The actual signal is: With the similar code, before next CH0 set on match, it need to keep the CH0 pin with same match compare mode setting and CnV change back to 0xA00 (more than MOD). The actual signal is below: Note: During the output compare signal compare mode set/clear change phase, it need to keep previous output compare mode setting, please don't using kFTM_NoOutputSignal setting at code. Otherwise, the output compare signal will exist decay: Test Result: From FTM0 register value, the FTM0_SYNCONF[SWRSTCNT] bit is clear, which means select Legacy PWM synchronization method. The legacy PWM synchronization method will update Output Compare mode CnV register value at the next FTM counter change. The actual signal also verify it. Below is FTM0 all registers value: For the more detailed info, please check the original thread at here. Please check attachment about test code.
View full article
Hey there Kinetis lovers!  We in the Systems Engineering team for Kinetis Microcontrollers see all kinds of situations that customers get into, and none can be particularly troubling like how the reset pin is handled.  The purpose of this document is to provide a list of Frequency Asked Questions (FAQ) that we get here in the Kinetis Systems Engineering department.  This is intended to be a living list and as such, may in no way be complete.  However we hope that you will find the below questions and answers useful.   Q:  Do I need to connect the reset signal to be able to debug a Kinetis device?   This is a commonly asked question. Strictly speaking, you do not need to connect the device reset line of a Kinetis device to the debug connector to be able to debug. The debug port MDM-AP register allows the processor to be held in reset by means of setting the System Reset Request bit using just the SWD_CLK and SWD_DIO lines.   However, before deciding to omit the reset line from your debug connector you should give some careful thought to how this may impact the ability to program and debug the device in certain scenarios. Does the debugger/flash programmer or external debug pod require the reset pin? It may be that the specific tool you are using only supports resetting the device by means of the reset line and does not offer the ability to reset the device by means of the MDM-AP. Have you changed the default function of the debug signals? You may need to use the SWD_CLK and/or the SWD_DIO signals for some other function in your application. This is especially true in low pin count packages. Once the function is changed (by means of the PORTx_PCRy registers) you will no longer have access to the MDM-AP via those signals. If you do not have access to the reset signal then you have no way of preventing the core from executing the code that will disable the SWD function of the pins. So you will not be able to re-program the device. In order to prevent this type of situation you need to either: Setup your code to change the function of the SWD pins several seconds after reset is released so that the debugger can halt the core before this happens. Put some kind of “backdoor” mechanism in your code that does not re-program the SWD function, or re-enables the SWD function, on these pins. For example, a specific character sequence sent via a UART or SPI interface.   Some Kinetis devices allow the reset function of the reset pin to be disabled. In this case you can only use the SWD signals as a means of resetting the device via the MDM-AP. If you change the SWD pin function in addition to disabling the reset pin then you must provide a backdoor means of re-enabling the SWD function if you want to be able to reprogram the device.
View full article
The following file contains example code for usage of ADC, UART, DAC, GPIO, I2C, interrupts, MCG and timers for the k53 platform. Regards.
View full article
What's eCos eCos is a free open source real-time operating system intended for embedded applications. The highly configurable nature of eCos allows the operating system to be customised to precise application requirements, delivering the best possible run-time performance and an optimised hardware resource footprint. With provided configuration tools (configtool and ecosconfig) it is possible to build configurations that scale from minimal that require less than 32KiB memory to reach full featured operating system with networking, file system, serial communication, etc. eCos for Kinetis Currently the Kinetis eCos support includes: UART; Ethernet - with TCP/IP through either lwIP or BSD stack; Flash - program and erase; eDMA library; DSPI - including MMC/SD card support; Real Time Clock. Cache; DDRAM; FlexBus; Following features are available for testing: I2C; CAN; Watchdog. Configuring eCos for Kinetis Start the graphical configuration tool configtool, then from menu select Build->Templates. In Hardware selection box select your board: In our case we select TWR-K70F120M. Save the configuration and select Build->Library. configtool will build a customised eCos library and extract headers for you. Now you are ready for your "Hello world". Further reading You shall find complete eCos documentation at eCos Documentation
View full article
     我想“超频”这个词估计大家都不会陌生,很多玩计算机的都会尝试去把自己电脑的CPU超频玩一些高端大型游戏(咳咳,当然玩的high的时候别忘了小心你的主板别烧了),而对我们这些搞嵌入式的人们来说,估计就只能用这样的情怀去折磨MCU了(当然前提得是有PLL或者FLL的MCU)。      在超频之前首先需要澄清几个概念,我们通常所说的主频一般是指内核时钟或者系统时钟(即core_clk或system_clk)。而对K60来说,其内部还有总线时钟(Bus_clk)、外部总线时钟(FlexBus_clk)、flash时钟(Flash_clk),而这几个时钟互相关联且每个都是有其频率限制的(如下图1所示),所以当我们要超频内核时钟的时候还不得不考虑其他时钟承受极限(姑且用这个词吧)。在我们用MCG模块内部的PLL将输入时钟超频到200MHz作为MCGOUTCLK输出的时候还需要一道关卡(如下图2),也就是说虽然这几个时钟属于同宗(都来自MCGOUTCLK),但是也可以通过不同的分频器(OUTDIV[1:4])约束不同的时钟范围,这里想起一个形象的例子。MCGOUTCLK就类似以前的官家大老爷,娶了四房姨太太(OUTDIV[1:4]),分别生了四个少爷(即core_clk、Bus_clk、FlexBus_clk和Flash_clk),每个少爷都是老爷的儿子,不过在家中地位却是由姨太太的排序决定的,其中大房的大少爷(core_clk)地位最高(频率范围最大),四房的小少爷(flash_clk)地位最低(频率范围最小),不过他们的地位最高也不会超过老爷(其他clk<=MCGOUTCLK),呵呵,有点意思~ 图1 图2      经过上面的分析之后,就可以开始着手超频了。经过验证,其实系统频率超不上去就是“小少爷”(flash_clk)拖了后腿,当我们将MCGOUTCLK超到200MHz的时候,OUTDIV1的分频可以设置为1分频,保证内核频率为200MHz,但却要同时保证其他几个时钟不要超过太多,尤其是Flash_clk的限制要严格(建议不要超过30MHz,小少爷有些“娇气”),因为flash_clk过高就代表取指令的频率过高,指令出错就会造成系统程序跑飞。     说到这里,可能有些人会质疑,把主频超的那么高,但取指令的速度上不去有个啥用,岂不是颇有些大马拉小车的感觉吗,其实不然,这里我说两点。一个是通过RAM调试或者将函数声明成RAM执行函数的时候是可以加快执行速度的,另一个就是当做一些数学运算的时候作用就很明显了,因为一般可能会单纯用到CPU内部的ALU和寄存器组,后者数据访问多一些(注意Cortex-M4是哈佛结构,数据与指令总线独立的),自然其运算速度就上去了,所以还是好处多多的。      当然飞思卡尔本身是不建议超频的,数据手册上给出的极限值都是在保证系统可靠性和稳定性的前提下测试出来的,再往上就不敢保证了(跟你的硬件电路设计能力有一定关系),正所谓“超频有风险,用时需谨慎啊”,呵呵,所以我们大多数的应用还是老老实实的按照“规矩”来吧。不过这里需要提的一点是,每家厂商一般会为超频留有余地(为了满足一些客户的超频需要,哎,不容易啊),至于这个余地是多少,不同的半导体厂商也会有不同的标准。对我来说,记得那是2008年的第一场雪,比往年来的稍晚了些…(没收住,开始整词儿了,呵呵),那一年我第一次接触飞思卡尔的9S12 16位的单片机(MC9S12DG128,哎,搞过智能车的都懂的),额定主频是25MHz,我把它超到40MHz,后来又换成了MC9S12XS128,额定主频是40MHz,我又把它超到80MHz(有点超频强迫症了,呵呵),一直到如今的ARM K60,额定主频为100MHz(VLQ100),所以。。。咳咳。。。很自然的我就把它超到200MHz,再往上我就没有测试了,因为基本也用不到那么高的频率,还是要掌握好这个“度”的,想过把超频的瘾的可以试试看,呵呵~
View full article
The USB OTG module in Kinetis parts uses a Buffer Descriptor Table (BDT) in system memory to manage USB endpoint communications, the BDT is a a 512-byte buffer and there are 3 registers in USB module to contain the base address for it, and it must be 512-byte aligned otherwise there would be issue during transfer. In USB stack ver 4.1.1, some Kinetis old parts like K60N512, K20D72M have the demo project basked on CodeWarrior ARM compiler, and in khci_kinetis.c, bdt is defined as following: #define _BDT_RESERVED_SECTION_ #if(defined _BDT_RESERVED_SECTION_) #ifdef __CWCC__ #pragma define_section usb_bdt ".usb_bdt" RW __declspec(usb_bdt) uint_8_ptr bdt; but since the base address is defined as below: #define BDT_BASE               ((uint_32*)(bdt)) so the bdt definition is not correct , and we have to change it as below: #define _BDT_RESERVED_SECTION_ #if(defined _BDT_RESERVED_SECTION_) #ifdef __CWCC__ #pragma define_section usb_bdt ".usb_bdt" RW __declspec(usb_bdt) uint_8 bdt[512];//uint_8_ptr bdt; and the definition for usb_dbt section can be found in MK20X256_flash.lcf. with above modification, we can make the demo of "msd_mfs_generic" work well as expected. Please kindly refer to the following result got from TWR-K20D72M. FAT demo Waiting for USB mass storage to be attached... Mass Storage Device Attached ****************************************************************************** * FATfs DEMO * * Configuration:  LNF Enabled, Code page =1258 * ****************************************************************************** ****************************************************************************** * DRIVER OPERATION * ****************************************************************************** 1. Demo function: f_mount   Initializing logical drive 0...   Initialization complete ----------------------------------------------------------------------------- 2. Demo functions:f_getfree, f_opendir, f_readdir getting drive 0 attributes............... Logical drive 0 attributes: FAT type = FAT16 Bytes/Cluster = 2048 Number of FATs = 2 Root DIR entries = 512 Sectors/FAT = 250 Number of clusters = 63858 FAT start (lba) = 36 DIR start (lba,clustor) = 536 Data start (lba) = 568 ... 127716 KB total disk space. 127624 KB available. ----------------------------------------------------------------------------- ****************************************************************************** * DRECTORY OPERATION * ****************************************************************************** 1. Demo functions:f_opendir, f_readdir Directory listing...     ----A 2014/04/16 17:25     32253  tek00000.png     ----A 2014/04/16 17:34     31451  tek00001.png     ----A 2014/07/04 14:57     20549  tek00002.png     DR--- 2010/12/25 23:30         0 DIRECT~1     D---- 2010/01/01 00:00         0 DIRECT~2 3    File(s),     84253 bytes total 2    Dir(s) ----------------------------------------------------------------------------- 2. Demo functions:f_mkdir 2.0. Create <Directory_1> 2.1. Create <Directory_2> 2.2. Create <Sub1> as a sub directory of <Directory_1> 2.3. Directory list Directory listing...     ----A 2014/04/16 17:25     32253  tek00000.png     ----A 2014/04/16 17:34     31451  tek00001.png     ----A 2014/07/04 14:57     20549  tek00002.png     DR--- 2010/12/25 23:30         0 DIRECT~1     D---- 2010/01/01 00:00         0 DIRECT~2 3    File(s),     84253 bytes total 2    Dir(s) ----------------------------------------------------------------------------- 3. Demo functions:f_getcwd, f_chdir 3.0. Get the current directory     CWD: 0:/ 3.1. Change current directory to <Directory_1> 3.2. Directory listing Directory listing...     D---- 2010/01/01 00:00         0  .     D---- 2010/01/01 00:00         0  ..     D---- 2010/01/01 00:00         0  sub1 0    File(s),         0 bytes total 3    Dir(s) 3.3. Get the current directory     CWD: 0:/Directory_1 ----------------------------------------------------------------------------- 4. Demo functions:f_stat(File status), f_chmod, f_utime 4.1. Get directory information of <Directory_1>     DR--- 2010/12/25 23:30         0 Directory_1 4.2  Change the timestamp of Directory_1 to 12.25.2010: 23h 30' 20 4.3. Set Read Only Attribute to Directory_1 4.4. Get directory information (Directory_1)     DR--- 2010/12/25 23:30         0 Directory_1 ----------------------------------------------------------------------------- 5. Demo functions:f_rename Rename <sub1> to <sub1_renamed> and move it to <Directory_2> Directory listing...     D---- 2010/01/01 00:00         0  .     D---- 2010/01/01 00:00         0  ..     D---A 2010/01/01 00:00         0 SUB1_R~1 0    File(s),         0 bytes total 3    Dir(s) ----------------------------------------------------------------------------- 6. Demo functions:f_unlink Delete Directory_1/sub1_renamed Directory listing...     D---- 2010/01/01 00:00         0  .     D---- 2010/01/01 00:00         0  .. 0    File(s),         0 bytes total 2    Dir(s) ****************************************************************************** * FILE OPERATION * ****************************************************************************** 1. Demo functions:f_open,f_write, f_printf, f_putc, f_puts, fclose 1.0. Create new file <New_File_1> (f_open)     File size =    0 1.1. Write data to <New_File_1>(f_write) 1.2. Flush cached data     File size =   52 1.3. Write data to <New_File_1> (f_printf) 1.4. Flush cached data     File size =  103 1.5. Write data to <New_File_1> (f_puts) 1.6. Flush cached data     File size =  152 1.7. Write data to <New_File_1> uses f_putc function 1.8. Flush cached data     File size =  199 1.9. Close file <New_File_1> ----------------------------------------------------------------------------- 2. Demo functions:f_open,f_read, f_seek, f_gets, f_close 2.0. Open <New_File_1> to read (f_open) 2.1. Get a string from file (f_gets)     Line 1: Write data to  file uses f_write function 2.2. Get the rest of file content (f_read)     Line 2: Write data to file uses f_printf function Line 3: Write data to file uses f_puts function Line 4: Write data to file uses f_putc functionûöF¬ â•:7Rz}™ yzjw8¸×áÀ—»ÃЭ¹òÍ­ ä‹Hïk¨Wã½c'     ²7këÞÑ%VrC×»Ô¼ÒSÈÑèR+NjD¡¾òû>ú3‰SËþo^ÎI Pë±ñ‰þ/Directory_1[1] 2.3. Close file (f_close) ----------------------------------------------------------------------------- 3. Demo functions:f_stat, f_utime, f_chmod 3.1. Get  information of <New_File_1> file (f_stat)     ----A 2010/01/01 00:00       199  New_File_1.dat 3.2  Change the timestamp of Directory_1 to 12.25.2010: 23h 30' 20 (f_utime) 3.3. Set Read Only Attribute to <New_File_1> (f_chmod) 3.4. Get directory information of <New_File_1> (f_stat)     -R--A 2010/12/25 23:30       199  New_File_1.dat 3.5. Clear Read Only Attribute of <New_File_1> (f_chmod) 3.6. Get directory information of <New_File_1>     ----A 2010/12/25 23:30       199  New_File_1.dat ----------------------------------------------------------------------------- 4. Demo functions:f_ulink Rename <New_File_1.dat> to  <File_Renamed.txt> Directory listing...     D---- 2010/01/01 00:00         0  .     D---- 2010/01/01 00:00         0  ..     ----A 2010/12/25 23:30       199  FILE_R~1.TXT 1    File(s),       199 bytes total 2    Dir(s) ----------------------------------------------------------------------------- 5. Demo functions:f_truncate Truncate file <File_Renamed.txt> 5.0. Open <File_Renamed.txt> to write 5.1. Seek file pointer     Current file pointer:    0     File pointer after seeking:  102 5.2. Truncate file     File size =  102 5.3. Close file ----------------------------------------------------------------------------- 6. Demo functions:f_forward 6.0. Open <File_Renamed.txt> to read 6.1. Forward file to terminal Line 1: Write data to  file uses f_write function Line 2: Write data to file uses f_printf function 6.2. Close file ----------------------------------------------------------------------------- 7. Demo functions:f_ulink Delete <File_Renamed.txt> Directory listing...     D---- 2010/01/01 00:00         0  .     D---- 2010/01/01 00:00         0  .. 0    File(s),         0 bytes total 2    Dir(s) *------------------------------ DEMO COMPLETED    ------------------------ * ******************************************************************************
View full article
Since the mbed Ethernet library and interface for FRDM-K64 have not yet been fully tested, instead of using mbed we will use one of the latest demo codes from MQX specifically developed for the FRDM-K64 platform. Before starting please make sure you have the following files and software installed in your computer: CodeWarrior 10.6 (professional or evaluation edition) MQX 4.1 for FRDM-K64 (it is not necessary to install full MQX 4.1) JLink_OpenSDA_V2.bin (this is the debugger application) * If you don't have a valid license, you can find a temporary license below, it will only be valid until 7/30/2014 and it will only be available online until 7/05/2014. Building the project The first step to use an MQX project is to compile the target/IDE libraries for the specific platform: 1. Open CodeWarrior and drag the file from the following path C:\Freescale\Freescale_MQX_4_1_FRDMK64F\build\frdmk64f\cw10gcc onto your project area: This will load all the necessary libraries to build the project, once they are loaded build them it is necessary to modify a couple of paths on the BSP: 2. Right click on the BSP project and then click on properties 3. Once the properties are displayed, expand the C/C++ Build option, click on settings, on the right pane expand the ARM Ltd Windows GCC Assembler and select the directories folder, this will display all the libraries paths the compiler is using 4. Double click on the "C\Freescale\CW MCU v10.6\MCU\ProcessorExpert\lib\Kinetis\pdd_100331\inc" path to modify it, once the editor window is open, change the path from "pdd_100331" to "pdd" 5. Repeat steps 2 and 3 for the ARM Ltd Windows GCC Compiler 6. Now you can build the libraries, build them one at a time by right clicking on the library and selecting build project, build them in the following order, it is imperative you do it in that order. BSP PSP MFS RTCS SHELL USBD USBH 7. Once all the libraries are built, import the web hvac demo, do it by dragging the .project file to your project area; the project is located in the following directory:                     C:\Freescale\Freescale_MQX_4_1_FRDMK64F\demo\web_hvac\build\cw10gcc\web_hvac_frdmk64f 8. Once the project is loaded, build it by right clicking on the project folder and select Build project Debugging the project To debug the project it is necessary to update the FRDM-K64 debugging application: Press the reset button on the board and connect the USB cable Once the board enumerates as "BOOTLOADER" copy the JLink_OpenSDA_vs.bin file to the unit Disconnect and reconnect the board On CodeWarrior (having previously compiled the libraries and project) click on debug configurations 5. Select the connection and click on debug 6. Open HVAC.h and change the IP Address to 192.168.1.202 Now the demo code has been downloaded to the platform you will need the following to access all the demo features: Router Ethernet Cable Serial Terminal The code enables a shell access through the serial terminal, it also provides web server access with a series of options to simulate an Heating Air Conditioning Ventilation System, the system was implemented using MQX and a series of tasks, for more details on how the task are created, the information regarding how to modify the code please check the attached document: Freescale MQX RTOS Example guide.
View full article
           This is a demo of NFC device to read and write the contactless card. Kinets K60 tower board and NXP PN512 board are used for this test enviroment. These connected pins from K60 tower board to PN512 RF board are listed as below:   SPI1:     SPI1_SIN : PTE1/SDHC0_D0     SPI1_SCK : PTE2/SDHC0_DCLK     SPI1_SOUT : PTE3/SDHC0_CMD     SPI1_PCS0 : PTE4/SDHC0_D3     Reset:     PTB9   External interrupt:     PTA26         Because the SPI1 port is used as the host interface of pn512, it is necessary to enable the SPI1 driver in the user configuration file of MQX.           To open the project file in the /build folder with CW10.5.    And the PSP and BSP libraries had to be built before test image is built, as they are needed in this test project.   The following diagram shows the serial numbers and block data of reading from the test card of Mifare one.
View full article
Hello Kinetis fans, This time I bring to you a document which explains what is and how to configure scatter/gather feature which is present in the Enhanced Direct Memory Access (eDMA). This document includes an example project for the Kinetis Design Studio (KDS) which works in the FRDM-K64F board but the configuration is the same for any MCU which includes the eDMA peripheral. If you are interested in the channel linking feature, please take a look into the document What is and how to configure the eDMA channel linking feature​. I hope you find this document useful. Best regards, Earl Orlando Ramírez-Sánchez Technical Support Engineer NXP Semiconductors
View full article
For Remote Control means, that is needed two computers - Server Computer and User Computer, which will be in connection. There are two types of connection, which can be used - HTTP or DCOM. There are two different ways how to set up the remote control in Windows. I made the tutorial, which describes both types of Remote Control. Ok - so, let´s start! HTTP Settings On the Server Computer side: 1. Plug the board to the Server Computer 2. Go to Remote Communication Server 3. Set HTTP connection and choose the right COM Port according the plugged board If the plugged board is on e.g. COM23, it is possible to edit number of Port in Device Manager On the User PC side: 1. Open FreeMASTER,  go to Project -> Options 2. Choose Plug-in Module: FreeMASTER CommPlugin for Remote Server (HTTP) and type the IP address of the server, do not forget join to IP address :8080 3. And start communication by STOP button to successful connection DCOM Settings On the Server Computer side: 1. Plug board to the Server Computer 2. Launch DCOM in FreeMASTER Remote Server Choose COM according plugged board or edit COM according to step 2 - Server Computer in HTTP Connection (up). 3. Setting permissions for the user, User PC. Right click on Computer -> Manage. In Computer Management click to Distributed COM Users. In Distributed COM Users Properties add the user, User Computer. After that, set the permissions in Component Services. In cmd type dcomcnfg.exe In Component Services go to Computers -> My Computer -> DCOM Config -> MCB FreeMASTER Remote Server Application Right click on MCB FreeMASTER Remote Server Application and go to Properties. In Security Tab is possible to add the permissions. There are 3 types of permissions. First permission - Launch and Activation Permissions. There are 4 permission options. Local Launch and Remote Launch means, that user, User Computer can launch e.g. FM Remote Server Application. But for success communication is needed allowing Local Activation and Remote Activation. Second permission - Access Permissions. Click to Edit and Allow Local Access and Remote Access for the user. Do not forget that if there is a change of permissions, specifically allowing, it is necessary for User to log out and log in. On the User Computer side: 1. Open Freemaster, go to Project -> Options 2. Choose Plug-in Module: FreeMASTER CommPlugin for Remote Server (DCOM) and for filling Connect string is possible to use Configure. Definitely, type the IP address of the server and ;Port Name. 3. And start communication by STOP button in FreeMASTER to successful connection And now.. you can do anything 🙂
View full article
My customer wanted to use K60 in his design but he only has the Keil IDE, so I helped to port some examples in KINETIS_SC for him as a starting point. The attachment is my porting work, which also includes a exe file to create new keil project. You may refer to "keil\build\uv4\make_new_project_keil.exe" for details. Hope that helps, B.R Kan
View full article
        在我们嵌入式工程应用中,中断作为最常用的异步手段是必不可少的,而且在一个应用程序中,一个中断往往是不够用的,多个中断混合使用甚至多级中断嵌套也经常会使用到,而这样就涉及到一个中断优先级的问题。         以我们最熟悉的Cortex-M系列为例,我们知道ARM从Cortex-M系列开始引入了NVIC的概念(Nested Vectors Interrupts Controller),即嵌套向量中断控制器,以它为核心通过一张中断向量表来控制系统中断功能,NVIC可以提供以下几个功能: 1)可嵌套中断支持; 2)向量中断支持; 3)动态优先级调整支持; 4)中断可屏蔽。         抛开其他不谈,这里我们只说说中断优先级的问题。我们知道NVIC的核心工作原理即是对一张中断向量表的维护上,其中M4最多支持240+16个中断向量,M0+则最多支持32+16个中断向量,而这些中断向量默认的优先级则是向量号越小的优先级越高,即从小到大,优先级是递减的。但是我们肯定不会满足于默认的状态(人往往不满足于约束,换句俗话说就是不喜欢按套路出牌,呵呵),而NVIC则恰恰提供了这种灵活性,即支持动态优先级调整,无论是M0+还是M4除了3个中断向量之外(复位、NMI和HardFault,他们的中断优先级为负数,它们3个的优先级是最高的且不可更改),其他中断向量都是可以动态调整的。         不过需要注意的是,中断向量表的前16个为内核级中断,之后的为外部中断,而内核级中断和外部中断的优先级则是由两套不同的寄存器组来控制的,其中内核级中断由SCB_SHPRx寄存器来控制(M0+为SCB_SHPR[2:3],M4为SCB_SHPR[1:3]),外部中断则由NVIC_IPRx来控制(M0+为NVIC_IPR[0:7],M4为NVIC_IPR[0:59]),如下图所示: M0+中断优先级寄存器: M4中断优先级寄存器:         其中M4所支持的动态优先级范围为0~15(8位中只有高四位[7:4]才有效),而M0+所支持的动态优先级范围则为0~3(8位中只有高两位[7:6]才有效),而且秉承着号越小优先级越高的原则(0最高,15或3为最小),同时也间接解释了为什么复位(-3)、NMI(-2)和HardFault(-1)优先级最高的原因,很简单,人家都是负的了,谁还能比他们高,呵呵,而且这三位中复位优先级最高,NMI其次,HardFault最低(这个最低仅限于这三者)。 下面给出个ARM CMSIS库中关于M0+和M4中断优先级设置的API函数NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)实现供大家来参考: M0+: NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) {   if(IRQn < 0) {     SCB->SHP[_SHP_IDX(IRQn)] = (SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |         (((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }  /* set Priority for Cortex-M  System Interrupts */   else {     NVIC->IP[_IP_IDX(IRQn)] = (NVIC->IP[_IP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |         (((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }   /* set Priority for device specific Interrupts  */ } M4: void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) {   if(IRQn < 0) {     SCB->SHP[((uint32_t)(IRQn) & 0xF)-4] = ((priority << (8 - __NVIC_PRIO_BITS)) & 0xff); } /* set Priority for Cortex-M  System Interrupts */   else {     NVIC->IP[(uint32_t)(IRQn)] = ((priority << (8 - __NVIC_PRIO_BITS)) & 0xff);    }        /* set Priority for device specific Interrupts  */ }
View full article
Here you will find the code and project files corresponding to the I2C-Accelerometer project. The accelerometer/magnetometer is connected to the I2C port, although bot the accelerometer and magnetometer are contained within a single package, they must be initialized individually. In this example the measurements from both devices (X,Y and Z axis) is performed and displayed at the serial terminal. In order to compile the project, the following library must be imported: FXOS8700Q.h Code: #include "mbed.h" #include "FXOS8700Q.h" //I2C lines for FXOS8700Q accelerometer/magnetometer FXOS8700Q_acc acc( PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); FXOS8700Q_mag mag( PTE25, PTE24, FXOS8700CQ_SLAVE_ADDR1); //Temrinal enable Serial pc(USBTX, USBRX); MotionSensorDataUnits mag_data; MotionSensorDataUnits acc_data; int main() {     float faX, faY, faZ;     float fmX, fmY, fmZ;     acc.enable();     printf("\r\n\nFXOS8700Q Who Am I= %X\r\n", acc.whoAmI());     while (true)     {         acc.getAxis(acc_data);         mag.getAxis(mag_data);         printf("FXOS8700Q ACC: X=%1.4f Y=%1.4f Z=%1.4f  ", acc_data.x, acc_data.y, acc_data.z);         printf("    MAG: X=%4.1f Y=%4.1f Z=%4.1f\r\n", mag_data.x, mag_data.y, mag_data.z);         acc.getX(&faX);         acc.getY(&faY);         acc.getZ(&faZ);         mag.getX(&fmX);         mag.getY(&fmY);         mag.getZ(&fmZ);         printf("FXOS8700Q ACC: X=%1.4f Y=%1.4f Z=%1.4f  ", faX, faY, faZ);         printf("    MAG: X=%4.1f Y=%4.1f Z=%4.1f\r\n", fmX, fmY, fmZ);                 wait(1.0);     } }
View full article
Welcome to the FRDM-K64 mbed workshop, in this page you will find all the code examples we will review on this session. The program covers the following modules: GPIO Serial communication Interrupts PWM ADC I2C (Accelerometer) USB Ethernet Depending on how fast we advance during the session some of the modules might be skipped; however here you can find both the source code and binary files ready to be flashed into the FRDM-K64 development board. FRDM-K64Z120M The FRDM-K64 is fully compatible with the Arduino rapid prototyping system, the following image depicts the board's pinout, the green labels can be used directly into your mbed proyects, they have already been defined in the headers and libraries in order to make development easier. Sign up at mbed.org In order to create the projects covered on this session it is necessary to create an mbed user account, open the website and create a user account, if you have already signed up please log in. Mbed debugging application To enable the FRDM-K64 development board using the binary files generated by mbed it is necessary to update the board's firmware, follow the steps mentioned below in order to enable the board to be programmed: Press the board's reset button While pressing the reset button connect the board to your computer using the USB cable, it must be connected to the J26 USB connector. Once the unit has enumerated as "Bootloader", copy the 20140530_k20dx128_k64f_if_mbed.bin file into the unit Disconnect and reconnect the USB cable, the board must enumerate as "MBED" Serial communication driver To implement serial communication you need to install the serial driver in your computer, download the driver, once your board has enumerated as MBED execute the driver and wait for it to be finished, this might take a couple of minutes. Serial terminal In order to communicate with the board via serial port it is necessary to use a serial terminal, by default WIndows 7 and 8 do not have this application, XP does. If your OS does not feature a serial terminal, you can download the one at the bottom (Teraterm). ! Your board is now ready to be programmed using mbed!
View full article
When using ADCs it is not enough to just configure the module, add a clock signal, apply the Nyquist criteria and hope for the best, because normally that is just not enough. Even if we use the best software configuration, sampling rate, conversion time, etc; we might end up with noisy conversions, and worst of all a low ENOB figure which sums up in a lousy, low resolution ADC application. To complement the software end you need to follow some basic hardware design rules, some of them might seem logical, other might even weird or excessive however they are the key to a successful conversion, I took the time to compile a short list of effective design best practices trying to cover the basics of ADC design. If you think I missed something feel free to comment and ask for more information. Ground Isolation Because ground is the power return for all digital circuits and analog circuits, one of the most basic design philosophies is to isolate digital and analog grounds. If the grounds are not isolated, the return from the analog circuitry will flow through the analog ground impedance and the digital ground current will flow through the analog ground, usually the digital ground current is typically much greater than the analog ground current.  As the frequency of digital circuits increases, the noise generated on the ground increases dramatically. CMOS logic families are of the saturating type; this means the logic transitions cause large transient currents on the power supply and ground. CMOS outputs connect the power to ground through a low impedance channel during the logic transitions. Digital logic waveforms are rectangular waves which imply many higher frequency harmonic components are induced by high speed transmission lines and clock signals.                              Figure 1: Typical mixed signal circuit grounding                              Figure 2: Isolated mixed signal circuit grounding Inductive decoupling Another potential problem is the coupling of signal from one circuit to another via mutual inductance and it does not matter if you think the signals are too weak to have a real effect, the amount of coupling will depend on the strength of the interference, the mutual inductance, the area enclosed by the signal loop (which is basically an antenna), and the frequency. It will also depend primarily on the physical proximity of the loops, as well as the permeability of the material. This inductive coupling is also known as crosstalk in data lines.                               Figure 3: Coupling induced noise It may seem logical to use a single trace as the return path for the two sources (dotted lines). However, this would cause the return currents for both signals to flow through the same impedance, in addition; it will maximize the area of the interference loops and increase the mutual inductance by moving the loops close together. This will increase the mutual noise inductance and the coupling between the circuits. Routing the traces in the manner shown below minimizes the area enclosed by the loops and separates the return paths, thus separating the circuits and, in turn, minimizing the mutual noise inductance.                               Figure 4: Inductance decoupling layout Power supply decoupling The idea after power decoupling is to create a low noise environment for the analog circuitry to operate. In any given circuit the power supply pin is really in series with the output, therefore, any high frequency energy on the power line will couple to the output directly, which makes it necessary to keep this high frequency energy from entering the analog circuitry. This is done by using a small capacitor to short the high frequency signals away from the chip to the circuit’s ground line. A disadvantage of high frequency decoupling is it makes a circuit more prone to low frequency noise however it is easily solved by adding a larger capacitor. Optimal power supply decoupling A large electrolytic capacitor (10 μF – 100 μF) no more than 2 in. away from the chip. A small capacitor (0.01 μF – 0.1 μF) as close to the power pins of the chip as possible. A small ferrite bead in series with the supply pin (Optional).                               Figure 5: Power supply decoupling layout Treat signal lines as transmission lines Although signal coupling can be minimized it cannot be avoided, the best approach to effectively counteract its effects on signal lines is to channel it into a conductor of our choice, in this case the circuit’s ground is the best choice to channel the effects of inductive coupling; we can accomplish this by routing ground lines along signal lines as close as manufacturing capabilities allow. An very effective way to accomplish this is routing signals in triplets, these works for both digital and analog signals.The advantages of doing so are an improved immunity not only to inductive coupling but also immunity to external noise. Optimal routing: Routing in “triplets” (S-G-S) provide good signal coupling with relatively low impact on routing density Ground trace needs to be connected to the ground pins on the source and destination devices for the signal traces Spacing should be as close as manufacturing will allow                               Figure 6: Transmission line routing Signal acquisition circuit To improve noise immunity an external RC acquisition circuit can be added to the ADC input, it consists of a resistor in series with the ADC input and a capacitor going from the input to the circuit’s ground as the figure below shows:                                                             Figure 7: ADC with an external acquisition circuit The external RC circuit values depend on the internal characteristics and configuration of the ADC you use, such as the availability of an internal gain amplifier or the ADC’s architecture; the equation and circuit shown here represents a simplified form of ADC used in Freescale devices. The equivalent sampling resistance RSH is represented by total serial resistance connected between sampling capacitance and analog input pin (sampling switch, multiplexor switches etc.). The sampling capacitance CSH is represented by total parallel capacitance. For example in a case of Freescale SAR ADC equivalent sampling capacitance contains bank of capacitances. The equation shown how to calculate the value of the input resistor based on the values of both the input and sample and hold circuit. It must be noted the mentioned figures could have an alternate designation in any given datasheet; the ones mentioned here are specific to Kinetis devices: TAQ=      Acquisition time (.5/ADC clock) CIN=       Input capacitance (33pF min) CSH=      Sample & Hold circuit capacitance ( CDAIN in datasheet) VIN=       Input voltage level VCSH0= Initial voltage across S&H circuit (0V) VSFR=    Full scale voltage (VDDA) N=           bit resolution Note:  Special care must be taken when performing the calculation since a deviation from the correct values will result in a significant conversion error due to signal distortion.
View full article
Hello Kinetis World, I just wanted to take this opportunity to share the press release for our newly announced WLCSP device.         http://finance.yahoo.com/news/thin-blade-grass-freescale-newest-120000684.html The Ultra Thin CSP, MK22FN512CBP12R, is equivalent to the standard height CSP, MK22FN512CBP12R.  Therefore, from Therefore, from a software enablement perspective, the MK22FN512CAP12 device can be selected as shown in the attached Processor Expert screenshot.  We're looking forward to seeing what amazing things you can accomplish using Kinetis technology!      
View full article
Although most of us have a basic understanding of how an ADC works and how to understand some of the basic figures that define an ADC performance, that is far from really understanding how to fully interpret and use the figures depicted in a datasheet ADC section. With all those numbers it is easy to get lost on which ones to look at when we want to know how it will react to conditions such as frequency, signal amplitude, temperature, etc; having such knowledge would allow us to better fit a specific ADC to your application and take full advantage of its features. Having this in mind I took the time to compile some information related to what the most common figures that describe an ADC performance depicted in a datasheet mean, most of the material can be found in any Analog to Digital Conversion theory book; as I mentioned before this is just a general compilation of knowledge I hope will help you better understand those specifications. It assumes those of us who use datasheets are somehow familiar with the basic working of ADCs, so I will spare the basic concepts. Now down to business, this is a extract of a typical ADC section from a microcontroller's datasheet: I am almost certain not a lot of people who use microcontrollers, and more specifically ADCs; have a clear idea of what Total Unadjusted Error, Integral Non-Linearity or Differential Non-Linearity describe in the behavior of an ADC. Even though I will try to describe in detail the most common parameters I might miss some others and there is the possibility some of the information might not be as accurate as I would like it to be, if any of you reading this brief document have specific questions regarding any parameter I describe or miss by all means comment. Common ADC electrical characteristics depicted in datasheets EQ          Quantization error      Since the analog input to an ADC can take any value, but the digital output is quantized, there may be a difference of up to ½ Less Significant Bit between the actual analog input and the exact value of the digital output. This is known as the quantization error or quantization uncertainty as shown below. In ac (sampling) applications this quantization error gives rise to quantization noise. SINAD, SNR and ENOB (Signal to Noise plus Distortion, SIgnal to Noise Ratio and Effective Number of Bits)      Signal-to-Noise-and Distortion (SINAD, or S/(N + D) is the ratio of the rms signal amplitude to the mean value of the root-sum square (rss) of all other spectral components, including harmonics, but excluding dc. SINAD is a good indication of the overall dynamic performance of an ADC      as a function of input frequency because it includes all components which make up noise (including thermal noise) and distortion. It is often plotted for various input amplitudes. SINAD is equal to THD + N if the bandwidth for the noise measurement is the same. SINAD is often converted      to effective-number-of-bits (ENOB) using the relationship for the theoretical SNR of an ideal N-bit ADC: SNR = 6.02N + 1.76 dB, the equation is solved for N, and the value of SINAD is substituted for SNR.      Effective number of bits (ENOB) is a measure of the dynamic performance of an analog to digital converter and its associated circuitry. The resolution of an ADC is specified by the number of bits used to represent the analog value, in principle giving 2 N signal levels for an N-bit signal. However, all real ADC circuits introduce noise and distortion. ENOB specifies the resolution of an ideal ADC circuit that would have the same resolution as the circuit under consideration. Often ENOB is calculated using the relationship for the theoretical SNR of an ideal N-bit ADC: SNR =      6.02N + 1.76 dB, the equation is solved for N, and the value of SINAD is substituted for SNR. SFDR      Spurious Free Dynamic Range     One of the most significant specification for an ADC used in a communications application is its spurious free dynamic range (SFDR). SFDR of an ADC is defined as the ratio of the rms signal amplitude to the rms value of the peak spurious spectral content measured over the bandwidth      of interest. SFDR is generally plotted as a function of signal amplitude and may be expressed relative to the signal amplitude (dBc) or the ADC full-scale (dBFS) as shown in Figure n. For a signal near full-scale, the peak spectral spur is generally determined by one of the first few harmonics of the fundamental. However, as the signal falls several dB below full-scale, other spurs generally occur which are not direct harmonics of the input signal. This is because of the differential nonlinearity of the ADC transfer function as discussed earlier. Therefore, SFDR      considers all sources of distortion, regardless of their origin. INL      Integral Non-Linearity     Integral nonlinearity (acronym INL) is the maximum deviation between the ideal output of an ADC and the actual output level (after offset and gain errors have been removed). The transfer function of an ADC should ideally be a line and the INL measurement depends on the ideal line selected. Two often used lines are the best fit line, which is the line that minimizes the INL result and the endpoint line which is a line that passes through the points on the transfer function corresponding to the lowest and highest input code. In all cases, the INL is the maximum distance between the ideal line selected and the actual transfer function. DNL        Differential Non-Linearity      Differnetial NonLinearity relates to the linearity of the code transitions of the converter. In the ideal case, a change of 1 LSB in digital code corresponds to a change of exactly 1 LSB of analog signal. In an ADC there should be exactly 1 LSB change of analog input to move from one           digital transition to the next. Differential linearity error is defined as the maximum amount of deviation of any quantum (or LSB change) in the entire transfer function from its ideal size of 1 LSB. Where the change in analog signal corresponding to 1 LSB digital change is more or less than 1 LSB, there is said to be a DNL error. The DNL error of a converter is normally defined as the maximum value of DNL to be found at any transition across the range of the converter. The following figure shows the non-ideal transfer functions for an ADC and shows the effects of the DNL error.      A common result of excess DNL in ADCs is missing codes resulting from DNL < –1 LSB. THD      Total Harmonic Distortion Total harmonic distortion (THD) is the ratio of the rms value of the fundamental signal to the mean value of the root-sum-square of its harmonics (generally, only the first 5 are significant). THD of an ADC is also generally specified with the input signal close to full-scale, the harmonics of the input signal can be distinguished from other distortion by their location in the frequency spectrum. The second and third harmonics are generally the only ones specified on a data sheet because they tend to be the largest. EFS     Full Scale Error Full-scale error can be defined as the difference between the actual value triggering the transition to full-scale and the ideal analog full-scale transition value. Full-scale error is equal to the offset error + gain error Offset error The transfer characteristics of both DACs and ADCs may be expressed as a straight line given by D = K + GA, where D is the digital code, A is the analog signal, and K and G are constants. In a unipolar converter, the ideal value of K is zero. The offset error is the amount by which the actual value of K differs from its ideal value. Gain error The gain error is the amount by which G differs from its ideal value, and is generally expressed as the percentage difference between the two, although it may be defined as the gain error contribution (in mV or LSB) to the total error at full-scale. TUE      Total Unadjusted Error This is the result of performing conversions without having calibrated the ADC, it is dominated by the uncalibrated gain and uncalibrated offset terms in the data sheet. Although most devices will be well within the data sheet limits, it should be noted that they are not centered around zero and full range of the incoming analog signal is not guaranteed. Therefore, an uncalibrated ADC will always show unknown levels of gain and offset error, thus reflecting the worst case of conversion error the module can provide.
View full article
Hi All Kinetis Lovers, Microcontroller programming is a passion for all we are following this Community, but sometimes, trying to understand the peripherals of a Microcontroller is not an easy task, especially if we are in our first approach to a new module or device. In this post you will find a document that explains in detail the DMA module for Kinetis devices and also some examples for CodeWarrior and Kinetis Design Studio using DMA and other peripherals. The Documentation found here is: Using DMA module in Kinetis devices (complete): Document that includes DMA module explanation: everything you need to know when using DMA and the necessary information to understand the code included (K20_DMA for CW or K20D72_DMA for KDS). Using DMA module in Kinetis devices (example): Document that includes the necessary information to understand the code included (K20_DMA for CW or K20D72_DMA for KDS). Attached are two folders named: DMA examples for CW: include the DMA example projects for CW DMA examples for KDS: include the DMA example projects for KDS. Each folder includes 5 examples that are: Please feel free to modify the examples; I hope this will be useful for you. Many thanks and credits to manuelrodriguez for his valuable help developing and editing this project. :smileyinfo:For the SPI examples it is necessary to make a bridge between MOSI and MISO pins (master loop mode is used for the example). For this the TWR Elevators were used.     In the attachments you can find some extra information when using SPI and DMA. Best Regards, Adrian Sanchez Cano Technical Support Engineer
View full article