i.MX Solutions Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

i.MX Solutions Knowledge Base

Labels

Discussions

Sort by:
http://www.youtube.com/watch?feature=player_embedded&v=fQjQPpfExTQ   Uploaded by dexterji on Nov 1, 2011 One XMBC and DLNA demo on i.MX53 for chinese customers. Category: Entertainment License: Standard YouTube License  
View full article
我们目前用的是Eink的9.7寸屏幕,打上freeescale 提供的uboot的patch之后发现默认是6寸屏,于是修改了timing,如下: short lcd_cmap[256]; vidinfo_t panel_info = {         .vl_refresh = 85,         .vl_col = 1200,         .vl_row = 825,         .vl_pixclock = 32000000,         .vl_left_margin = 12,         .vl_right_margin = 128,         .vl_upper_margin = 4,         .vl_lower_margin = 10,         .vl_hsync = 20,         .vl_vsync = 4,         .vl_sync = 0,         .vl_mode = 0,         .vl_flag = 0,         .vl_bpix = 3,         .cmap = (void *)lcd_cmap, }; struct epdc_timing_params panel_timings = {         .vscan_holdoff = 8,         .sdoed_width = 10,         .sdoed_delay = 20,         .sdoez_width = 10,         .sdoez_delay = 20,         .gdclk_hp_offs = 632,         .gdsp_offs = 20,         .gdoe_offs = 0,         .gdclk_offs = 1,         .num_ce = 3, }; 现在屏幕要进行四次全刷之后黑屏,全刷过程中可以看到logo,刷完就没有了,不知道还有些什么地方需要修改,求指导
View full article
The BD-SL-i.MX6 formerly SABRE Lite board is a low cost i.MX6 development platform.  One of the best attributes of the board is the significant software support that is available.  This post introduces Qt5.4 from the QT Company.  The video below shows The Qt Company’s enterprise device creation offering, a Qt-optimized pre-built software stack that lets you immediately get started with prototyping on a real device for embedded Linux and Android development.  The demo is running Qt5.4 and the image is available for the BD-SL-i.MX6 as well as our Nitrogen family of products.  Here is a brief video showing some of the capabilities: The video above showed an image created for embedded Linux, and more specifically, built using tools from The Yocto Project and The Freescale Community BSP. Because of this, your products can leverage the packages provided by those projects, and you can use the Yocto build system to integrate your components and tailor your build. For more details, visit http://qt.io or http://boundarydevices.com/qt-for-device-creation/
View full article
http://www.youtube.com/watch?v=y-isQWxRv3I&feature=player_embedded   Uploaded by freescale on Jan 12, 2012 http://www.freescale.com/CRTOUCH - Xtrinsic capacitive and resistive touch sensing platform (CRTOUCH) enables resistive touch screens to handle basic gesture recognition. This video shows a CRTOUCH running graphic apps in a resistive screen. Category: Science & Technology License: Standard YouTube License  
View full article
The Nitrogen6X is a highly integrated development system based on the next generation ARM-Cortex A9 processor from Freescale, the i.MX6. Click here to visit Boundary Devices for full details   See Compatible Products Tab for: 7″ Display SATA Cable 5MP Camera Android Button Board WiFi ADD-ON LVDS Cable for Freescale 10.1″ PCIE DB Available through Arrow Electronics. Cost will be $199 in Production for non-WiFi (October 2012)  
View full article
1a Added by Ruslan on June 15, 2012 at 12:29pm    
View full article
Digi Logo Added by Mike Rohrmoser on July 29, 2010 at 7:37pm  
View full article
Natalie Added by Natalie Hu on July 12, 2010 at 5:55am The background is Taiwan's famous Juming Museum  
View full article
Issue description: ZQ calibration issue with LPDDR2 memory with two chip selects    Micron has verified it on my customer's board with i.MX6Q. (ECT-SYT-1163 for FIC.pdf) The patch is made based on lp 5.1, see attachment.
View full article
Inverse Path is proud to announce the USB armory project, an open source hardware design, implementing a flash drive sized computer for security applications. The USB armory is a compact USB powered device that provides a platform for developing and running a variety of applications. The security features of the USB armory System on a Chip (SoC), combined with the openness of the board design, empower developers and users with a fully customizable USB trusted device for open and innovative personal security applications. The USB armory hardware is supported by standard software environments and requires very little customization effort. In fact vanilla Linux kernels and standard distributions run seamlessly on the tiny USB armory board. The capability of emulating arbitrary USB devices in combination with the SoC speed, the security features and the flexible and fully customizable operating environment, makes the USB armory the ideal platform for all kinds of personal security applications. The Inverse Path team, with the help of the open source community, will develop applications that fully explore the potential of the USB armory board. The USB armory will be available for pre-order soon. Delivery of the device before the end of 2014 is planned. Target applications: mass storage device with advanced features such as automatic encryption, virus scanning, host authentication and data self-destruct OpenSSH client and agent for untrusted hosts (kiosk) router for end-to-end VPN tunnelling, Tor password manager with integrated web server electronic wallet (e.g. pocket Bitcoin wallet) authentication token portable penetration testing platform low level USB security testing Key features: Freescale i.MX53 ARM® Cortex™-A8 800Mhz, 512MB DDR3 RAM USB host powered (<500 mA) device with compact form factor (65 x 19 x 6 mm) ARM® TrustZone®, secure boot + storage + RAM microSD card slot 5-pin breakout header with GPIOs and UART customizable LED, including secure mode detection excellent native support (Android, Debian, Ubuntu, FreeBSD) USB device emulation (CDC Ethernet, mass storage, HID, etc.) Open Hardware & Software http://inversepath.com/usbarmory
View full article
As i.MX6 empowers the Surveillance applications, iWave has developed a system that brings together video streams from four cameras on four i.MX6 Pico ITX SBCs placed in four different locations through Ethernet. The fifth Pico ITX captures the video streams from the Ethernet and displays on a single HDMI monitor as indicated in the following block diagram. The system requires five i.MX6 Dual Pico-ITX boards connected with LAN. Each of four boards are connected with cameras which capture the video, encode and streams it as RTP packets.  The fifth board receives four streams of RTP packets and displays to four slots in HDMI. Operating system used is Yocto of Dora Version. MIPI or CSI cameras can be used for the video capture (tested with 5MP MIPI camera). All the four cameras share the screen equally and the display resolution of each camera is 854x480. For ease of demonstration we have used one Pico-ITX per camera, however for real life scenario and to keep down costs there is a possiblity that each i.MX6 Pico-ITX SBC can be connected to two cameras. Each pico-itx with i.MX6 quad/dual core can capture video from two cameras simultaneously. The same streaming procedure needs to be followed for this scenario too with it appropriate IP and Port number. For more details please reach to mktg@iwavesystems.com
View full article
Dear All, We used the MCIMX6X4EVM10AB CTBD1607 2N19K + L3.10.53 and there was no problem. However, MCIMX6X4EVM10AB CTBD1607 2N19K is discontinued. so, we replaced with MCIMX6X4EVM10AB CTBE1646 3N19K. we were replaced I.MX6 soloX 2N19K to 3N19K on same board and then we were faced to internal boot fail issue after download sucess using MFG tool. We used NAND Booting, so we using MFG tool to download. and download is always success. and then we changed the BOOT_MODE from '01' to '10' using the fuse switch. and system power on..... Internal Booting does not work and it goes directly to Serial Download and it is caught as USB Device on PC. BOOT_CFG uses '0000' In case MCIMX6X4EVM10AB CTBD1607 2N19K, both of L3.10.53 and L4.1.15 are successfully booted by Internal nand. MCIMX6X4EVM10AB CTBE1646 3N19K, both L3.10.53 and L4.1.15 were successfully downloaded using MFG but There is does not work Internal nand booting. I saw the document 'i.MX 6SoloX Application Processor Silicon Revision 1.2 to 1.3 Comparison' I could not find any part to change as software. I.MX6 Solo After changing from Rev1.2 to Rev1.3, is there any part that needs to be modified as S / W or H / W?
View full article
i.CORE M6UL Based on Freescale™ i.MX 6UltraLite processor, a high performance, ultra-efficient processor family featuring an advanced implementation of a single ARM™ Cortex™-A7 core, which operates at speeds up to 528 MHz. The new ENGICAM GEA M6UL module is suitable for cost effective HMI applications requiring high performance CPU. i.CORE M6UL Cores Cortex-A5 @ 528 MHz core, NEON MPE co-processor and VFPC  Memories 128MB 32bit DDR3-800 256MB SLC NAND Flash Graphics and Multimedia 1x Parallel LCD 18bit output Touch screen Peripherals 2x SD Card interface USB OTG HS, USB HS HOST, Uart, I2C, I2S 4x ADC inputs Up 2x Ethernet 10/100 Dimensions Standard SODIMM footprint 67,4x31.9 mm PCB size Very Low Profile Module EDIMM pin compatible ENGICAM - GEA M6UL
View full article
Hi all, Below is our press release for our i.MX6 solutions, i.e., kits and boards. emtrion GmbH, a company specialised in Embedded Systems design, hardware and software, Freescale Proven Partner, announces the availability of a new industrial processor module based on the multicore Cortex-A9 i.MX6 SoC family from Texas Instruments. This new module, called DIMM-MX6, extends the emtrion DIMM family and offers a full electrical and mechanical compatibility with the other modules of the emtrion DIMM series. emtrion guarantees the availability of its new module for at least 10 years. The DIMM-MX6 module from emtrion brings high computing capabilities with up to 10.000 DMIPS, multiple NEON SIMD and VPFU co-processors at a low power level, without requiring any active cooling system. The DIMM-MX6 module is available in several versions, with either i.MX6 Solo (1 core), Dual (2 cors) or Quad (4 cores) and on-board memories ranging from 512MB up to 8GB for the Flash (SLC NAND) and from 512MB up to 2GB RAM (DDR3). The new module is also qualified for an extended temperature range of -40°C to +85°C. In addition to boards and kits, emtrion offers support for a broad range of operating systems, board support packages (BSP) as well as engineering services. The DIMM-MX6 is available now with a BSP for Linux, that will be followed by additional BSP for Windows Embedded Compact 7 (WEC7), for QNX 6.5 and for Android 4.0. The BSP are available together with a developer kit. Each developer kit includes a DIMM-MX6 industrial module, a base board, a display and a development environment. All parts are mounted together and programmed by emtrion. The kits are shipped ready to use.
View full article
'Multi-core Processor Technology’ will be the key in the development of next generation of advanced computing devices. With major silicon vendor Freescale bringing multi-core application processors for the mainstream embedded devices, there is  need to have the multi-core processing support in the embedded operating systems. Windows Embedded Compact 7(WEC7) will enhance the performance of ARM based multi-core platforms with the addition of Symmetric Multi-Processing (SMP) support. iWave systems has done a SMP support verification on its Freescale’s i.MX6 Quad core processor running WEC7 platform. Symmetric Multi-Processing (SMP) support in WEC7: The most important update in the Windows Embedded Compact 7 is the support for Symmetric Multi-Processing (SMP) which takes the full advantage of multi-core systems providing a performance boost when the multithreaded applications are being used. The multi-core processor platforms such as Freescale’s i.MX6Q which has 4 identical CPU cores, can effectively take advantage of SMP support in WEC7. SMP enabled kernel can use several CPU cores simultaneously and distribute the execution of different processes and threads to them. The number of available cores can be determined by SMP API from the application – the processing and assignment of a thread to a specially selected core is also possible. Read More.. Windows Embedded Compact7 on i.MX6 RainboW-G15D Development Board: iWave Systems, profoundly known for its genuine embedded solution offerings spanning from SOMs to fully integrated systems, offers Windows Embedded Compact 7 (WEC7) reference BSP for iWave’s i.MX6 platform named RainboW G15D besides the existing Linux & Android BSP versions. All the latest features that WEC7 offers such as Silverlight 3.0, MPEG-4 HD, Expression Blend, Active Sync and also Adobe Flash10.1 are made available. About i.MX6 Qseven Development Board: The Development Platform incorporates Qseven compatible i.MX6x SOM which is based on Freescale's iMX 6 Series 1.2GHz multimedia focused processor and Generic Q7 compatible Evaluation Board. This platform can be used for quick prototyping of any high end applications in verticals like Automotive, Industrial & Medical. Being a nano ITX form factor with 120mmx120mm size, the board is highly packed with all necessary on-board connectors to validate complete iMX6 CPU features. About iWave Systems: iWave has been an innovator in the development of “Highly integrated, high-performance, low-power and low-cost i.MX6/i.MX50/i.MX53/i.MX51/i.MX27 SOMs”. iWave helps its customers reduce their time-to-market and development effort with its products ranging from System-On-Module to complete systems. The i.MX6 Pico ITX SBC is brought out by iWave in a record time of just 5 weeks. Furthermore, iWave’s i.MX6/i.MX50/i.MX53/i.MX51/i.MX27 SOMs have been engineered to meet the industry demanding requirements like various Embedded Computing Applications in Industrial, Medical & Automotive verticals. iWave provides full product design engineering and manufacturing services around the i.MX SOMs to help customers quickly develop innovative products and solutions. For more details: WEC7 on i.MX6 Rainbow G15D  | iWave Systems email: mktg@iwavesystems.com
View full article
In this new version, the experts at GuruCE have achieved some major improvements in performance and added quite a lot of new functionality: 4.75x faster than our previous release This is >6x faster than our competitor's BSP... Added full HDMI support, including display auto-detection, hot-plug and dynamic resolution changes in CE This means you can plug in a 1360x768 monitor and have the CE desktop shown in that resolution, then unplug the monitor and plug in a 1920x1080 monitor and CE will dynamically change resolution and show the desktop in 1920x1080 resolution, all this of course without the purple line on the left (a long-standing problem in all the other iMX6 BSPs available). HDMI, LVDS and LCD display output is now configurable in the bootloader This means you can have one kernel image for all. Just go into the bootloader menu and select which display you are using at which resolution and launch the kernel. Simple as that! Added support for DMA on all UARTs Full RX & TX DMA support on UART1, 2, 3, 4 and 5. Upgraded to the latest Vivante GPU GALCORE driver v5.0.11 (25762) And we added all the tutorials and test code as well. Together with the amazing performance increase of this release you can now enjoy 110+ fps in full-screen 1920x1080 (and 350+ fps windowed) for OpenGL-ES 1.1/2.0! The OpenVG spinning tiger sample is now so fast you only see a blur, and we fully support OpenCL on Dual and Quad of course. Now asynchronously loading drivers for faster boot Added free downloadable demo kernel for Congatec-QMX6 (Dual/Quad, 1 GB module) on a QKIT-ARM Maximum CPU temperature at rest: 45°C / 113°F Maximum CPU temperature while running OpenGL-ES 2.0 reflecting ball: 65°C / 149°F This is not nearly as low as we would like, but it's a lot better already. Our next release will focus on power consumption and heat generation reductions. Improved network performance The performance improvements also make Ethernet throughput a lot better. We're only halfway to reaching the theoretical maximum possible on the iMX6 of ~45 Mbyte/s (it's on our list of things to fix), but at least Ethernet speeds are out of the KByte range now (tested using NETIO on WEC7 & WEC2013): NETIO - Network Throughput Benchmark, Version 1.32 (C) 1997-2012 Kai Uwe Rommel TCP connection established. Packet size 1k bytes: 19.11 MByte/s Tx, 19.22 MByte/s Rx. Packet size 2k bytes: 21.22 MByte/s Tx, 20.38 MByte/s Rx. Packet size 4k bytes: 22.44 MByte/s Tx, 20.85 MByte/s Rx. Packet size 8k bytes: 23.06 MByte/s Tx, 22.43 MByte/s Rx. Packet size 16k bytes: 20.67 MByte/s Tx, 19.38 MByte/s Rx. Packet size 32k bytes: 20.79 MByte/s Tx, 20.58 MByte/s Rx. Done. UDP connection established. Packet size 1k bytes: 13.84 MByte/s (0%) Tx, 13.76 MByte/s (0%) Rx. Packet size 2k bytes: 15.97 MByte/s (0%) Tx, 15.97 MByte/s (0%) Rx. Packet size 4k bytes: 20.25 MByte/s (0%) Tx, 19.83 MByte/s (0%) Rx. Packet size 8k bytes: 22.39 MByte/s (0%) Tx, 22.49 MByte/s (0%) Rx. Packet size 16k bytes: 19.34 MByte/s (0%) Tx, 17.95 MByte/s (0%) Rx. Packet size 32k bytes: 21.78 MByte/s (0%) Tx, 21.17 MByte/s (0%) Rx. Done. Further details in the release notes. Don't believe the hype? Try it yourself! We've got free downloadable demo kernels for the RIoTboard, the SABRE-Lite, the Nitrogen6X, the Opal6, the ConnectCore6 and now also the Conga-QMX6. GuruCE website: https://guruce.com iMX6 landing page: https://guruce.com/imx6 Latest iMX6 BSP r474: https://guruce.com/imx6-bsp-releases/imx6-r474
View full article
On the 1st of July 2018, GuruCE released an update of their WEC7/WEC2013 iMX6 BSP now with full support for iMX6 ULL, UL, Solo, DualLite, Dual, DualPlus, Quad and QuadPlus processors! The BSP can be used to build Windows Embedded Compact 7 and Compact 2013 kernels. Some highlights: Support for UL & ULL Display clone CE Updater (update firmware from within CE) Multi-touch Super fast and reliable USB RNDIS and USB Serial for KITL Simplified use of hive-based registry (no need to pre-format disks anymore) Completely verified clock tree code Gigabit Ethernet (on selected boards and with limitations due to NDIS) Easy switch USB function Copy/update firmware from SD to eMMC Keep track of reason of last reset (power-on reset, software reset, watchdog reset, etc) Many improvements to our BSP catalog to make working with our BSP even easier And many more improvements, fixes and new features! Further details in the release notes. Our promise We will keep improving our iMX6 BSP, adding new features and we will be supporting our customers for many years to come, at the very least until the end of Microsoft's extended support end date of 10 October 2023. Even though the GuruCE i.MX6 BSP is already the best performing, 100% OAL stable and most feature-rich i.MX6 BSP on the market today, there are always things to improve or fix and new features to implement. Here's our wishlist: Bring hardware accelerated H.264 video codecs to WEC2013 (not just WEC7) Improve Gigabit network performance Animated GIF bootsplash support Create a solid solution for multi-display touch As always; if you have anything you want us to add to the list or you want us to prioritize an item on the list: contact us and we'll make it happen. Don't forget to check our Testimonials page to see what some of our customers have to say about the GuruCE i.MX6 BSP. Don't believe the hype? Try it yourself! We've got free downloadable evaluation kernels for the Element14 RIoTboard, the Boundary Devices SABRE-Lite, Nitrogen6X and Nitrogen6_VM, the Device Solutions Opal6 (all variants), the Digi ConnectCore6, the NXP SDP (DualLite & Quad), the SDB-QP(QuadPlus), the NXP MCIMX6ULL EVK (ULL), the Toradex Colibri and the Variscite VAR-SOM_MX6 (Dual/Quad) Starter Kit. GuruCE website: https://guruce.com iMX6 landing page: https://guruce.com/imx6 Latest iMX6 BSP release: https://guruce.com/imx6/latest
View full article
i.MX53 SOM at Arm TechCon,2011 Added by iWavesystems on November 17, 2011 at 7:21am    
View full article
Today, technology goes forward and we get some new possibilities in the Online TV viewing. iWave’s i.MX6 Pico-ITX board with Jelly Bean Android provides one such solution. Today we can watch online TV in the Browser that will run in the i.MX6 Pico-ITX Single Board Computer. This uses Real Time Messaging Protocol (RTMP).  RTMP was initially a proprietary protocol developed by Macromedia. It is based on TCP and was specifically designed for streaming video, audio, and data between a media server and clients (Flash player). Currently applications like follows use this protocol: Online multi-player games Text and video chat applications Virtual meeting applications Synchronous and interactive e-learning applications (business simulation games, etc.) In the early days of web video delivery, users had to rely on progressive delivery of video, meaning that the bits of video were delivered to your player one packet at a time “in the blind,” with no communication between the server and player. When a reasonable percentage of the file was downloaded to disk, the player would begin playing the file. However too often the player caught up with the point at which the file was being delivered, and playback halted. As a result streaming was created—a mode through which the video is passed to the player, with increased communication and monitoring in place, and it happens in real time between the player and server. If bandwidth degrades on the player side, it signals the server and “buffers” until it can obtain a suitable amount of packets of video to resume playback. One benefit with RTMP worth mentioning here is its ability to provide multicast support. If you run an enterprise and want to take one stream inside your corporate network and deliver it to many users without initiating a new connection for each user, RTMP is the best technology. Using iMX6 PICO-ITX Android Jelly Bean, one can watch ‘online live iptv broadcasting’ and ‘video on demand’. As shown in the above block diagram, web browser through http requests the web server, then the web server will send the swf file to the web browser over http. Flash player then connects to the media server using RTMP. RTMP server will send the data via RTMP that will be played in the Flash Player. If your favourite online service (IP TV) uses the RTMP protocol for broadcasting, you have a good chance of being able to watch the video stream live using iWave’s i.MX6 SBC.  Its operating principle is simple: you input the address of the video server. It just connects to the server, consuming only the network traffic containing the video, and streams it to your display unit. Online Live IP TV: "Russia Today" is one of the IPTV broadcasting http://rt.com/on-air/rt-america-air/ we can watch this IPTV online in the Jelly Bean's Browser. We can choose the quality either HD, medium and low. Video On Demand: i.MX6 Pico ITX SBC also supports RTMP for Video on demand services. "Deutsche Welle" is one of the Video on demand service provider. We can watch this on demand video in the Android Browser.  http://www.dw-world.de/dw/0,,4756,00.html We can watch Discovery Germany Video By clicking on that. Finally iWave’s i.MX6 Single Board Computer is able to provide Video on demand services and Worldwide IPTV broadcasting over HDMI or LVDS display. For further information or enquiries please write to mktg@iwavesystems.com or visit www.iwavesystems.com. http://http://www.iwavesystems.com/onlinetv-videoondemand-imx6-android
View full article