University Programs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

University Programs Knowledge Base

Discussions

Sort by:
This guide provides all the participants of the Freescale Cup finals with the key information to get organised during the event. This is the final version
View full article
Overview An H-Bridge circuit has a control circuit, usually PWM, which then determines the switching of high-voltage supply to drive a current. Typical embedded H-Bridges can drive about 5A of current. In the case, of the Freescale Cup car the motors can sustain much more current resulting in more toque and faster speeds. Performance Tuning Tips 1. You can place H-Bridges in parallel to balance the current load. For example, if you place two 5A (peak) H-Bridge outputs in parallel, the system can support up to 10A current. 2. Keep it Cool. H-Bridge's dissipate A LOT of heat. Heat = increases inefficiency of a semiconductor, so the better job you do keeping it cool, the better (and longer) it will work for you. Operation Theory This is the simplest H-bridge, where the four gates represent for transistors. By manipulating these gates and connecting the upper and lower terminals to a voltage supply, you can control the motor in all the behaviors as below. H-Bridge States
View full article
On September 14-15, 2015, The Freescale Cup Worldwide Finals will be held at the Fraunhofer Institute of Integrated Circuits (Fraunhofer IIS) in Erlangen, Germany You can follow along and see the regional champion teams from South Korea, China, India, Taiwan, Malaysia, Mexico, Brazil, USA and Switzerland train and compete for the World Title. Agenda of the event covered by the LiveCast is (all times are Central Europe Time): September 14th 14:00 - 15:00 Opening Ceremony 15:00 - 17:30 Training Session 17:30 - 18:00 High Schools and Innovation Challenge Demonstrations September 15th 9:00 - 13:00 Training Session 13:00 - 14:30 Technical Inspection and preparation for the Finals Race 14:30 - 15:00 Finals Race 15:00 - 15:45 Preparation for the Awards 15:45 - 17:30 Awards Ceremony Download and print the attached poster with the embedded QR-Code for posting the link of the LiveCast Direct LiveCast URL is http://www2.iis.fraunhofer.de/freescale
View full article
Below is one example process of creating a PCB. Create a Bill of Materials (BOM) In other words, decide which devices you want to use and what you will need to construct your circuit. If space is a constraint, picking the right device package is crucial. Create a Pin List Once you have all your devices. Create a simple Excel sheet of the various pin-outs from each of these devices. The goal here is to create a reference of which pin goes to which. This will greatly increase your accuracy in the next step… Create a Schematic You will need to download and install a schematic-and-layout-program. Using your schematic program create any needed device libraries and then create the schematic for the board. Create a Layout Once your done with the schematic, layout is just routing the traces around the PCB as efficiently as possible. Some tips for good routing. Use a ground plane (aka solid fill) - This helps with transient signals, and reduces trace congestion. Keep any noisy signals away from data signals (keep the motor driving lines away from data lines) Generate Gerbers and Drill Files Read the website of the Manufacturer that will be building your boards. Most of them do a good job of explaining what format the design needs to be in for them to do the job correctly. Some manufactures support the layout files from certain software toolsets (usually their own). Gerbers are pretty much the universal language though. Send to Board Manufacturer and order your BOM. Below are some of the most popular ones in the USA. If you have a resource in your area please add to the list below. pcbexpress.com sunstonecircuits.com Related Links Training by Freescale on Effective PCB Design General PCB design Engineering Articles from Quick-teck PCBs
View full article
In this training video we will examine some concepts in approaching a vehicle control system.  This includes the stages in data flow and update rates of the control software.   The concept of differential steering will be introduced.
View full article
Congratulations to all the teams to making it this far.  Last minute tweaks made and broke a few teams shooting for the top spot. Best times: (in seconds) 14.89 - Beijing University of Science and Technology [China] 17.60 - Swinburne University of Technology [Malaysia] 19.08 - National Taiwan University of Science and Technology [Taiwan] 19.57 - Escola Politecnica da Universidade de Sao Paulo [Brazil] 20.54 - University of California Berkeley [USA] 22.14 - Slovak University of Technology [Slovakia] DNF - The University of Tokyo [Japan] DNF - Bannari Amman Institute of Technology [India] DNF - Instituto Politecnico Nacional [Mexico] Read more: Day 1: Freescale Cup 2013 Worldwide Championship and China Regional Finals Day 2:  (coming soon)
View full article
Continuing with the "warp drive controller example", this video explains low level hardware interfacing via bit manipulation. An example programming sequence for the warp drive will be shown. View Video Link : 1455
View full article
Congratulations to all teams of the inaugural West Coast Freescale Cup event!  Our three fastest times, covering a total distance of 147 feet.  Full collection of event photos and videos!! Top 3 Teams: * First Place - UC Berkeley - 21.27 seconds Second Place - UC Davis - 27.92 seconds Third Place -  UC Davis - 28.00 seconds
View full article
In this video we will discuss clock distribution in the KL25Z device. An example of initializing the PLL with the on-board crystal will be demonstrated.
View full article
Overview: The TWR-TFC-K20  is an all-in-one tower CPU card that can be used to create an autonomous race vehicle for the the Freescale Cup.   It has all the interfaces necessary for the car to sense the track and control the vehicle    This card is also a great platform for teaching embedded systems.   The TWR-TFC-K20 uses a Freescale Kinetis K20 MCU and has some really cool I/O to keep students interested. Features: Servo Outputs 3-pin Header to connector directly to steering Servo 1 Extra Servo header. Camera Interfaces 1. 5-pin header to connect directly to a Freescale Line Scan Camera 2. Header for 2nd linescan camera (optional) 3. RCA Camera Interface. Includes an LMH1981 Sync Extraction chip and connection to MCU to allow for low resolution (64x64) image capture at 60FPS Power Accepts direct battery power – onboard switching regulator 5-18v All circuitry except for motor controller can be optionally powered over USB Connector DC Motor Drivers QTY 2 MC33887APVW : Dual, Independent 5A Motor Driving Circuit. Supports forward, reverse and braking. Independent control over each drive motor allows for an active differential implementation Current Feedback to MCU ADC to allow for closed loop torque control CPU/ Programming Integrated Kinetis MK20DN512ZVLL10MCU with OSJTAG Additional I/O Some basic I/O for debugging. 4-poistion DIP Switch + 4 LEDs + 2 pushbuttons. Inputs for Tach Signal/Speed Sensor Design Files Rev Beta [B] (Current Production version) Schematics, Assembly Prints, BOM, etc. - Includes 3d view Rev B Errata: None known! Example Code: All software relating to the TWR-TFC-K20 is held in an Google Code Subversion repository.   This is the only way the source is distributed.   Never used a version control system yet?   Now is the time to learn (Google is your friend)!   All "real" software development processes use some form of version control.  TortoiseSVN is a nice client for SVN! Google Code Repository: https://code.google.com/p/tfc-twr/ This code works with Rev B of the board. All major interfaces & peripherals have been tested. At some point we will make a video going through the code. By default, the Linescan camera code is enabled. The code in main.c is pretty easy to follow. There is also code for the NTSC camera but must enabled in the TFC_Config.h file via a pre-processor directive. There is also code used for the OSTAG interface, Labview demo applications and drivers for the USB Videos:
View full article
See how Sylvain got a position at NXP.
View full article
Official rules of the USA Regional Freescale Cup! New in 2014 - Roll-out of leagues: Depending on region there will now be three leagues.  To advance to the Global race you must use stock league vehicles. Stock League - Race using approved components, less customization allowed Custom League - Race with less restrictions and custom hardware Innovation League - More than just racing.  Complete an objective or task to score points and win. (Scheduled 2015 for USA) Notes You can view this document in PDF format using the Action Menu bar. The Worldwide challenge is only open to the stock (unmodified) challengers at this time.  A team may run in both leagues, but the car must comply accordingly. If you have ANY questions about these rules, post them in the comments section below.  If you have questions about regional rules, ask in your regional group. Section 1: Team Requirements Four person maximum team size. A team may have only one graduate student. Cars will be designed and constructed by students ONLY. Participants, advisers, and audience are expected to exhibit good sportsmanship. Any inappropriate behavior or cheating may result in disqualification. Section 2: Event Registration One person from the team must register the entire team for the worldwide challenge no later than January 31st. Section 3a: STOCK LEAGUE - Equipment Requirements Each team shall use the same basic kit of parts as described below.  The following requirements are in place to keep the playing field level.  You must use one of the approved controller and motor driver boards.  If any standard component of the car model is damaged, then the same replacement component should be used. Mechanical The original and unaltered equipment must be used in the entry. Outer tire treads and rim Drive - DC motors Transmission Ratio of Drive Motor Servo Motor Allowed modifications and restrictions: You may not change the wheel base (distance between wheels) No part of the car shall exceed dimensions of 250mm/9.85in (W) x 400mm/15.75in (L)x 305mm/12in.(H) You may drill holes and mount auxiliary pieces on the chassis assuming it is contained within the above dimensions. You may change the orientation of the servo motor and related linkages. You may add a "skin" to the car but it must be removable during inspection. You may adjust or remove springs, linkages, and other non-essential pieces. You may adhere the tread to the rim.   Electrical Battery (purchase separately) 7.2V, <=3000mAh, rechargeable NiCd or NiMH Only one (1) battery at a time may be used to power the vehicle and any attached hardware You must use one of the approved boards below to control your car. Control System FRDM- series of boards The FRDM-KL25Z is included but not mandatory to use. TRK- series Kinetis based TWR- series High Voltage Motor Control and Interface TFC-SHIELD The TFC-SHIELD is included but not mandatory to use. The Dual Motor Control Board from Landzo technologies. Allowed modifications and restrictions: One processor - No auxiliary processor or other programmable device is allowed. The car must use a optical sensor to navigate DC-DC boost circuit may not exceed battery voltage. Total capacity of all capacitors should not exceed 2000 uF. Sensor Limits You may use additional cameras. Maximum of sixteen (16) sensors Examples of sensor count: IR Transmitter/Receiver pair is 1 sensor A CCD sensor is 1 sensor The provided Line Scan Camera is 1 sensor A hall effect sensor on two rear wheels is 2 sensors An encoder mounted on one wheel is 1 sensor A display (is allowed) does not count as a sensor Section 3b: CUSTOM LEAGUE - Equipment Requirements The custom league allows for greater customization of the vehicle.  There is still a set of standard components that must be used.  If any of the standard component of the car model is damaged, then the same replacement component should be used. Mechanical The original and unaltered equipment must be used in the entry. Outer tire treads and rim Drive - DC motors Transmission Ratio of Drive Motor Servo Motor Allowed modifications and restrictions: You may not change the wheel base (distance between wheels) No part of the car shall exceed dimensions of 250mm/9.85in (W) x 400mm/15.75in (L)x 305mm/12in.(H) You may drill holes and mount auxiliary pieces on the chassis assuming it is contained within the above dimensions. You may change the orientation of the servo motor and related linkages. You may add a "skin" to the car but it must be removable during inspection. You may adjust or remove springs, linkages, and other non-essential pieces. You may adhere the tread to the rim.   Electrical Battery (purchase separately) 7.2V, <=3000mAh, rechargeable NiCd or NiMH Only one (1) battery at a time may be used to power the vehicle and any attached hardware Allowed modifications and restrictions: One Freescale processor to control everything- No auxiliary processor or other programmable device is allowed. You may build your own controller board and/or high-voltage (motor) driver board. The car must use a optical sensor to navigate DC-DC boost circuit may not exceed 12V. Total capacity of all capacitors should not exceed 2000 uF. Sensor Limits You may use additional cameras. Maximum of sixteen (16) sensors Examples of sensor count: IR Transmitter/Receiver pair is 1 sensor A CCD sensor is 1 sensor The provided Line Scan Camera is 1 sensor A hall effect sensor on two rear wheels is 2 sensors An encoder mounted on one wheel is 1 sensor A display (is allowed) does not count as a sensor Section 4: Vehicle Inspection Before the race, the judges will perform a technical inspection of all entries. This includes vehicle specifications, dimensions, and equipment requirements listed in Section 3. All cars must be placed in the Inspection area on or before the designated time. Once in the Inspection Area, you may not touch car until you are called to race! In the event of any violations, the organizing committee may disqualify the corresponding team. Section 5: Timed Race Procedure Race order will be determined by a random drawing. When your team is called you may remove your car  from inspection area.  You will have two (2) minutes to prepare the car. Approved Adjustments - You may: Configure parameters via on-board interfaces. (Switches, Knobs, etc.) Alter the angle of your camera Change batteries Disallowed Adjustments -You may not: Reprogram your processor Configure parameters via wired or wireless communications. There shall be only one team member on the track at any given time. (excludes testing times) Before the 2 minute expires you must signal “Ready” to the referee before starting car. After the referee confirms “Ready”, the vehicle should leave the starting area within 30 seconds. Teams have THREE attempts to complete ONE lap.  The FIRST (not the best) completed time will be recorded. Example: Attempt 1 – Vehicle goes to fast around a curve and goes off track.  Time is not recorded. Attempt 2 – Vehicle makes it around track successfully.  Time is recorded. Attempt 3 – Is forfeit because FIRST time (Attempt 2) has been recorded. After each attempt you have two minutes to make approved (see above) adjustments to vehicle. After the attempts, the team shall return the vehicle to inspection area. Event displays will post the times after each team races. Section 6: Race Day Schedule Practice Time - Prior to final race, a test track will be available. Final calibration may be made at this time.  This will be organized with team slots and/or “free-time”.   2. Reconfigure practice track to final track. Vehicle Inspection (see section 4) Timed Race Awards Ceremony Section 7: Event Personnel Organizing committee – A committee of senior judges and Freescale event organizers.  Will coordinate event day activities and mediate and resolve any disputes. Referees -  Responsible for on-track activities. This includes race track management such as starting and stopping vehicles, as well as timing and scorekeeping. Comprise up of of faculty, student, and/or Freescale and industry employees. Judges  - Interpret and enforce rule compliance.  This will be comprised of Freescale employees and members of contributing industry sponsors. Event Personnel shall not aid any one specific team. Communication shall be open to all teams and shall not disclose any information that might compromise the fairness of the competition. Section 8: Fouls, Failure and Disqualifications The rules will be interpreted by Freescale and the organizing committee of the event.            Foul, is a minor infraction, which results in time penalties. Failure, results in the current attempt time not being recorded. Subsequent attempts are allowed. Disqualification is a major infraction which results all times not being recorded. Referee will determine whether the racing car ran out of the race track and assign time penalties. Any of the following conditions will be considered a foul and will result in time penalty added: The race car fails to leave the starting area within 30 seconds after beginning of the race [+1 second]. The race car fails to stop 2 meters/6 feet or leaves the track after crossing the finish line [+1 second]. Any of the following conditions will be considered a failure and no time will be given: Three or more wheels leave the race surface. The racing team fails to get prepared for the attempt within the two (2) minutes allotment. The player touches the race car after the technical inspection without consent of the referee. The race car fails to finish within 120 seconds after leaving the starting area. Touching the car at any time between start and finish. "Start" - Once the vehicle crosses the starting line. "Finish" - Once the vehicle crosses the finish line. Any of the following conditions will be considered a disqualification:   Any off track equipment or behavior that may influence or impede cars.   Doing a Disallowed Modification anytime after Inspection. More than one team member in the playing field. Any cheating during the competition. Failure to pass the technical inspection. Equality and fairness will be ensured as much as possible on the condition of actual feasibility.  Disputes will be resolved by a vote of Freescale, members of the organizing committee, and judges. Section 9: Timing/Scoring Time will be captured using an electronic gate and/or handheld timer. Time starts and ends when the first part of the racing car breaks the start/finish line. Fouls will result in the time addition to the car’s lap time. Disqualifications and Failures will result in no score. Section 10: Parameters of the Racing Track A test track made from the same material as the final track will be made available on the day prior to the final race for calibration and design modifications. The actual layout of the final racing track will be unknown to competitors until competition day. Width of the racing track shall not be less than 600mm/24in. Material and dimensional specifications can be found on the community. Surface of the racing track is matte white, with a continuous black line (25mm/1in wide) in the center of the track. The racing track can intersect with a crossing angle of 90°. The racing track can have inclines, declines,  and tunnels. The rules and conditions are subject to change by Freescale if necessary. Freescale reserves the right in their sole discretion to cancel, suspend and/or modify The Freescale Cup race at any time. These official rules are drawn up in the English language. If these official rules are provided in any other language and there is a conflict in the text, the English language text shall prevail. Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2014
View full article
Entrenamiento acerca de Code Warrior 10.4 presentado por Carlos Musich.
View full article
Continue to explain some common components seen in a microcontroller. Criteria for how a microcontroller is selected will be introduced. View Video Link : 1440
View full article
The TWR-K40X256 Kit is a Freescale evaluation board powered by the Kinetis K40 microcontroller. The Kinetis microcontroller family is a set of 32 bit ARM Cortex M4 chips which feature flexible storage, lower power usage, high performance and optional Floating Point Unit with many useful peripherals. For more information on the Kinetis family see Freescale's Kinetis website. The Tower System is a prototyping platform with interchangeable and reusable modules along with open source design files. Freescale K40 MCU Tower Module: TWR K40X256 Hardware Setup There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. TWR K40X246 Hardware Setup Instructions Board Specific Tutorials K40 Blink LED K40 Drive DC Motor K40 Drive Servo Motor K40 Line Scan Camera Board Tips The TWR-K40X256 features a socket that can accept a variety of different Tower Plug-in modules featuring sensors, RF transceivers, and more. The General Purpose TWRPI socket provides access to I2C, SPI, IRQs, GPIOs, timers, analog conversion signals, TWRPI ID signals, reset, and voltage supplies. The pinout for the TWRPI Socket is defined in Table 3 of the TWR-K40X256 User's Manual, but the user manual does not describe how to order a connector. A Samtec connector, part number: SFC-110-T2-L-D-A is the proper female mating connector for the TWR-K40X256 TWRPI socket. SIDE A/SIDE B White DOTS for counting Pins Solder Wire to GND, and to MCU VDD Pin for testing purposes Important Documents TWR-K40X256 User's Manual TWR-K40X256 Schematics External Links TWR-K40X256-KIT Webpage Kinetis Discussion Forum Tower Geeks Community Website Tower Geeks Freescale Cup Group
View full article
Este proyecto está siendo desarrollado por alumnos del Tecnológico de Monterrey Campus Guadalajara, el cual está orientado para servir como un tipo de terapia para personas discapacitadas. El proyecto en sí consiste en el control de un vehículo de juguete por medio de pulsaciones que serán realizadas con pelotas anti-estrés, de esta forma la persona podrá realizar un ejercicio de fortalecimiento en sus extremidades superiores de una forma más entretenida y menos tediosa que las clásicas terapias. Es importante mencionar que para poder realizar este proyecto es necesario el uso de dos tarjetas Freedom KL25Z de Freescale®, dos módulos Bluetooth®, dos servomotores de rotación continua y dos sensores de presión, los cuales serán incorporados dentro de las pelotas anti-estrés. El vehículo de juguete estará compuesto por los servomotores, que servirán como llantas; un módulo Bluetooth®, el cual recibirá las señales del otro módulo; y una de las tarjetas Freedom KL25Z. Por otro lado una de las tarjetas Freedom KL25Z estará conectada con los sensores integrados en las pelotas anti-estrés y a un módulo cuya función es mandar la información capturada por los sensores al vehículo de juguete. La mecánica del proyecto depende de la pelota que sea presionada, pues si se presiona solamente una pelota, el vehículo avanzará, por otro lado si se presiona la otra pelota, el vehículo girará sobre su propio eje. Este proyecto tiene como fin la implementación de conocimiento prácticos y teóricos en busca de una aportación en beneficio de la sociedad. También es relevante comentar que las visiones a futuro de este proyecto es que pueda ser implementado como una especie de control para una silla de ruedas, con el fin de facilitar la movilidad y aumentar la comodidad al momento de usar este tipo de vehículo. Original Attachment has been moved to: Codigo-tarjetas-freedom.zip
View full article
Congratulations to all the East Coast teams and to UC-Berkeley for the overall fastest car in the USA!  More photos/videos from the event. West vs. East Winner: Jolt - UC-Berekley 17:35 East Coast Teams: First Place: Relativistic Robotic Racers - University of Rhode Island - 22.04 seconds Second Place: Vulcar - California University of Pennsylvania - 25.15 seconds Third Place: Temple Made - Temple University - 25.72 seconds See complete results
View full article
In this training video we will decompose an NTSC video signal to gaining understanding of how to capture video data from a "analog" camera.
View full article
You can view the history of the "motor control shield" here.  The latest Freescale Cup Motor Control board (part number TFC-SHIELD), which is included by default in the kit, is pinned out to directly connect to the FRDM-KL25Z development board.  If you are using the TRK-MPC560xB or other board you will have to direct-wire the connections, as illustrated below.
View full article