University Programs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

University Programs Knowledge Base

Discussions

Sort by:
Lab Materials that accompany the LFEBS12UB. Download restricted to verified faculty only.  Request to join the Faculty Portal now.
View full article
Characteristics of This Book (1) General knowledge and relevant knowledge are well-balanced. From the standpoint of application, this book explains the general principles of the embedded system’s “general knowledge” in a concise but logically lucid way; at the same time, it also pays attention to the coherence between the general knowledge and relevant knowledge about chips. So with the understanding of general principles, the reader can better understand chip application design, which in turn contributes to the understanding of the former. (2) Both hardware and software design are a concern. An embedded system is the efficient integration of hardware and software. So its design should be a design with coordinated, rather than completely separated, hardware and software, like that of a general computer. It is especially true for intellectual embedded application in electronic systems that embedded software cannot be developed well without considering the hardware, and vice versa. (3) Component-based packages of low level drivers are provided. Every module in the book has been furnished with a driver program (in line with the basic principles of the embedded software project and the requirement of a component-based package), detailed, with standard notes and an interface. The supply of low-level driver components for practical application facilitates transplantation and reusability, which saves the reader time for developing his project. (4) Advisable test examples are supplied. Every source program listed in the book has been tested. All test cases are reserved in this book’s CD to free the reader from the trouble caused by design fault or the innate mistake of these example routines, and to facilitate the reader’s confirmation and comprehension. (5) The CD provides all low-level drivers’ component package procedure, texts and test cases. When used, it also contains a chip reference manual, installation and usage about the writing device, tool software (for example, development environment, program writing and reading software, serial ports adjusting tools, USB device, as well as Ethernet tools), related hardware schematic, other technical information, etc. (6) Hardware evaluation, writing adjusting device, and software tools that can solely conduct program writing and reading are supplied to facilitate the reader to practice and apply. Contents There are altogether 16 chapters in this book. The first chapter is an introduction to knowledge system, learning mistakes and learning suggestions on embedded systems. The second and the third chapter describes the characteristics of the ColdFire MCU family, gives the pin function of MCF52233 and the minimum system circuit as well as the first sample program and ColdFire project system to complete the introduction to the first ColdFire project. Chapters 4-10 deal separately with UART, Keyboard,LED and LCD, A/D, Timer,QSPI, I2C and online programming of Flash Memory. And from the eleventh chapter to the fifteenth chapter, information concerning CAN Bus of MCF52235, Ethernet modeling on MCF52233, other modules of MCF52233, USB 2.0 programming of MCF52233, the transplantation and application of μC/OS-Ⅱin ColdFire are provided. The last chapter gives an account of developing methods of embedded systems based on hardware component. Appendix A lists the chip packaging of the ColdFire MCU family used in this book. Complete course files restricted to verified faculty only.  Available for download in the Faculty-Portal
View full article
Freescale S12 C-Family Specific Device Used = APS12C128SLK Courses Developed by Fredrick M. Cady Related Textbook: Oxford University Press: Software and Hardware Engineering: Fredrick M. Cady Files: All files related to this course are at bottom of this page. Summary: Introductory level course.  Covers basic microcontroller concepts and exercises in both assembly and C programming language.  Instructor editions of the laboratory include answers to questions and additional commentary by author especially for instructors. The following is a laboratory short courses developed applying the Process Oriented Guided Inquiry Learning (POGIL) pedagogy.  POGIL uses guided inquiry – a learning cycle of exploration, concept invention and application – as the basis for many of the carefully designed materials that students use to guide them to construct new knowledge.  POGIL is a student-centered strategy; students work in small groups with individual roles to ensure that all students are fully engaged in the learning process. POGIL activities focus on core concepts and encourage a deep understanding of the course material while developing higher-order thinking skills. POGIL develops process skills such as critical thinking, problem solving, and communication through cooperation and reflection, helping students become lifelong learners and preparing them to be more competitive in a global market. Course Contents: Title Topic Document Name Objective S/W Required H/W Required The Microcontroller - General Principles General Principles – The MCU LABSS12CINTRO01.pdf Show architecture of typical microcontroller; define terms. None None Software Development General Principles – S/W Development LABS12CINTRO02.pdf Show S/W/firmware development tools and process. None None Introduction to CodeWarrior - Simluating the Microcontroller in Assembly Language Introduction to the Laboratory – I LABSS12CINTRO03.pdf Introduce the S/W development system used in the lab. CW Introduction to CodeWarrior - Running Assembly Programs on the Microcontroller Introduction to the Laboratory – II LABSS12CINTRO04.pdf Continue above and introduce hardware used in the lab. CW SLK The Assembler Assembler Program LABSS12CINTRO05.pdf Learn the fundamentals of the assembler. CW Exploring Embedded C Programming The C Compiler LABS12CINTRO06.pdf Learn about using C in embedded systems. CW Introduction to CodeWarrior - Simulating the Microcontroller in C Intro to uC Hardware LABSS12CINTRO07.pdf Learn programmer's model and addressing modes None None Introduction to Your Microcontroller Hardware Intro to uC Hardware LABS12CINTRO08.pdf Learn programmer's model and addressing modes None None The Microcontroller Instruction Set I Instructions – I LABSS12CINTRO09.pdf Start to learn the instruction set; memory addressing; conditional branching. None None The Microcontroller Instruction Set II Instructions – II LABS12CINTRO10.pdf Continue ". CW SLK The Bouncing Switch in Assembly Switch Debouncing in Assembly LABS12CINTRO27.pdf Demonstrate switch debouncing and solutions CW SLK The Timer – Introduction to Timer Overflows With C Timers – I LABSS12CINTRO11.pdf Generating a delay using the timer overflow. CW SLK Digital Input and Output Digital Input and Output LABSS12CINTRO12.pdf Input from switches, output to LEDs. CW SLK Digital Input and Output With C Digital Input and Output LABS12CINTRO13.pdf Input from switches, output to LEDs. CW SLK I/O Software Synchronization Digital I/O software LABSS12CINTRO14.pdf I/O software synchronization CW SLK Introduction to Interrupts Using C Interrupts – I LABS12CINTRO15.pdf Learn fundamentals of interrupt vectors, etc. CW SLK The Bouncing Switch in C Switch Debouncing in C LABS12CINTRO28.pdf Demonstrate switch debouncing and solutions CW SLK Introduction to Interrupts Interrupts – I LABS12CINTRO16.pdf Learn fundamentals of interrupt vectors, etc. CW SLK Sources of Multiple Interrupts Interrupts – II LABS12CINTRO32.pdf Multiple sources of interrupts. CW SLK and scope The Timer – Introduction to Timer Overflows The Timer – Intro to Timer Overflows LABS12CINTRO17.pdf Generating a delay by polling the timer overflow. CW SLK The Timer – Timer Overflow Interrupts The Timer – Timer Overflow Interrupts LABS12CINTRO18.pdf Generating a delay using timer overflow interrupts CW SLK The Timer – Output Compare The Timer – Output Compare LABS12CINTRO19.pdf Waveform generation using output compare and interrupts. CW SLK and scope The Timer – Input Capture The Timer – Input Capture LABS12CINTRO20.pdf Using input capture to measure pulse width CW SLK The Timer – Pulse Accumulator The Timer – Pulse Accumulator LABS12CINTRO21.pdf Using pulse accumulator in event counting and gated time mode CW SLK and signal generator Analog Input using Assembly ATD – I LABSS12CINTRO22.pdf Introduce analog-to-digital conversion CW SLK Analog Input using C ATD – I LABSS12CINTRO26.pdf Introduce analog-to-digital conversion CW SLK Sampling and Resolution for Analog Input ATD- II LABS12CINTRO23.pdf ATD Sampling None None HCS12 A/D Digital I/O ATD – III LABSS12CINTRO24.pdf Digital I/O using the ATD CW SLK COP Coming Soon Using the COP CW SLK MSCAN Coming Soon Using the CAN module CW SLK SERIAL I/O – SCI SCI LABS12CINTRO29.pdf Introduction to SCI CW SLK and terminal SERIAL I/O INTERFACES – RS-232-C SCI-II LABS12CINTRO30.pdf Creating an RS-232-C communication Interface SERIAL I/O – The Serial Peripheral Interface SPI – I LABSS12CINTRO31.pdf Introduction to the SPI CW SLK, scope, SPI device SPI – II Coming Soon LCD CW SLK, LCD Register Listing HCS12C Family Register Listing HCS12C Family LABS12CINTRO25.pdf Complete course files restricted to verified faculty only.  Available for download in the Faculty-Portal
View full article
Lab exercise supporting the i.MX53QSB for Master Student level student prepared by massimoviolante from the Politecnico of Torino. Complete course file(s) restricted to verified faculty only.  Available for download in the Faculty-Portal
View full article
Updated: May 7, 2013 - Added 6 new chapters Author(s): Ken Hsu, Rochester Institute of Technology Dan Cheung, Rochester Institute of Technology Sam Skalicky, Rochester Institute of Technology Overview Written using the TWR-K40N512. Most of the knowledge is transferable to any of the Kinetis K family of devices. The Freescale Tower System is a modular development platform that allows rapid prototyping and re-use through interchangeable modules. A few of the modules are serial modules for Ethernet and other serial interfaces, wireless modules, audio modules, and blank proto-boards to build your own circuit. CodeWarrior 10.1 Integrated Development Environment (IDE) is a new version of CodeWarrior based on the Eclipse IDE. It provides features such as instruction level debugging, disassembly, access to device registers while debugging, processor expert, and more. It is designed to be used with Freescale’s latest microcontrollers. Modules Introduction General Purpose I/O Multipurpose Clock Generator Interrupts and Timers Serial I/O I2C Digital to Analog Converter Analog to Digital Converter Analog to Digital Interrupts Flex Timer Module Real Time Clock Cyclic Redundancy Check (CRC) Digital Signal Processing (DSP)  [Draft State] Capacitive Touch Complete course files restricted to verified faculty only.  Available for download in the Faculty-Portal
View full article
Embedded processors are highly optimized products.  When you just want a good general use processor, sifting through the many options to find the best one can be daunting.  Below are some excellent general-purpose use platforms that I recommend for academia.  Are there other options, you bet.  These are the best in class, most popular and great for learning. FRDM-KL25Z TWR-K60D100M Wand Board Teensy 3.0 Cost: $12.95 $99 ($169 for -KIT) $79/$99/$129 $19 Chip: Cortex-M0+ Cortex-M4 Cortex-A9 (Single/Dual/Quad core) Cortex-M4 On-Board Features: Minimal Good Good Very Minimal Expansion Capability Excellent Good Average Good Notable Features Arduino Shield Compatibility Program with mbed.org I/O options Android Jellybean, HDMI Plug into breadboard Program with Arduino IDE The Freedom Board (FRDM-KL25Z) This is a great starter board!  It's cheap($12.95), yet powerful and can be used in a wide variety of applications.  All FRDM- boards are pinned out in the Arduino shield standard so you have lots of expansion options.  The FRDM-KL25Z can be programmed with the normal 'industrial strength' IDE you can also use mbed.org which sets it apart from many other products in this list for ease-of-use. Teensy (Teensy3) Made by PJRC.  For those that want to put a high performance 32-bit MCU on a breadboard.  Also, per the PJRC website you you are able to use the Arduino IDE.  The hardware is about as bare-bones as it gets, but the nice small footprint and breadboard ability gives you lots of flexibility to add your own custom I/O. The Tower System (TWR-K60D100M-KIT) The Tower System is another platform with a multitude of options.  With the Tower System you get access to much more I/O and is designed with higher performance applications in mind.  The particular variant I most often recommend is the TWR-K60D100M simply because it has so many features all packed in.  USB, Ethernet, Crypto engine, CAN, SPI, I2C and the list goes on.  Couple that with plenty of processing muscle with a Cortex-M4 CPU running at 100Mhz. Wand Board.org (Wand Board) The Cortex-M series is primarily intended for embedded control applications.  Whereas the Cortex-A series is built for graphical and multimedia applications.  Wandboard.org has been getting a lot of attention in the community as a Rasberry PI, Beagle Bone alternative(comparison chart).  Another similar product, still in development, is UDOO so stay tuned for that one.
View full article
Thanks Team Jolt @ UC Berkeley for this awesome first-person perspective of the Freescale Cup car going around the track!
View full article
Congratulations to all the East Coast teams and to UC-Berkeley for the overall fastest car in the USA!  More photos/videos from the event. West vs. East Winner: Jolt - UC-Berekley 17:35 East Coast Teams: First Place: Relativistic Robotic Racers - University of Rhode Island - 22.04 seconds Second Place: Vulcar - California University of Pennsylvania - 25.15 seconds Third Place: Temple Made - Temple University - 25.72 seconds See complete results
View full article
Photos Videos
View full article
Photos Videos
View full article
Congratulations to all teams of the inaugural West Coast Freescale Cup event!  Our three fastest times, covering a total distance of 147 feet.  Full collection of event photos and videos!! Top 3 Teams: * First Place - UC Berkeley - 21.27 seconds Second Place - UC Davis - 27.92 seconds Third Place -  UC Davis - 28.00 seconds
View full article
This year we are launching the inaugural Global Freescale Cup challenge.  Teams from 9 regions of the world will be competing to see who the best-of-the-best is. Regional student champions will be working hard to create the most intelligent race car to win Global challenge on August 22-24, 2013, held at the Harbin Institute of Technology in China. The challenge will feature Freescale’s 32-bit microprocessors either ARM-based or Power Architecture-based. Important Information 2013 Global Rules Team Registration (closed) Click "Receive email updates" from right navigation to stay informed of changes. Add your own questions below in the comments section. View this page as a PDF - To print Meet the Teams Brazil - Escola Politecnica da Universidade de Sao Paulo China - (Semi-finalist*) University of Science and Technology China - (Semi-finalist*) South-Center University for Nationalities Slovakia - Slovak University of Technology India - Bannari Amman Institute of Technology Japan - The University of Tokyo Malaysia - Swinburne University of Technology Mexico - Instituto Politecnico Nacional Taiwan - National Taiwan University of Science and Technology United States - University of California Berkeley - Team Jolt *Semifinalist teams to compete prior to the global challenge to determine which team will represent the region. Event Agenda (Subject to Change.  All listed times are local time) August 21st Team Arrivals. Transportation arranged for all teams from Airport to Hotel. Look for The Freescale Cup sign. Arrival times provided. August 22nd 07:30 - 12:00 Team Tour - Sun Island 12:00 -13:00 Team Lunch Practice Track A Track B 12:55 - 13:15 University of Science and Technology Beijing South Center University for Nationalities 13:15 - 13:45 Mandatory Team Meeting & Rule Review 13:45 - 14:05 The University of Tokyo National Taiwan University of Science and Technology 14:10 - 14:30 UC Berkeley Swinburne University of Technology 14:35 - 14:55 Bannari Anman Institute of Technology Escola Politecnica da Universidade de Sao Paulo 15:00-15:20 South Center University for Nationalities University of Science and Technology Beijing 15:25 - 15:45 Instituto Politecnico Nacional Slovak University of Technology 15:55 - 16:10 National Taiwan University of Science and Technology The University of Tokyo 16:15 - 16:35 Swinburne University of Technology UC Berkeley 16:40 - 17:00 Escola Politecnica da Universidade de Sao Paulo Bannari Anman Institute of Technology 17:05 - 17:25 Slovak University of Technology Instituto Politecnico Nacional 18:00 - 19:00 Team Dinner August 23rd 8:00 - 8:30 Opening Ceremony 8:30 - 9:00 Final Race China Semi-finalists 9:10 - 9:30 Practice Track C - Slovak University of Technology 9:35 - 9:55 Practice Track C - The University of Tokyo 10:00 - 10:20 Practice Track C - UC Berkeley 10:00 - 10:45 Practice Track C - Bannari Anman Institute of Technology 10:50 - 11:10 Practice Track C - Instituto Politecnico Nacional 12:00 - 13:00 Team Lunch 13:20 - 13:40 Practice Track C - National Taiwan University of Science and Technology 13:45 - 14:05 Practice Track C - Swinburne University of Technology 14:10 - 14:30 Practice Track C - Escola Politecnica da Universidade de Sao Paulo 14:35 - 14:55 Practice Track C - Winner of China Semi-finals 4:00p - 4:30p Track Change 4:30p - 5:30p Final Race 5:30p - 6:00p Awards Ceremony 6:00p - 7:00p Team Dinner August 24th Teams to observe the finals of the China regional. 8:00  - 11:00 China Regional - Final Speed Race 11:00 - 12:00 China Regional - Final Innovation Competition 12:00 - 12:30 China Regional - Awards Ceremony 12:30 - 17:00 Free Time 17:00 - 18:00 Team Dinner Event Hotel Harbin Sinoway Hotel Address: No.2 Yiyuan Street. Harbin China. Contact: Xiaodan Liu Mobile Phone: 15904611007 Current Weather Conditions Link will re-direct to weather.com Race Location Harbin Institute of Technology August 22-24, 2013 Contributing Sponsors    
View full article
O Protótipo deste Robô foi desenvolvido com base em algumas informações do projeto Robô Curiosity da Nasa. O presente protótipo captura imagens por uma câmera wirelles e o sistema Labview tratará estas imagens. Possui comunicação RF e USB. Outras informações estão contidas no anexo.
View full article
Harvard Extension School CSCI E-251, Fall 2012: Principles of Operating Systems Final Project Presentations Presentation by Eric Pedersen
View full article
Harvard Extension School CSCI E-251, Fall 2012: Principles of Operating Systems Final Project Presentations Presentation by Timothy O'Keefe
View full article
Harvard Extension School CSCI E-251, Fall 2012: Principles of Operating Systems Final Project Presentations Presentation by Ram Garlapati
View full article
Harvard Extension School CSCI E-251, Fall 2012: Principles of Operating Systems Final Project Presentations Presentation by Ethan Tavan
View full article
Harvard Extension School CSCI E-251, Fall 2012: Principles of Operating Systems Final Project Presentations Presentation by Victor Petrov
View full article
Harvard Extension School CSCI E-251, Fall 2012: Principles of Operating Systems Final Project Presentations Presentation by David Lieberman
View full article