University Programs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

University Programs Knowledge Base

Labels

Discussions

Sort by:
Este proyecto está siendo desarrollado por alumnos del Tecnológico de Monterrey Campus Guadalajara, el cual está orientado para servir como un tipo de terapia para personas discapacitadas. El proyecto en sí consiste en el control de un vehículo de juguete por medio de pulsaciones que serán realizadas con pelotas anti-estrés, de esta forma la persona podrá realizar un ejercicio de fortalecimiento en sus extremidades superiores de una forma más entretenida y menos tediosa que las clásicas terapias. Es importante mencionar que para poder realizar este proyecto es necesario el uso de dos tarjetas Freedom KL25Z de Freescale®, dos módulos Bluetooth®, dos servomotores de rotación continua y dos sensores de presión, los cuales serán incorporados dentro de las pelotas anti-estrés. El vehículo de juguete estará compuesto por los servomotores, que servirán como llantas; un módulo Bluetooth®, el cual recibirá las señales del otro módulo; y una de las tarjetas Freedom KL25Z. Por otro lado una de las tarjetas Freedom KL25Z estará conectada con los sensores integrados en las pelotas anti-estrés y a un módulo cuya función es mandar la información capturada por los sensores al vehículo de juguete. La mecánica del proyecto depende de la pelota que sea presionada, pues si se presiona solamente una pelota, el vehículo avanzará, por otro lado si se presiona la otra pelota, el vehículo girará sobre su propio eje. Este proyecto tiene como fin la implementación de conocimiento prácticos y teóricos en busca de una aportación en beneficio de la sociedad. También es relevante comentar que las visiones a futuro de este proyecto es que pueda ser implementado como una especie de control para una silla de ruedas, con el fin de facilitar la movilidad y aumentar la comodidad al momento de usar este tipo de vehículo. Original Attachment has been moved to: Codigo-tarjetas-freedom.zip
View full article
Congratulations to all the East Coast teams and to UC-Berkeley for the overall fastest car in the USA!  More photos/videos from the event. West vs. East Winner: Jolt - UC-Berekley 17:35 East Coast Teams: First Place: Relativistic Robotic Racers - University of Rhode Island - 22.04 seconds Second Place: Vulcar - California University of Pennsylvania - 25.15 seconds Third Place: Temple Made - Temple University - 25.72 seconds See complete results
View full article
In this training video we will decompose an NTSC video signal to gaining understanding of how to capture video data from a "analog" camera.
View full article
You can view the history of the "motor control shield" here.  The latest Freescale Cup Motor Control board (part number TFC-SHIELD), which is included by default in the kit, is pinned out to directly connect to the FRDM-KL25Z development board.  If you are using the TRK-MPC560xB or other board you will have to direct-wire the connections, as illustrated below.
View full article
Features General Tower card Form Factor Connections to allow use with a TRK-MPC5604B Board Camera Interfaces 1. 5-pin header to connect directly to Freescale Line Scan Camera 2. Header for 2nd linescan camera (optional) 3. RCA Camera Interface. Includes an LMH1981 Sync Extraction chip and connectors to MCU to allow for low resolution (32x32) decoding of signals Servo Outputs 3-pin Header to connector directly to steering Servo 1 Extra Servo header. Power Accepts direct Battery Power – Onboard Switching regulator 5-18v Tower Card will source power to other tower modules. All circuitry except for motor controller can be optionally powered over USB Connector Battery Input and motor Outputs will be a Tyco (TE Connectivity) TE Connectivity Screw Terminal http://search.digikey.com/us/en/products/1776275-2/A98036-ND/1826899 Motor Driver 2x MC33887APVW : Dual, Independent 5A Motor Driving Circuit Supports forward, reverse and braking. Current Feedback to MCU ADC to allow for closed loop torque control Programming Integrated Kinetis MK20DN512ZVLL10MCU with OSJTAG Can be used stand-alone or be used as a peripheral in the tower system. Additional I/O Extra signals from K40 routed to tower edge card connector. Signals for H-bridge, camera and servo can be routed to Tower Edge connector to be driven by another MCU card. Each can be disconnected via jumper. - We will need to crosscheck the signals to all other CPU modules. Would it be easier to just have a version that doesn't have the K40 populated and OSJTAG populated? Also, we may not need jumpers. Simply configure the Kinets I/O to inputs. Some basic I/O for debugging. 4-poistion DIP Switch + 4 LEDs. Inputs for Tach Signal/Speed Sensor Design Files Rev Alpha Schematics (Sent to MyRO on 4.4.2012) - Includes 3d view Assembly Prints (For Reference) PCB Fabrication Notes Bill of Materials Rev A Errata: Pins 4 & 5 for the camera (Gnd and +3.3v) got swapped on the PCB. You will need to swap the wires in the cable. You can pop the contacts out of the connector housing with tweezers. POT0 has a jumper wire to pin 26 (ADC1_SE18 . This was done to put all signals *except* the NTSC video onto ADC1 to simplify software. Future versions will have this change in the artwork Some components interfere with the tower connector. It can be mated to about 95%. Will work fine. Future versions will fix this issue Rev Beta Schematics, Assembly Prints, BOM, etc. - Includes 3d view Rev B Errata: None known! Google Code repository for the Example Code: https://code.google.com/p/tfc-twr/ This code works with Rev B of the board (and Rev A). All major interfaces & peripherals have been tested. At some point we will make a video going through the code. By default the Linescan camera code is enabled. The code in Main.c is pretty easy to follow. There is also code for the NTSC camera but must enabled in the TFC_Config.h file via a pre-processor directive. There is also code used for teh OSTAG interface, Labview demo applications and drivers for the USB Pictures Just verified the OSJTAG. Test Project to blink the battery LED's was downloaded into the K20 Videos Testing the Servo circuits….. Testing the pots, servos, H-bridges and K20 USB port Linescan Camera Bringup with Labview NTSC Camera Bringup with Labview 1.) This is a basic demo of an NTSC camera being brought in using the a Combo of the ADC, port interrupts and DMA transfers. 2.) I *ahem* overclock the ADC to 24MHz to get some extra resolution for a 64x64 pixel image (the first 6 columns are junk as they contain color burst data*) 3.) I decimate the images to a few frames per second to send over the WIFI (the booster pack card I made) to a Labview program. The Kinetis can bring the data in a the same frame rate of the camera, I just need to send much slower as there is some overhead in my communications scheme (ASCII text) and the WIFI is driven via a UART. 4.) In reality, I can get a 64 x 480 pixel image in memory as I pull in all the lines. I just decimate the rows to get a 64x64 result on the labview display. 5.) DMA does most of the work freeing up the CPU to do algorithms in the foreground.
View full article
A Livecast has been set up for you to enjoy The Freescale Cup EMEA Finals on 28-29 April that are hosted at the Politecnico of Torino. Connect on Freescale Cup 2015 live streaming - SeLM - Politecnico di Torino
View full article
25 student teams from 21 universities coming from 11 countries will meet on 29-30 April for the Freescale Cup EMEA Challenge. Check out the event information at https://www.facebook.com/events/1425416907713292/
View full article
En este video puedes consultar paso a paso la descarga e instalación del CodeWarrior 10.4 para microcontroladores. Accede a la liga www.freescale.com/cwmcu10
View full article
Footage from the technical inspection taken during The Freescale Cup 2015 Worldwide Finals. Credit: Fraunhofer IIS         
View full article
Footage highlights of the Freescale Cup Worldwide finals race 2015. Credit: Fraunhofer IIS
View full article
Freescale Cup China - Two Wheel Self Balancing Challenge 2012 In China they have another tier of competition in which the cars must complete the track autonomously while balancing on the rear wheels. For this challenge they use a charged wire in the track for which to sense and navigate the vehicle by. Really cool!
View full article
The TRK-MPC560xB: MPC560xB StarterTRAK (Development Kit) is a Freescale evaluation board powered by the qorivva chip. The Qorivva microcontrollers family is a set of 32 bit Power Architecture chips. Which Chip do you have? The chipset mounted on the boards for the Freescale Cup can vary. Always validate your chipset to know it's full capabilities. MPC560xB Product Information Page Difference Highlights: 5604B = 512MB Code Flash; no DMA 5606B = 1MB Code Flash; Has 16-Channel DMA 5607B = 1.5Mb Code Flash; Has 16-Channel DMA TRK-MPC5604B Hardware Setup There are several main hardware configuration steps. After installing the battery, once the USB cable has been connected between the evaluation board and PC, it may be necessary to update the chip firmware which requires moving a jumper pin on the evaluation board. TRK-MPC5604B Hardware Setup Instructions Lectures: The Freescale Cup – Lecture 5: MPC5607B Overview Overview Slides from lecture Overview Slides from Lecture (PDF) other Lectures from the Freescale Cup Lecture Series Other Qorivva Tutorials: qorivva-blink-led qorivva-drive-dc-motor qorivva-turn-a-servo qorivva-line-scan-camera Board Tips Important Documents TRK-MPC5604B User's Manual TRK-MPC5604BQuick Reference Guide TRK-MPC5604B Schematics Reference manual External Links TRK-MPC5604B Webpage [Qorivva Freescale Hosted Kinetis Discussion Forum] [ ???? Community Website]
View full article
Video footage highlights taken during The Freescale Cup Worldwide Finals 2015 Award Ceremony Credit: Fraunhofer IIS
View full article
Lecture 1: Introduction and Motor Basics  This training module presented by Professor L. Umanand of CEDT, Indian Institute of Science, Bangalore provides an overview of the Freescale Cup – 2011. It introduces to the challenge describing the various components of the intelligent car tracker. Lecture 2: Pulse Width Modulation  This lecture provides an overview of Pulse Width Modulation Lecture 3: Control Design  This lecture describes controller design and PID control Lecture 4: Speed and Position  This Lecture discusses integrating your PID with sensor data Lecture 5: MPC5607B Overview  This training module provides an overview of the 32-bit Qorivva MPC5607B Processor. The course is targeted towards beginners in order to enable them to quick start the development of software on the MPC5607B.
View full article
32-bit Kinetis MCUs represent the most scalable portfolio of ARM® Cortex™-M4 MCUs in the industry. Enabled by innovative 90nm Thin Film Storage (TFS) flash technology with unique FlexMemory (configurable embedded EEPROM), Kinetis features the latest low-power innovations and high performance, high precision mixed-signal capability. For the Freescale Cup Challenge, we have provided several tutorials, example code and projects based on the twr-k40x256-kit. This board is part of the Freescale tower-system, a modular, reusable development platform that allows engineers to quickly prototype new designs. The K40 chip is a 144 pin package with 512KB of Flash, 245Kb of Program Flash, 4KB of EEProm, and 64KB of SRAM. Important Documents: Reference Manual Besides the Reference manual and the Datasheet, the most useful document for learning to program the K40 chip is the Kinetis Peripheral Module Quick Reference Data sheet Errata External Links Freescale's Kinetis K40 Product Page
View full article
WARNING If you stumble across the "getting started page" FREEDOM BOARD / CORTEX M0+ GETTING STARTED Please take note: While working with a large number of Freedom boards in a course,  it was observed that the Init Clock Routines would *sometimes* not work.    *Some* of the crystals on the freedom boards do NOT like "HIGH_GAIN" mode.   change the line   pll_init(8000000, HIGH_GAIN, CRYSTAL, 4, 24, MCGOUT); to   pll_init(8000000, LOW_POWER, CRYSTAL, 4, 24, MCGOUT);
View full article
1. Download CodeWarrior 2.8 Evaluation Version (Classic, Windows-hosted) To Program your microcontroller you will need to set up the CodeWarrior Integrated Development Environment. CodeWarrior is available on the Freescale.com Website. Method 1: Direct Link direct download link (Caution - link may not be up to date) Method 2: Navigate to the Download Link From Freescale.com click on: "Design Resources" tab at the top of the page, then navigate to "Software and Tools", and then to "Codewarrior Devleopment Tools" Click on the "Download CodeWarrior now link" Click on the Download Evaluation Versions link" Within this page, use your browser "find" feature (Typically CTRL-F) to search for the text string "V2.8" Click the "download" button next to "Evaluation: CodeWarrior for MPC55xx/MPC56xx Microcontrollers V2.8 (Classic)". and save it to your computer. 2. Install CodeWarrior To install CodeWarrior Development Studio for Microcontrollers v2.8, double-click the installation package and a wizard will guide you through the installation process. Installation Notes: Are you using Windows Vista or Windows 7? Evaluation Edition User: If you are installing the Evaluation Edition, the Evaluation license is automatically installed with your product and you do not need to register it. This license allows you to develop projects as Professional Edition within the 30-day evaluation period. After 30 days, the license works as Special Edition license (free permanent, but feature limited) which supports unlimited assembly code, up to 32KB of C code for HCS08/RS08 derivatives, up to 64KB of C code for V1 ColdFire derivatives and up to 128KB of C code for V2-V4 ColdFire and Kinetis derivatives and up to 512KB of C code for MPC56xx derivatives. Once you have finished downloading and installing CodeWarrior, users can return to Downloading and Installing P&E as part of the Blink a LED on Qorivva Tutorial
View full article
Photos Videos
View full article
This is the 8th year for the China national finals of Freescale Cup intelligent car racing.  In parallel to this years China regional we are hosting the champion teams from regions around the world in a winner take all racing showdown. Today kicked off day one of the event which is mostly practice.   But first, a little international team building and a tour to Sun Island in Harbin, China. (Photo courtesy of Peter Fang) (Photo courtesy of DamarisOchoa) Followed by some down to business practice where we had our first glimpse of all the teams.   All the worldwide teams look very strong and should be a very competitive match-up. (Photo courtesy of DamarisOchoa) If you are at the Global Freescale Cup 2013  add your pictures in the comments section below!!
View full article
                                                       Robô Explorador      O sistema de investigação feita por robôs através da análise de imagens capturadas está sendo utilizado nas pequenas e grandes empresas. Através da análise de imagens, é possível verificar se um produto está com defeito ou não. Dependendo da imagem, ou até mesmo se a peça estiver em mãos, um operador poderá analisar e qualificar como peça boa, mas através da conversão de uma figura em matriz binária, será possível encontrar um erro. Desta forma o produto final poderá ser adquirido pelo consumidor com mais qualidade e com custo reduzido.      Para sistemas de segurança, é possível analisar um espaço, fotografar o local e saber se existe perigo para o operador, ou até mesmo localizar pessoas em situações de risco de vida.
View full article