University Programs Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

University Programs Knowledge Base

Labels

Discussions

Sort by:
This tutorial covers the details of Blinking an LED on the TRK-MPC5604B: MPC5604B StarterTRAK evaluation board. It will introduce the evaluation board, and some basic CodeWarrior features. Overview Hardware Set up the Software Development Environment A. Download and Install Codewarrior B. Download and Install Drivers Sample Code Serial Debugging: I made the hardware modifications for serial debugging: I did not make the hardware modifications for serial debugging: Download/Debug/Run Learning Step: LED Code Description Functions Blink the LED(s): Other Qorivva Tutorials Useful Links to Technical Data Overview In this exercise students will run sample code and build an application which enables testing of the Qorivva TRK-MPC5604B board. Students will: Configure the Software Development Environment Configure the evaluation board hardware Learn how to open CodeWarrior project example files Build a project Download and run the code on TRK-MPC5604B board Learn how to utilize the GPIO Peripheral to blink a LED   To successfully complete this exercise, students will need the following board and development environment. TRK-MPC5604B evaluation board CWX-MPC-5500P-EX: Evaluation: CodeWarrior for MPC55xx/MPC56xx Microcontrollers V2.8 (Classic) RAppID initialization Tool P&E Micro Driver Software Hardware Read the MCU 101: LEDs article for general information on LED circuits. The LED's are located on the board and visible in the board schematic on page 4 as below: This schematic is found here. Set up the Software Development Environment There are several steps necessary to prepare the evaluation board and PC for microcontroller programming and development. Interfacing the evaluation board with a PC requires downloading and installing the CodeWarrior IDE, as well as the device drivers for programming the microcontroller via USB. A. Download and Install Codewarrior Before completing this example project, download and install CodeWarrior for MPC56xx 2.8 or the latest version. B. Download and Install Drivers In addition to CodeWarrior, it may (needs verified) be necessary to install one or both of the following tools: RAppID initialization tool- RAppID comes on the DVD provided with your evaluation board. In the main directory of the DVD, click on the "TRK_MPC5604B.html" file to open the DVD interface which provides user manuals, software, schematics and documentation for the evaluation board. P&E Microcomputer Systems, Inc drivers- P&E is a a computer driver for the TRK-MPC5604B device, enabling evaluation board programming via USB through the CodeWarrior debug OSJTAG interface. This driver can be downloaded here Because this isn't found on the disk. Sample Code To use the Hyperterminal communications features described in the following sections and in the attached sample code you must populate the U5 on your TRK-MPC5604B board. Qorivva Sample Code Download Serial Debugging: To use hyperterminal style debugging through the Serial port you must populate U5 with a RS232 transceiver and C55. I made the hardware modifications for serial debugging: From the Start menu Run the hyper terminal by using All programs> Accessories> Communications> HyperTerminal and make COMx properties port s ettings as Baud rate 115200, Data bits 8, Parity None, Stop bits 1 and Flow control None. 8. In the project menu select make (or F7) you will get few warning messages. I did not make the hardware modifications for serial debugging: In the project menu select MAKE (or F7) you will get few warning messages and can ignore them. Next select Debug option (or F5) from project menu. The debug window opens with few sub windows such as Code, Status and CPU etc. To run the program, select the Source GO menu button. Note: Much of the code in the sample file is utilized to send and receive messages serially. Some quick, minor changes can be applied as follows: Open main.c within the for loop, remove or comment out all the code. Now, manually call the specific function desired, in this case: for (; ; )      {           LED();      } Download/Debug/Run In sample.mcp project manager window target selection window is set to the default RAM. This means the code runs in the RAM. This target option can be changed using the drop down menu to internal_FLASH. This means the code runs in the flash and this code can run without debugger when the board is powered up. You can select either RAM target or internal_FLASH target for the following test procedure. If you select internal_FLASH target you can test the standalone operation of the board. If you encounter errors, look in the Problems view and resolve them. You can ignore any warnings. If the project builds correctly, it is time to download to the board and watch it work. Ensure that the USB cable that came with the board connects the board to the host computer’s USB port. There are multiple ways to issue the Debug command. Right click the project in the projects view and choose Debug As->CodeWarrior Download. Alternatively, y go to the Run menu and choose Debug (F11). Learning Step: LED Code Description Within the sample code, there is a for loop which calls a switch statement. With working hyper-terminal and proper serial connector interface into a PC, entering the numerical characters "1" - "9" into the hyper-terminal will call each separate function initiating the following actions Blinks Leds & outputs text strings to hyperterminal Calls the Switch function - which sends text strings to hyperterminal indicating which switch has been pressed Calls the Servo function which sweeps the servo back and forth; sends text strings to hyperterminal Calls the motor function which enables and disables the left motor; sends status text strings to hyperterminal Calls the motor function which enables and disables the right motor; sends status text strings to hyperterminal Calls the Camera function which sends the correct signals to the camera and reads the data; sends status text strings to hyperterminal Calls the Left_Motor_Current function; sends status text strings to hyperterminal Calls the Right_Motor_Current function; sends status text strings to hyperterminal   (hyperterminal code documentation needs verified ) TransmitData("\n\r**The Freescale Cup**");         TransmitData("\n\r*********************");         TransmitData("\n\r1.Led\n\r");         TransmitData("2.Switch\n\r");         TransmitData("3.Servo\n\r");         TransmitData("4.Motor Left\n\r");         TransmitData("5.Motor Right\n\r");         TransmitData("6.Camera\n\r");         TransmitData("7.Left Motor Current\n\r");         TransmitData("8.Right Motor Current");         TransmitData("\n\r**********************"); option = ReadData(); option = 1;     switch(option)         {             case '1':                 LED();             break;             case '2':                 SWITCH();             break;             case '3':                 SERVO();             break;             case '4':                 MOTOR_LEFT();             break;             case '5':                 MOTOR_RIGHT();             break;             case '6':                 CAMERA();             break;             case '7':                 LEFT_MOTOR_CURRENT();             break;             case '8':                 RIGHT_MOTOR_CURRENT();             break;             default:             break;          } As visible from the schematic - the LED's are accessed via the following ports. Hardware Chip Port/Pin Comment LED1 PE4 LED2 PE5 LED3 PE6 LED4 PE7 Functions The following function is utilized in the code to blink the LED's This function is located in main.c void LED(void) {    SIU.PCR[68].R = 0x0200;  /* Program the drive enable pin of LED1 (PE4) as output*/    SIU.PCR[69].R = 0x0200;  /* Program the drive enable pin of LED2 (PE5) as output*/    SIU.PCR[70].R = 0x0200;  /* Program the drive enable pin of LED3 (PE6) as output*/    SIU.PCR[71].R = 0x0200;  /* Program the drive enable pin of LED4 (PE7) as output*/    TransmitData("****Led Test****\n\r");    TransmitData("All Led ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x0f000000;  /* Disable LEDs*/    SIU.PGPDO[2].R &= 0x07000000;  /* Enable LED1*/    TransmitData("Led 1 ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x08000000;  /* Disable LED1*/    SIU.PGPDO[2].R &= 0x0b000000;  /* Enable LED2*/    TransmitData("Led 2 ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x04000000;  /* Disable LED2*/    SIU.PGPDO[2].R &= 0x0d000000;  /* Enable LED3*/    TransmitData("Led 3 ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x02000000;  /* Disable LED3*/    SIU.PGPDO[2].R &= 0x0e000000;  /* Enable LED4*/    TransmitData("Led 4 ON\n\r");    Delayled();    SIU.PGPDO[2].R |= 0x01000000;  /* Disable LED4*/ } Code Details: SIU - System Integration Unit PCR - Port Configuration Register PGPDO - Parallel GPIO Pad Data Output Registers : definition From viewing the user manual, under Functional port pin descriptions, it is Blink the LED(s): Within the main find the infinite for loop. for ( ; ; )      {      } loop of Main.c, remove all code, and add the LED's with the following function: for(;;) { LED(); } To alter the behavior of the LEDs, change the function itself, or pull specific code from the function and insert it within loops of a program for testing purposes. LED's are often used for testing important parts of an algorithm. By connecting an oscilloscope to a LED, it is possible to test the duration of a key algorithm, or to verify if signal timing is as expected along with the visual cue. Other Qorivva Tutorials Qorivva: Drive DC Motor Tutorial Qorivva: Turning A Servo Qorivva: Line Scan Camera Tutorial Useful Links to Technical Data TRK-MPC5064B Freescale Webpage TRK-MPC5064B Freescale Reference Manual TRK-MPC5064B Freescale Schematic
View full article
Este proyecto está siendo desarrollado por alumnos del Tecnológico de Monterrey Campus Guadalajara, el cual está orientado para servir como un tipo de terapia para personas discapacitadas. El proyecto en sí consiste en el control de un vehículo de juguete por medio de pulsaciones que serán realizadas con pelotas anti-estrés, de esta forma la persona podrá realizar un ejercicio de fortalecimiento en sus extremidades superiores de una forma más entretenida y menos tediosa que las clásicas terapias. Es importante mencionar que para poder realizar este proyecto es necesario el uso de dos tarjetas Freedom KL25Z de Freescale®, dos módulos Bluetooth®, dos servomotores de rotación continua y dos sensores de presión, los cuales serán incorporados dentro de las pelotas anti-estrés. El vehículo de juguete estará compuesto por los servomotores, que servirán como llantas; un módulo Bluetooth®, el cual recibirá las señales del otro módulo; y una de las tarjetas Freedom KL25Z. Por otro lado una de las tarjetas Freedom KL25Z estará conectada con los sensores integrados en las pelotas anti-estrés y a un módulo cuya función es mandar la información capturada por los sensores al vehículo de juguete. La mecánica del proyecto depende de la pelota que sea presionada, pues si se presiona solamente una pelota, el vehículo avanzará, por otro lado si se presiona la otra pelota, el vehículo girará sobre su propio eje. Este proyecto tiene como fin la implementación de conocimiento prácticos y teóricos en busca de una aportación en beneficio de la sociedad. También es relevante comentar que las visiones a futuro de este proyecto es que pueda ser implementado como una especie de control para una silla de ruedas, con el fin de facilitar la movilidad y aumentar la comodidad al momento de usar este tipo de vehículo. Original Attachment has been moved to: Codigo-tarjetas-freedom.zip
View full article
Couple of new videos. This time I am running the FRDM-TFC library demo code written by Eli Hughes without any change at all-- successfully on my car. I have had the 0 ohm R24 res replaced with a higher one thanks to the soldering skills of David DiCarlo! The first video highlights demo modes 0 through 3: Car demos - YouTube Demo 0- test buttons and switches Demo 1- test servo Demo 2- test motors Second, I was able to get my little o-scope (xprotolab) to capture the camera analog out-- here: Camera testing - YouTube No major coding done but I understand the library and ports on the boards much better now.   Still haven't resolved the 'whining' apparent when I enable the H-bridge but I will try a few things this week-- it is possible it is harmless. Next steps, buffering camera data then on to control loops! Daniel Oh, I was also able to get the serial port working while code was running so I could get some dynamic feedback. This document was generated from the following discussion: Videos testing out Freescale Cup kit
View full article
This tutorial covers the details of Blinking an LED on the Kinetis K40 using the TWR-K40X256-KIT evaluation board. It will introduce the evaluation board, and some basic CodeWarrior features. Overview 1. Hardware 2. Set up the Software Development Environment A. Download and Install Codewarrior B. Download and Install Drivers 3. Set up the Hardware: Twr K40x256 Hardware Setup 4. Import the LED Project 5. Build the Code 6. Download/Debug/Run 7. Learning Step: LED Code Description Read/Write Functions Variables Header File Definitions Initialize the GPIO Blink the LED: Other K40 Tutorials: K40 Related Pages Credits / References Overview   In this exercise students will explore a Freescale Cup Car application which targets a Freescale K40 board attached to the Tower System.   Students will: Configure the Software Development Environment Configure the evaluation board hardware Learn how to import example files into a CodeWarrior project Build a project Download and run the code on a Kinetis K40 Tower System board Learn how to utilize the GPIO Peripheral to blink a LED     To successfully complete this exercise, students will need the following board and development environment. The K40 Tower card, TWR-K40x256 CodeWarrior for Microcontrollers USB Cord 1. Hardware     Read the Blink LED overview article for general information on LED circuits, GPIO pins and reference manuals.   2. Set up the Software Development Environment   There are several steps necessary to prepare the evaluation board and PC for microcontroller programming and development. Interfacing the evaluation board with a PC requires downloading and Install the CodeWarrior IDE, as well as the device drivers for programming the microcontroller via USB. A. Download and Install Codewarrior   Before completing this example project, download-and-install-codewarrior-10-1 or the latest version compatible with the twr-k40x256-kit.   B. Download and Install Drivers   In addition to CodeWarrior, it may(needs verified) be necessary to install one or both of the following tools: RAppID initialization tool- RAppID comes on the DVD provided with your evaluation board. In the main directory of the DVD, click on the "TRK_MPC5604B.html" file to open the DVD interface which provides user manuals, software, schematics and documentation for the evaluation board. P&E Microcomputer Systems, Inc drivers- P&E is a a computer driver for the TRK-MPC5604B and Kinetis Tower system device, enabling evaluation board programming via USB through the CodeWarrior debug OSJTAG interface. This driver can be downloaded here in case this isn't found on the disk.   3. Set up the Hardware: Twr K40x256 Hardware Setup   There are several Twr K40x256 hardware configuration steps. Follow the twr-k40x256-hardware-setup instructions before importing the LED Project. 4. Import the LED Project   After the software is successfully downloaded and installed, the next step is to import an existing project into your Workspace. in this case, the LED_BLINK_96MHZ Project. Follow the instructions on the codewarrior-project-import page to import the LED_BLINK_96MHZ project into CodeWarrior. If errors are encountered, look in the Problems view and resolve them. Ignore any warnings. 5. Build the Code   If there is more than one project in your project view, make sure the proper project is the focus. The most reliable way to do this is to right click the project and choose Build Project as shown below. You can also go to the Project menu and choose the same command. By default, the application is set to link to RAM. If you want your program in FLASH, make sure that you have that build configuration enabled:     Make sure you do a "Clean" operation (under the project menu) after you make the configuration change. If you encounter errors, look in the problems view and resolve them. You can ignore any warnings. 6. Download/Debug/Run   If the project builds correctly, it is time to download to the board and watch it work. Ensure that the USB cable that came with the board connects the board to the host computer’s USB port. There are multiple ways to issue the Debug command. Right click the project in the projects view and choose Debug As->CodeWarrior Download. Alternatively, y go to the Run menu and choose Debug (F11). Click the Resume button and your should see the LED blinking! Click the Pause button to stop execution. Click the Terminate button to end debugging. 7. Learning Step: LED Code Description Read/Write   If the LED was on Port C, Bit 7 we might have code like: #define LED_E1_Location(1<<7)   For example, to toggle a pin the following code might be used: GPIOC_PSOR=LED_E1_LOC     "Sets" the LED located at "E1" high.   the syntax means the following GPIOC refers to Port C   "Set" is one of three commonly utilized commands for GPIO control. There are also commands for "Clear" and "Toggle."   Command: "GPIOC_PSOR" literally means PORT SET OUTPUT REGISTER which SETS a pin high Command: "GPIOC_PCOR" clears a pin, PORT CLEAR OUTPUT REGISTER which CLEARS a pin to the "low" state Command: "GPIOC_PTOR" toggles a pin opposite of the current state   the « is a "shift" command which is discussed in the c-programming-for-embedded-systems. You can alter the raw register as well using a MASK but the dedicated set/clear/toggle registers are more straightforward.   **NEEDS UPDATED ** Hardware Chip Port/Pin Comment SW3 PT cell-content SW4 cell-content cell-content Functions   The following functions can access the LED; //Where n is the LED number LED_En_TOGGLE;  //will toggle a LED to a different state LED_En_ON; // turns the LED ON LED_En_OFF // turns the LED OFF Variables   Locations of the LED's LED_E1_LOC LED_E2_LOC LED_E3_LOC LED_E4_LOC Header File Definitions   from k40_TOWER_BOARD_SUPPORT.h //The E1 LED is on Port C, Bit 7 #define LED_E1_LOC (1<<7) #define LED_E2_LOC (1<<8) #define LED_E3_LOC (1<<9) #define LED_E4_LOC (1<<11)    //There are dedicated set and clear registers.    //Write a one to PSOR Sets the Bits, Writing to PCOR clears bits.    //Toggling a bit can be done with the PTOR register    //You can access the raw register as well -> PDOR |= My Bit    //but the dedicated bit set/clear/toggle registers are easier!    //Also, The cathode of the LEDs are towards the port pin! This means    //you have to turn the port off to get the LED to turn the pin on. #define LED_E1_OFF   GPIOC_PSOR=LED_E1_LOC #define LED_E1_ON   GPIOC_PCOR=LED_E1_LOC #define LED_E1_TOGGLE   GPIOC_PTOR=LED_E1_LOC #define LED_E2_OFF   GPIOC_PSOR=LED_E2_LOC #define LED_E2_ON   GPIOC_PCOR=LED_E2_LOC #define LED_E2_TOGGLE   GPIOC_PTOR=LED_E2_LOC #define LED_E3_OFF   GPIOC_PSOR=LED_E3_LOC #define LED_E3_ON   GPIOC_PCOR=LED_E3_LOC #define LED_E3_TOGGLE   GPIOC_PTOR=LED_E3_LOC #define LED_E4_OFF   GPIOB_PSOR=LED_E4_LOC #define LED_E4_ON   GPIOB_PCOR=LED_E4_LOC #define LED_E4_TOGGLE   GPIOB_PTOR=LED_E4_LOC Initialize the GPIO   From K40_TOWER_BOARD_SUPPORT.c void InitK40GPIO() {    SIM_SCGC5 = SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;    //To use a Port, its Clock must be enabled!!    //Lets just enable the clocks for ALL of the ports    //Important! Each IO pin has a dedicated 32-bit Register to set it up (Selection GPIO vs peripheral, IRQ, Etc.)    //Setup port C7,C8,C9 and B11 as GPIO and enable High Drive Strength    PORTC_PCR7 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;  //Enable GPIO on on the pin    PORTC_PCR8 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;  //Enable GPIO on on the pin    PORTC_PCR9 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;  //Enable GPIO on on the pin    PORTB_PCR11 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;  //Enable GPIO on on the pin    PORTC_PCR18 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;    PORTE_PCR28 = PORT_PCR_MUX(1) | PORT_PCR_DSE_MASK;    //Make Sure the GPIO is setup to be an output    GPIOC_PDDR |= LED_E1_LOC | LED_E2_LOC | LED_E3_LOC;    GPIOB_PDDR |= LED_E4_LOC;    LED_E1_OFF;    LED_E2_OFF;    LED_E3_OFF;    LED_E4_OFF; } Blink the LED:   Within Main.c or any other C file created, Blink the LED's using the following functions: LED_E1_TOGGLE; LED_E1_ON; LED_E2_OFF; Other K40 Tutorials:   K40 Related Pages   K40: Turning A Servo Tutorial   K40: Drive DC Motor Tutorial Kinetis K40 TWR-K40X256 K40: Blinking LED Credits / References   Some of the content from this tutorial originated from:   Shawn Moffit: Electrical Engineering, Penn State University for - K40 Code   Processor Expert Hands-On Lab Rev. 1.0, 05/2011 by Jim Trudeau, Freescale Semiconductor, Inc. for - some text descriptions of steps Original Attachment has been moved to: LED_BLINK_96MHZ.zip
View full article
In this video we will look at the example code provided for the FRDM-TFC for use with the mbed development environment. Alternatively, you can see the same example code as it is used with CodeWarrior here:
View full article
The Freescale Cup has been around the world for the last 9 years. Over 23,000 students work each year on intelligent cars to make then run around the track at fast speed. Find more information on the community. Select the region you are part on and engage in the next season of the challenge.
View full article
En este video puedes consultar paso a paso la descarga e instalación del CodeWarrior 10.4 para microcontroladores. Accede a la liga www.freescale.com/cwmcu10
View full article
In this training video we will decompose an NTSC video signal to gaining understanding of how to capture video data from a "analog" camera.
View full article
This video will examine how can design speed sensing into their vehicle platform.   An example of magnet and sensor placement is shown.
View full article
After formal competition finished in East China, we gave a challenge and asked teams to try a hill with >30 angle, some cars successes
View full article
Freescale Cup China - Two Wheel Self Balancing Challenge 2012 In China they have another tier of competition in which the cars must complete the track autonomously while balancing on the rear wheels. For this challenge they use a charged wire in the track for which to sense and navigate the vehicle by. Really cool!
View full article
Compilation of views taken during The Freescale Cup 2015 Worldwide Finals held at the Fraunhofer IIS during the event opening. Credit: Fraunhofer IIS
View full article
Footage taken using the Fraunhofer IIS Eagle Cam attached to the Car from the Politecnico of Torino on the final track layout. Credit: Fraunhofer IIS
View full article
Watch the video highlights of the Freescale Cup Worldwide Finals 2015 for the training sessions. Credit: Fraunhofer IIS
View full article
Footage from the technical inspection taken during The Freescale Cup 2015 Worldwide Finals. Credit: Fraunhofer IIS         
View full article
Second part in the series showing tips and tricks to getting the most of your line scan camera.
View full article
Footage highlights of the Freescale Cup Worldwide finals race 2015. Credit: Fraunhofer IIS
View full article
Video footage highlights taken during The Freescale Cup Worldwide Finals 2015 Award Ceremony Credit: Fraunhofer IIS
View full article
Clip provided by: Hanyang University Korea One of the challenges of the Korea event is to have the cars self-park. This car is using the S12XE chipset.
View full article
Here is a short update via video of the activities done at the University Programs demo area at the Embedded World 2014 Exhibition that was held on 25-27 March 2014 in Nuremberg (Germany).
View full article