Layerscape Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Layerscape Knowledge Base

Labels

Discussions

Sort by:
This how-to topic is applicable only for LSDK 18.09 and older releases. For LSDK 18.12 and newer releases, refer LS1088ARDB-PB - How to deploy TF-A binaries on SD card. Follow these steps to update the PBL/RCW binary on the SD card.  Compiling PBL binary from RCW source file (optional) If user already has a PBL binary, this step can be skipped.   Clone the  rcw repository and compile the PBL binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/rcw $ cd rcw $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-18.09 LSDK-18.09  $ cd ls1088ardb If required, make changes to the rcw files. $ make   The default PBL binary for LS1088ARDB/LS1088ARDB-PB is FCQQQQQQQQ_PPP_H_0x1d_0x0d/rcw_1600_qspi.bin.   See the rcw/ls1088ardb/README file for an explanation of the naming convention for the directories that contain the RCW source and binary files. SD card start block number for PBL/RCW binary Image  SD card start block number PBL/RCW binary 0x00008 = 8 Refer the Flash layout for old boot flow with PPA – LSDK 18.09 and older releases for complete listing of the SD card start block numbers for all LSDK firmware images. Programming PBL/RCW binary to SD card Plug the SD card into the Linux host. Run the following command on the Linux host: $ sudo dd if=rcw_1600_qspi.bin of=/dev/sdX bs=512 seek=8 conv=fsync Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct device names have been chosen. The SDHC storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b, c. Make sure to choose the correct device name, because data on this device will be replaced. If your Linux host machine supports read/write SDHC card directly without an extra SDHC card reader device, the device name of SDHC card is typically mmcblk0.    Remove the SD card from the Linux host machine. On the LS1088ARDB/LS1088ARDB-PB, ensure that the switches are set to boot the board from the SD card.  For booting from SD card, SW1[1:8] + SW2[1] = 0010_0000_0  Plug the SD card to the board and boot the board to Ubuntu. If U-Boot does not find LSDK on the SD card, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored on the SD card.
View full article
Follow these steps to update the DPAA2 MC firmware, DPC, and DPL images in NOR flash. qixis_reset boots the board from NOR bank 0 and qixis_reset altbank boots the board from NOR bank 4. Obtaining MC firmware Clone the qoriq-mc-binary repository. $ git clone https://github.com/NXP/qoriq-mc-binary.git $ cd qoriq-mc-binary/ls2088a/ $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-19.09 LSDK-19.09 The prebuilt MC firmware image, mc_10.18.0_ls2088a.itb, is available at /qoriq-mc-binary/ls2088a/. Note that the name of the MC firmware image may vary depending on the release version used.  Obtaining DPC and DPL images Clone the mc-utils repository and compile the DPC and DPL images. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/mc-utils $ cd mc-utils $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-19.09 LSDK-19.09 If required, make changes to the DPC and DPL files. $ make -C config/ The compiled dpc.0x2A_0x41.dtb and  dpl-eth.0x2A_0x41.dtb images are available at /mc-utils/config/ls2088a/RDB/. Note that the name of the DPC and DPL images may vary depending on the release version used.  Flashing MC firmware, DPC, and DPL images to NOR flash Boot LS2088ARDB from NOR flash. Ensure that the switches are set to boot the board from NOR bank 0. For booting from NOR bank 0, switch settings are as follows:         SW5[1:8] = 1111 1111      SW3[1:8] = 0001 0010      SW4[1:8] = 1111 1111      SW6[1:8] = 1111 1111      SW7[1:8] = 0100 0010      SW9[1:8] = 0100 0000      SW8[1:8] = 0111 1111     In addition to the above switch settings, make sure the following jumper settings are correct (for RDB Rev E and later) J14 = 1-2, for NOR boot Boot from NOR bank 0: => qixis_reset   For LS2088ARDB, in boot log, you'll see: Board: LS2088AE Rev1.1-RDB, Board Arch: V1, Board version: F, boot from vBank: 0 The images can be loaded to the LS2088ARDB from a TFTP server or from a mass storage device (SD, USB, or SATA). Option 1: Load image from the TFTP server Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. DPMAC1@xgmii, DPMAC2@xgmii, DPMAC3@xgmii, DPMAC4@xgmii, DPMAC5@xgmii, DPMAC6@xgmii, DPMAC7@xgmii, DPMAC8@xgmii    Set server IP address to the IP address of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1>    Set ethact and ethprime as the Ethernet interface connected to the TFTP server. See LS2088ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux.                                                                       => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime DPMAC1@xgmii => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact DPMAC1@xgmii    Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command.  Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp    Save the settings. => saveenv    Check the connection between the board and the TFTP server. => ping $serverip Using DPMAC1@xgmii device host 192.168.1.1 is alive Load images from a TFTP server Flash MC firmware to NOR bank 4 (after booting from NOR bank 0): => tftp 0x80000000 mc_10.18.0_ls2088a.itb => print filesize => erase 0x584A00000 +$filesize;cp.b 80000000 0x584A00000 $filesize Address 0x584A0000 is the location of MC firmware in alternate NOR bank. Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Flash DPL image to NOR bank 4 (after booting from NOR bank 0): => tftp 0x80000000 dpl-eth.0x2A_0x41.dtb => print filesize  => erase 0x584D00000 +$filesize;cp.b 80000000 0x584D00000 $filesize Address 0x584D00000 is the location of DPL image in alternate NOR bank. Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Flash DPC image to NOR bank 4 (after booting from NOR bank 0): => tftp 0x80000000 dpc.0x2A_0x41.dtb => print filesize  => erase 0x584E00000 +$filesize;cp.b 80000000 0x584E00000 $filesize Address 0x584E00000 is the location of DPC image in alternate NOR bank. Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Boot from NOR bank 4: => qixis_reset altbank Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_tiny.itb stored in NOR flash. Option 2: Load images from partition on mass storage device (SD, USB, or SATA) Select mass storage device to use. => mmc rescan => mmc info Or => usb start => usb info Or => scsi scan => scsi info Optional – List files on the storage device => ls mmc <device:partition> For example: => ls mmc 0:2 Or => ls usb <device:partition> For example: => ls usb 0:1 Or => ls scsi <device:partition> For example: => ls scsi 0:2 If the ls command fails to run, check that U-Boot in NOR bank 0 supports the command by typing ls at the U-Boot prompt: => ls ls - Lists files in a directory (default) Usage: ls <interface> [<dev[:part]> [directory]] - Lists files in directory [directory] of partition [part] on device type [interface] and instance [dev]. If U-Boot does not support this command, then update the composite firmware image in NOR bank 0. For steps to update composite firmware image in NOR bank, see Layerscape Software Development Kit User Guide . Use the following command if the SD card is formatted/created using LSDK flex-installer command: => load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]] For example: => load mmc 0:2 $load_addr mc_10.18.0_ls2088a.itb Use the following command if the SD card is formatted/created on a Windows PC: => fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]] For example: => fatload mmc 0:2 $load_addr mc_10.18.0_ls2088a.itb Use the following command if the SD card is formatted/created on a Linux PC: => ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]] For example: =>ext2load mmc 0:2 $load_addr mc_10.18.0_ls2088a.itb Also note that LSDK flex-installer command puts the images on the IInd partition, so 0:2 is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only, then 0 should be used instead of 0:2 in the fatload/ext2load command. Flash MC firmware: Load MC firmware image from the storage device => load mmc 0:2 80000000 <mc firmware> For example: => load mmc 0:2 80000000 mc_10.18.0_ls2088a.itb => print filesize Or => load usb 0:2 80000000 <image name> => print filesize Or => load scsi 0:2 80000000 <image name> => print filesize Program MC firmware image to NOR bank 4 (after booting from NOR bank 0): => erase 0x584A00000 +$filesize;cp.b 80000000 0x584A00000 $filesize  Address 0x584A00000 is the location of MC firmware in alternate NOR bank.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Flash DPL image: Load DPL image from the storage device => load mmc 0:2 80000000 <dpl image> For example: => load mmc 0:2 80000000 dpl-eth.0x2A_0x41.dtb => print filesize Or => load usb 0:2 80000000 <image name> => print filesize Or => load scsi 0:2 80000000 <image name> => print filesize Program DPL image to NOR bank 4 (after booting from NOR bank 0): => erase 0x584D00000 +$filesize;cp.b 80000000 0x584D00000 $filesize Address 0x584D00000 is the location of DPL image in alternate NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Flash DPC image: Load DPC image from the storage device => load mmc 0:2 80000000 <dpc image> For example: => load mmc 0:2 80000000 dpc.0x2A_0x41.dtb => print filesize Or => load usb 0:2 80000000 <image name> => print filesize Or => load scsi 0:2 80000000 <image name> => print filesize Program DPC image to NOR bank 4 (after booting from NOR bank 0): => erase 0x584E00000 +$filesize;cp.b 80000000 0x584E00000 $filesize Address 0x584E00000 is the location of DPC image in alternate NOR flash.  Refer Flash layout for new boot flow with TF-A for the complete flash memory layout. Boot from NOR bank 4: => qixis_reset altbank Ensure that SD card, USB flash drive, or SCSI hard disk installed with LSDK Ubuntu distribution is plugged into the board to boot the board to Ubuntu. If U-Boot does not find LSDK on a mass storage device, it will boot TinyDistro from lsdk_linux_arm64_tiny.itb stored in NOR flash.
View full article
Follow these steps to update the DPAA1 FMan ucode image on the SD card.  Obtaining DPAA1 FMan ucode image Clone the qoriq-fm-ucode repository. $ git clone https://github.com/NXP/qoriq-fm-ucode.git $ cd qoriq-fm-ucode $ git checkout LSDK-<LSDK version>. For example, $ git checkout LSDK-18.12 The prebuilt FMan ucode images, fsl_fman_ucode_ls1046_r1.0_<microcode version>.bin, are at qoriq-fm-ucode/. In the binary file, ls1046_r1.0 refers to the LS1046A silicon revision 1.0. See qoriq-fm-ucode/readme for a description of the ucode version numbers. SD card start block number for DPAA1 FMan ucode image Image  SD card start block number DPAA1 FMan ucode image 0x04800 = 18432 Refer Flash layout for new boot flow with TF-A for complete listing of the SD card start block numbers for all LSDK firmware images. Programming DPAA1 FMan ucode image to SD card Plug the SD card into the Linux host. Run the following command on the Linux host: $ sudo dd if=fsl_fman_ucode_ls1046_r1.0_<ucode version>.bin of=/dev/sdX bs=512 seek=18432 conv=fsync Use the command cat /proc/partitions to see a list of devices and their sizes to make sure that the correct device names have been chosen. The SDHC storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b, c. Make sure to choose the correct device name, because data on this device will be replaced. If your Linux host machine supports read/write SDHC card directly without an extra SDHC card reader device, the device name of SDHC card is typically mmcblk0.                             Remove the SD card from the Linux host machine. Plug the SD card into LS1046ARDB and boot the board to Ubuntu using the SD card. You can boot the board using the SD card either by: setting the switches: SW3[1:8] = 01001110 and SW5 [1:8] = 00100000, or boot switching to SD card => cpld reset sd In boot log, you’ll see: Board: LS1046ARDB, boot from SD You can check the following code line in the boot log to confirm that the DPAA1 FMan ucode image on the SD card is updated. Fman1: Uploading microcode version 106.4.18 If U-Boot does not find LSDK on the SD card, it will boot TinyDistro from lsdk_linux_arm64_ tiny.itb stored on the SD card.
View full article
How to bring up a card when the flash is blank, or the image is corrupted. How to boot cards from various boot mode when changed the RCW as requirements. This documentation will use LS1046ARDB as new board to realize the functions (all target board in the document is LS1046ARDB). Content Bring up LS1046A with CodeWarrior TAP Boot up from the SD card Compile PBL binary from RCW source file Compile the PBL binary into firmware Program the firmware into the target board (LS1046ARDB) Boot up from the QSPI Compile firmware from RCW source file Program the firmware into the target board (LS1046ARDB) Boot up from the eMMC Enable the on board eMMC Compile firmware from RCW source file Program the firmware into the target board (LS1046ARDB)
View full article
Trusted Firmware for Cortex-A (TF-A) is an implementation of EL3 secure firmware. TF-A replaces PPA in secure firmware role. Please note the steps listed in this topic can only be performed with LSDK 18.12 and newer releases.                                                       To migrate to the TF-A boot flow from the previous boot flow (with PPA), you need to compile the TF-A binaries, bl2_<boot_mode>.pbl and fip.bin, and flash these binaries on the specific boot medium on the board. For NOR boot, you need to compile the following TF-A binaries. TF-A binary name Components bl2_nor.pbl BL2 binary: Platform initialization binary RCW binary for NOR boot  fip.bin BL31: Secure runtime firmware BL32: Trusted OS, for example, OPTEE (optional) BL33: U-Boot/UEFI image   Follow these steps to compile and deploy TF-A  binaries (bl2_nor.pbl and fip.bin) on the NOR flash. Compile RCW binary Compile U-Boot binary [Optional] Compile OPTEE binary  Compile TF-A binaries (bl2_nor.pbl and fip.bin) for NOR boot Program TF-A binaries to the NOR flash Step 1: Compile RCW binary  You need to compile the rcw_1800.bin binary to build the bl2_nor.pbl binary. Clone the  rcw repository and compile the PBL binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/rcw $ cd rcw $ git checkout -b <new branch name> <LSDK tag>. For example, $ git checkout -b LSDK-19.09 LSDK-19.09  $ cd ls2088ardb If required, make changes to the rcw files. $ make The compiled PBL binary for NOR boot on LS2088ARDB, rcw_1800.bin, is available at rcw/ls2088ardb/FFFFFFFF_PP_HH_0x2a_0x41 See the rcw/ls2088ardb/README file for an explanation of the naming convention for the directories that contain the RCW source and binary files. Step 2: Compile U-Boot binary You need to compile the u-boot.bin binary to build the fip.bin binary. Clone the u-boot repository and compile the U-Boot binary for TF-A. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot.git $ cd u-boot $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.09 LSDK-19.09 $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- $ make distclean $ make ls2088ardb_tfa_defconfig $ make If the make command shows the error "*** Your GCC is older than 6.0 and is not supported", ensure that you are using Ubuntu 18.04 64-bit version for building the LSDK 18.12 and onwards U-Boot binary.                                                              The compiled U-Boot binary, u-boot.bin, is available at u-boot/.   Step 3: [Optional] Compile OPTEE binary  You need to compile the tee.bin binary to build fip.bin with OPTEE. However, OPTEE is optional, you can skip the procedure to compile OPTEE if you want to build the FIP binary without OPTEE.   Clone the optee_os repository and build the OPTEE binary.  $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os $ cd optee_os $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.09 LSDK-19.09 $ export ARCH=arm $ export CROSS_COMPILE=aarch64-linux-gnu- $ make CFG_ARM64_core=y PLATFORM=ls-ls2088ardb $ aarch64-linux-gnu-objcopy -v -O binary out/arm-plat-ls/core/tee.elf out/arm-plat-ls/core/tee.bin The compiled OPTEE image, tee.bin, is available at optee_os/out/arm-plat-ls/core/. Step 4: Compile TF-A binaries for NOR boot Clone the atf repository and compile the TF-A binaries, bl2_nor.pbl and fip.bin. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/atf $ cd atf $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git checkout -b LSDK-19.09 LSDK-19.09 $ export ARCH=arm64 $ export CROSS_COMPILE=aarch64-linux-gnu- Build BL2 binary with OPTEE. $ make PLAT=ls2088ardb bl2 SPD=opteed BOOT_MODE=nor BL32=<path_to_optee_binary>/tee.bin pbl RCW=<path_to_rcw_binary>/rcw_1800.bin The compiled BL2 images, bl2.bin and bl2_nor.pbl are available at atf/build/ls2088ardb/release/. For any update in the BL2 source code or RCW binary, the bl2_nor.pbl binary needs to be recompiled. To compile the BL2 binary without OPTEE: $ make PLAT=ls2088ardb bl2 BOOT_MODE=nor pbl RCW=<path_to_rcw_binary>/rcw_1800.bin                     Build FIP binary with OPTEE and without trusted board boot. $ make PLAT=ls2088ardb fip BL33=<path_to_u-boot_binary>/u-boot.bin SPD=opteed BL32=<path_to_optee_binary>/tee.bin The compiled BL31 and FIP binaries, bl31.bin, fip.bin, are available at atf/build/ls2088ardb/release/. For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled. To compile the FIP binary without OPTEE and without trusted board boot: $ make PLAT=ls2088ardb fip BOOT_MODE=nor BL33=<path_to_u-boot_binary>/u-boot.bin To compile the FIP binary with trusted board boot, refer the read me at <atf repository>/plat/nxp/README.TRUSTED_BOOT                                                                     Step 5: Program TF-A binaries to NOR flash Boot LS2088ARDB from NOR flash. Ensure that the switches and jumpers are set to boot the board from NOR bank 0.  SW5[1:8] = 1111 1111 SW3[1:8] = 0001 0010 SW4[1:8] = 1111 1111 SW6[1:8] = 1111 1111 SW7[1:8] = 0100 0010 SW9[1:8] = 0100 0000 SW8[1:8] = 0111 1111 In addition to the above switch settings, make sure the following jumper settings are correct (for RDB Rev E and later) J14 = 1-2, for NOR boot Boot from NOR bank 0: => qixis_reset For LS2088ARDB, in boot log, you'll see: Board: LS2088AE Rev1.1-RDB, Board Arch: V1, Board version: F, boot from vBank: 0 TF-A binaries can be loaded to LS2088ARDB from a TFTP server or from a mass storage device (SD, USB, or SATA).   Option 1: Load image from the TFTP server Set up Ethernet connection When board boots up, U-Boot prints a list of enabled Ethernet interfaces. DPMAC1@xgmii, DPMAC2@xgmii, DPMAC3@xgmii, DPMAC4@xgmii, DPMAC5@xgmii, DPMAC6@xgmii, DPMAC7@xgmii, DPMAC8@xgmii Set server IP address to the IP address of the host machine on which you have configured the TFTP server.  => setenv serverip <ipaddress1> Set ethact and ethprime as the Ethernet interface connected to the TFTP server. See LS2088ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux.                                                              => setenv ethprime <name of interface connected to TFTP server> For example: => setenv ethprime DPMAC1@xgmii => setenv ethact <name of interface connected to TFTP server> For example: => setenv ethact DPMAC1@xgmii Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command.  Static IP address assignment: => setenv ipaddr <ipaddress2> => setenv netmask <subnet mask> Dynamic IP address assignment: => dhcp Save the settings. => saveenv Check the connection between the board and the TFTP server. => ping $serverip Using DPMAC1@xgmii device host 192.168.1.1 is alive Load TF-A binaries from the TFTP server For details about the flash image layout for TF-A binaries, refer LSDK memory layout for TF-A boot flow.                   Flash bl2_nor.pbl to NOR bank 4 (after booting from NOR bank 0). => tftp 82000000 bl2_nor.pbl => erase 0x584000000 +$filesize;cp.b 82000000 0x584000000 $filesize Flash fip.bin to NOR bank 4 (after booting from NOR bank 0). => tftp 82000000 fip.bin => erase 0x584100000 +$filesize;cp.b 82000000 0x584100000 $filesize Boot from NOR bank 4: => qixis_reset altbank LS2088ARDB will boot with TF-A. In the boot log, you will see: NOTICE: UDIMM 18ASF1G72AZ-2G3B1 NOTICE: 16 GB DDR4, 64-bit, CL=13, ECC on, 256B, CS0+CS1 NOTICE: UDIMM 18ASF1G72AZ-2G3B1 NOTICE: 4 GB DDR4, 32-bit, CL=11, ECC on, CS0+CS1 NOTICE: BL2: v1.5(release):LSDK-19.09 NOTICE: BL2: Built : 16:04:08, Nov 4 2019 NOTICE: BL31: v1.5(release):LSDK-19.09 NOTICE: BL31: Built : 16:40:39, Nov 4 2019 NOTICE: Welcome to LS2088 BL31 Phase U-Boot 2019.04 (Nov 04 2019 - 15:57:49 +0530) SoC: LS2088AE Rev1.1 (0x87090011) Clock Configuration: CPU0(A72):1800 MHz CPU1(A72):1800 MHz CPU2(A72):1800 MHz CPU3(A72):1800 MHz CPU4(A72):1800 MHz CPU5(A72):1800 MHz CPU6(A72):1800 MHz CPU7(A72):1800 MHz Bus: 700 MHz DDR: 1866.667 MT/s DP-DDR: 1600 MT/s Reset Configuration Word (RCW): 00000000: 483038b8 48480048 00000000 00000000 00000010: 00000000 00000000 00a00000 00000000 00000020: 01e01180 00002581 00000000 00000000 00000030: 00400c0b 00000000 00000000 00000000 00000040: 00000000 00000000 00000000 00000000 00000050: 00000000 00000000 00000000 00000000 00000060: 00000000 00000000 00027000 00000000 00000070: 412a0000 00040000 Model: Freescale Layerscape 2080a RDB Board Board: LS2088AE Rev1.1-RDB, Board Arch: V1, Board version: F, boot from vBank: 4 ....... Option 2: Load image from partition on mass storage device (SD, USB, or SATA) Select mass storage device to use. => mmc rescan => mmc info Or => usb start => usb info Or => scsi scan => scsi info Optional – List files on storage device => ls mmc <device:partition> For example: => ls mmc 0:2 Or => ls usb <device:partition> For example: => ls usb 0:1 Or => ls scsi <device:partition> For example: => ls scsi 0:2 If the ls command fails to run, check that U-Boot in NOR bank 0 supports the command by typing ls at the U-Boot prompt: => ls ls - Lists files in a directory (default) Usage: ls <interface> [<dev[:part]> [directory]] - Lists files in directory [directory] of partition [part] on device type [interface] and instance [dev]. If U-Boot does not support this command, then update the composite firmware image in NOR bank 0. For steps to update composite firmware image in NOR bank, see Layerscape Software Development Kit User Guide .            Use the following command if the SD card is formatted/created using LSDK flex-installer command: => load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]] For example: => load mmc 0:2 $load_addr bl2_nor.pbl Use the following command if the SD card is formatted/created on a Windows PC: => fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]] For example: => fatload mmc 0:2 $load_addr bl2_nor.pbl Use the following command if the SD card is formatted/created on a Linux PC: => ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]] For example: =>ext2load mmc 0:2 $load_addr bl2_nor.pbl Also note that LSDK flex-installer command puts the images on the IInd partition, so 0:2 is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only, then 0 should be used instead of 0:2 in the fatload/ext2load command.    Load bl2_nor.pbl image from the storage device => load mmc 0:2 0xa0000000 <image name> => print filesize For example: => load mmc 0:2 0xa0000000 bl2_nor.pbl => print filesize filesize=14379 Or => load usb 0:2 0xa0000000 <image name> => print filesize Or => load scsi 0:2 0xa0000000 <image name> => print filesize Program bl2_nor.pbl to NOR bank 4 (after booting from NOR bank 0): => erase 0x584000000 +$filesize;cp.b 0xa0000000 0x584000000 $filesize Load fip.bin image from the storage device => load mmc 0:2 0xa0000000 <image name> => print filesize For example: => load mmc 0:2 0xa0000000 fip.bin => print filesize filesize=131510 Or => load usb 0:2 0xa0000000 <image name> => print filesize Or => load scsi 0:2 0xa0000000 <image name> => print filesize Program fip.bin to NOR bank 4 (after booting from NOR bank 0): => erase 0x584100000 +$filesize;cp.b 0xa0000000 0x584100000 $filesize Boot from NOR bank 4: => qixis_reset altbank LS2088ARDB will boot with TF-A.
View full article
Currently rate limiting is supported on TX side only via IOCTL call FM_PORT_IOC_SET_RATE_LIMIT. A user-space application has to be implement which opens the character driver interface of the TX port and issue the IOCTL. The rate_limit structure (mentioned below) has to be filled to implement the restriction.   For example:   fd = open ("/dev/fm0_port_tx5", O_RDWR);   err = ioctl(fd, FM_PORT_IOC_SET_RATE_LIMIT, &fm_port);   Structure to pass to the IOCTL: /**************************************************************************//** @Description@@   A structure for defining Tx rate limiting (Must match struct t_FmPortRateLimit defined in fm_port_ext.h) *//***************************************************************************/ typedef struct ioc_fm_port_rate_limit_t { uint16_t max_burst_size;         /**< in KBytes for Tx ports, in frames for offline parsing ports. (note that for early chips burst size is rounded up to a multiply of 1000 frames).*/     uint32_t rate_limit; /**< in Kb/sec for Tx ports, in frame/sec for offline parsing ports. Rate limit refers to data rate (rather than line rate). */ ioc_fm_port_dual_rate_limiter_scale_down rate_limit_divider; /**< For offline parsing ports only. Not-valid for some earlier chip revisions */ } ioc_fm_port_rate_limit_t; Further information in the below link. http://www.freescale.com/infocenter/index.jsp?topic=%2FQORIQSDK%2F2283674.html
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-342651 
View full article
The Layerscape LS1028A industrial applications processor includes a TSN-enabled Ethernet switch and Ethernet controllers to support converged IT and OT networks. Two powerful 64-bit ARM v8 cores support real-time processing for industrial control, as well as virtual machines for edge computing in the IoT. The integrated GPU and LCD controller enable Human Machine Interface (HMI) systems with next-generation interfaces. Integrated Trust Architecture with crytographic offload provide a trusted platform with encrypted communications for secure applications and services. Product Page Reference Design KEY ELEMENTS Dual 64-bit ARM v8 processors for real-time processing Full virtualization support for IoT edge computing TSN-enabled switch for industrial TSN bridge applications TSN-enabled Ethernet controllers for TSN endpoint applications Support Human Machine Interface applications with integrated GPU and LCD controller Trust architecture provides root of trust as a basis for trusted applications and services The LS1028A will be a part of the NXP 15-year product longevity program TARGET APPLICATIONS Factory Automation Process Automation Programmable Logic Controller Motion Controller Industrial IoT gateway Human Machine Interface (HMI)
View full article
View Webinar Recording
View full article
This file shows up LS1024A GMAC2 debug, no software support in barebox only workable in kernel. and If using RTL Phy need to add TX_CLK and RX_CLK delay.
View full article
View Webinar Recording
View full article
Recently some customers are porting SDK 2.0 u-boot for LS1021ATWR to their custom boards. They intended to use GPIO lines to turn on/off LEDs for diagnostics and other various purposes. However GPIO driver is not supported in SDK 2.0 u-boot for LS102xa platform. The attached patch is used to add GPIO driver on LS1021ATWR platform based on SDK 2.0 u-boot code. Please use it in SDK 2.0 as the following: $ source ./fsl-setup-env -m ls1021atwr $ bitbake u-boot -c cleansstate $ bitbake u-boot -c patch Go to the folder build_ls1021atwr/tmp/work/ls1021atwr-fsl-linux-gnueabi/u-boot-qoriq/2016.01+fslgit-r0/git, apply the attached patch $ patch -p1<0001-ls1021xa-gpio.patch Go back to build_ls1021atwr folder to rebuild u-boot $ bitbake u-boot
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343572 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-344564 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-344236 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343225 
View full article
EdgeScale solution provides a secure mechanism for developers to leverage cloud-computing frameworks for their applications, it helps users easily connect IoT things, manage devices and deploy container based applications. Please refer to the following Layerscape products in the cloud computing system. The user could access cloud service from https://portal.edgescale.org. EdgeScale client is a set of software agents running on device side which connects to the cloud services. This document introduces EdgeScale supported major features as registering user account, secure device enrolment, provisioning/connecting the EdgeSacle end devices, generate EdgeScale client images in LSDK, OTA firmware update (LS1043 or LS1046), running EdgeScale demo applications and dynamic deployment of container-based applications.
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-342787 
View full article
[中文翻译版] 见附件   原文链接: https://community.nxp.com/docs/DOC-343717 
View full article