I try to run an tflite-model but always get this error:
Traceback (most recent call last): File "label_image.py", line 133, in print('{:08.6f}: {}'.format(float(results[i]), labels[i])) TypeError: only size-1 arrays can be converted to Python scalars
It's the example code from the tensorflow-website with my own model. It seems lite the model is giving it's results in the wrong format.
Here is the code:
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""label_image for tflite."""
import argparse
import time
import numpy as np
from PIL import Image
import tflite_runtime.interpreter as tflite
import sys
np.set_printoptions(threshold=sys.maxsize)
def load_labels(filename):
with open(filename, 'r') as f:
return [line.strip() for line in f.readlines()]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--image',
default='Images/sh_17_11_23_s70m_0048.JPG',
help='image to be classified')
parser.add_argument(
'-m',
'--model_file',
default='detection-balanced-mcu-2024-02-09T11-36-31.710Z_in-uint8.tflite',
help='.tflite model to be executed')
parser.add_argument(
'-l',
'--label_file',
default='labels.txt',
help='name of file containing labels')
parser.add_argument(
'--input_mean',
default=127.5, type=float,
help='input_mean')
parser.add_argument(
'--input_std',
default=127.5, type=float,
help='input standard deviation')
parser.add_argument(
'--num_threads', default=None, type=int, help='number of threads')
parser.add_argument(
'-e', '--ext_delegate', help='external_delegate_library path')
parser.add_argument(
'-o',
'--ext_delegate_options',
help='external delegate options, \
format: "option1: value1; option2: value2"')
args = parser.parse_args()
ext_delegate = None
ext_delegate_options = {}
# parse extenal delegate options
if args.ext_delegate_options is not None:
options = args.ext_delegate_options.split(';')
for o in options:
kv = o.split(':')
if (len(kv) == 2):
ext_delegate_options[kv[0].strip()] = kv[1].strip()
else:
raise RuntimeError('Error parsing delegate option: ' + o)
# load external delegate
if args.ext_delegate is not None:
print('Loading external delegate from {} with args: {}'.format(
args.ext_delegate, ext_delegate_options))
ext_delegate = [
tflite.load_delegate(args.ext_delegate, ext_delegate_options)
]
interpreter = tflite.Interpreter(
model_path=args.model_file,
experimental_delegates=ext_delegate,
num_threads=args.num_threads)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# check the type of the input tensor
floating_model = input_details[0]['dtype'] == np.float32
# NxHxWxC, H:1, W:2
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
img = Image.open(args.image).resize((width, height))
# add N dim
input_data = np.expand_dims(img, axis=0)
if floating_model:
input_data = (np.float32(input_data) - args.input_mean) / args.input_std
interpreter.set_tensor(input_details[0]['index'], input_data)
# ignore the 1st invoke
startTime = time.time()
interpreter.invoke()
delta = time.time() - startTime
print("Warm-up time:", '%.1f' % (delta * 1000), "ms\n")
startTime = time.time()
interpreter.invoke()
delta = time.time() - startTime
print("Inference time:", '%.1f' % (delta * 1000), "ms\n")
output_data = interpreter.get_tensor(output_details[0]['index'])
results = np.squeeze(output_data)
top_k = results.argsort()[-5:][::-1]
labels = load_labels(args.label_file)
for i in top_k:
if floating_model:
print('{:08.6f}: {}'.format(float(results[i]), labels[i]))
else:
print('{:08.6f}: {}'.format(float(results[i] / 255.0), labels[i]))
For a test I created a tflite-model via the iIQ - Toolkit from NXP. I tried to set the output data type to "int8", "uint8" and "float32" but nothing worked.
Got anyone an idea beside creating a model on the "normal" way?
I uploaded my model.