LX2160ARDB - How to deploy TF-A binaries in FlexSPI NOR flash

cancel
Showing results for 
Search instead for 
Did you mean: 

LX2160ARDB - How to deploy TF-A binaries in FlexSPI NOR flash

LX2160ARDB - How to deploy TF-A binaries in FlexSPI NOR flash

Trusted Firmware for Cortex-A (TF-A) is an implementation of EL3 secure firmware. TF-A replaces PPA in secure firmware role.

Note: Please note the steps listed in this topic can only be performed with LSDK 18.12 and newer releases.  

To migrate to the TF-A boot flow from the previous boot flow (with PPA), you need to compile the TF-A binaries, bl2_<boot_mode>.pbl and fip.bin, and flash these binaries on the specific boot medium on the board.

For FlexSPI NOR flash boot, you need to compile the following TF-A binaries.

TF-A binary name Components

bl2_flexspi_nor.pbl

  • BL2 binary: Platform initialization binary
  • RCW binary for FlexSPI NOR flash

fip.bin

  • BL31: Secure runtime firmware
  • BL32: Trusted OS, for example, OPTEE (optional)
  • BL33: U-Boot/UEFI image

 

Follow these steps to compile and deploy TF-A  binaries (bl2_flexspi_nor.pbl and fip.bin) in FlexSPI NOR flash.

  1. Compile PBL binary from RCW source file
  2. Compile U-Boot binary
  3. [Optional] Compile OPTEE binary 
  4. Compile TF-A binaries (bl2_flexspi_nor.pbl and fip.bin) for FlexSPI NOR flash
  5. Program TF-A binaries to FlexSPI NOR flash

Step 1: Compile RCW binary

 You need to compile the RCW binary to build the bl2_flexspi_nor.pbl binary.

Clone the  rcw  repository and compile the RCW binary. 

  1. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/rcw
  2. $ cd rcw
  3. $ git checkout -b <new branch name> <LSDK tag>For example, $ git checkout -b LSDK-20.04 LSDK-20.04 
  4. Compile the RCW binary for Rev 1 or Rev 2 board.
    • For LX2160ARDB Rev 1: $ cd lx2160ardb
    • For LX2160ARDB Rev 2: $ cd lx2160ardb_rev2
  5. If required, make changes to the rcw files.
  6. $ make

 

The compiled PBL binary for FlexSPI NOR flash on LX2160ARDB for core frequency 2000 MHz, platform frequency 700 MHz and DDR memory data rate 2900 MT/s, with serdes1 = 19 serdes2 = 5 serdes3 = 2, rcw_2000_700_2900_19_5_2.bin is available at:

  • rcw/lx2160ardb/XGGFF_PP_HHHH_RR_19_5_2 (For LX2160ARDB Rev 1)
  • rcw/lx2160ardb_rev2/XGGFF_PP_HHHH_RR_19_5_2 (For LX2160ARDB Rev 2)

Note: See the rcw/lx2160ardb/README or rcw/lx2160ardb_rev2/README file for an explanation of the naming convention for the directories that contain the RCW source and binary files.

Step 2: Compile U-Boot binary

You need to compile the u-boot.bin binary to build the fip.bin binary.

Clone the u-boot repository and compile the U-Boot binary for TF-A.

  1. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/u-boot.git
  2. $ cu-boot
  3. $ git checkout -b <new branch name> LSDK-<LSDK version>. For example,$git checkout -b LSDK-20.04 LSDK-20.04 
  4. $ export ARCH=arm64
  5. $ export CROSS_COMPILE=aarch64-linux-gnu-
  6. $ make distclean
  7. make lx2160ardb_tfa_defconfig
  8. $ make

Note: If the make command shows the error "*** Your GCC is older than 6.0 and is not supported", ensure that you are using Ubuntu 18.04 64-bit version for building LSDK 18.12 and above U-Boot binary. 

The compiled U-Boot image, u-boot.bin, is available at u-boot/.

Step 3: [Optional] Compile OP-TEE binary

You need to compile the tee.bin binary to build fip.bin with OPTEE. However, OPTEE is optional, you can skip the procedure to compile OPTEE if you want to build the FIP binary without OPTEE.

Clone the optee_os repository and build the OPTEE binary. 

  1. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/optee_os
  2. $ cd optee_os
  3. git checkout -b <new branch name> LSDK-<LSDK version>For example, $git checkout -b LSDK-20.04 LSDK-20.04
  4. $ export ARCH=arm
  5. $ export CROSS_COMPILE=aarch64-linux-gnu-
  6. $ make CFG_ARM64_core=y PLATFORM=ls-lx2160ardb
  7. $ aarch64-linux-gnu-objcopy -v -O binary out/arm-plat-ls/core/tee.elf out/arm-plat-ls/core/tee.bin

The compiled OPTEE image, tee.bin, is available at optee_os/out/arm-plat-ls/core/.

Step 4: Compile TF-A binaries for FlexSPI NOR flash

Clone the atf repository and compile the TF-A binaries, bl2_flexspi_nor.pbl and fip.bin.

  1. $ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/atf
  2. $ cd atf
  3. $  git checkout -b <new branch name> LSDK-<LSDK version>. For example,$ git checkout -b LSDK-20.04 LSDK-20.04
  4. $ export ARCH=arm64
  5. $ export CROSS_COMPILE=aarch64-linux-gnu-
  6. Build BL2 binary with OPTEE.
    • make PLAT=lx2160ardb bl2 SPD=opteed BOOT_MODE=flexspi_nor BL32=<path_to_optee_binary>/tee.bin pbl RCW=<path_to_rcw_binary>/rcw_2000_700_2900_19_5_2.bin

       

      The compiled BL2 binaries, bl2.bin and bl2_flexspi_nor.pbl are available at atf/build/lx2160ardb/release/.

      For any update in the BL2 source code or RCW binary, the bl2_flexspi_nor.pbl binary needs to be recompiled.

       

      To compile the BL2 binary without OPTEE:

      make PLAT=lx2160ardb bl2 BOOT_MODE=flexspi_nor pbl RCW=<path_to_rcw_binary>/rcw_2000_700_2900_19_5_2.bin

  7. Build FIP binary with OPTEE and without trusted board boot.
    • $ make PLAT=lx2160ardb fip BL33=<path_to_u-boot_binary>/u-boot.bin SPD=opteed BL32=<path_to_optee_binary>/tee.bin

      The compiled BL31 and FIP binaries, bl31.binfip.bin, are available at atf/build/lx2160ardb/release/.

      For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled.

      To compile the FIP binary without OPTEE and without trusted board boot:
      make PLAT=lx2160ardb fip BOOT_MODE=flexspi_nor BL33=<path_to_u-boot_binary>/u-boot.bin
      To compile the FIP binary with trusted board boot, refer the read me at <atf repository>/plat/nxp/README.TRUSTED_BOOT

Step 5: Program TF-A binaries to FlexSPI NOR flash

  1. Boot LX2160ARDB from FlexSPI. Ensure that the switches are set to boot the board from FlexSPI. For booting from FlexSPI:
    • SW1[1:8] = 1111 100X [X is 0 for FlexSPI NOR flash0 and X is 1 for FlexSPI NOR flash1]
    • SW2[1:8] = 0000 0110
    • SW3[1:8] = 1111 1100
    • SW4[1:8] = 1011 1000
  2. Boot from FlexSPI NOR flash0: => qixis_reset

 

For LX2160ARDB Rev 1, in boot log, you'll see:

Board: LX2160ACE Rev1.0-RDB, Board version: B, boot from FlexSPI DEV#0

 

For LX2160ARDB Rev 2, in boot log, you'll see:

Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#0

Set up Ethernet connection

When board boots up, U-Boot prints a list of enabled Ethernet interfaces.

DPMAC2@xlaui4, DPMAC3@xgmii [PRIME], DPMAC4@xgmii, DPMAC5@25g-aui, DPMAC6@25g-aui, DPMAC17@rgmii-id, DPMAC18@rgmii-id, e1000#0 

  1. Set server IP address to the IP address of the host machine on which you have configured the TFTP server. 

    => setenv serverip <ipaddress1>

  2. Set ethact and ethprime as the ethernet interface connected to the TFTP server.

    Note: SeeLX2160ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux.

    => setenv ethprime <name of interface connected to TFTP server>

    For example:

    => setenv ethprime DPMAC3@xgmii

    => setenv ethact <name of interface connected to TFTP server>

    For example:

    => setenv ethact DPMAC3@xgmii

  3. Set IP address of the board. You can set a static IP address or, if the board can connect to a dhcp server, you can use the dhcp command. 

    Static IP address assignment:
    => setenv ipaddr <ipaddress2>
    => setenv netmask <subnet mask>

     

    => setenv gatewayIP <gateway IP>

    Dynamic IP address assignment:
    => dhcp
  4. Save the settings. => saveenv
  5. Check the connection between the board and the TFTP server.

=> ping $serverip

Using DPMAC3@xgmii device

host 192.168.1.1 is alive

Load TF-A binaries from the TFTP server

Note: For details about the flash image layout for TF-A binaries, refer LSDK memory layout for TF-A boot flow.

  1. Program FlexSPI NOR flash1: => sf probe 0:1
  2. Flash bl2_flexspi_nor.pbl:

    • => tftp 0xa0000000 bl2_flexspi_nor.pbl

    • => sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize 

  3. Flash fip.bin:
    • => tftp 0xa0000000 fip.bin
    • => sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 $filesize
  4. Boot from FlexSPI NOR flash1: => qixis_reset altbank

    LX2160ARDB will boot with TF-A. In the boot log, you will see:

    => NOTICE:  BL2: v1.5(release):LSDK-20.04
    NOTICE:  BL2: Built : 22:01:10, Aug 20 2020
    NOTICE:  UDIMM 18ADF2G72AZ-3G2E1
    NOTICE:  DDR4 UDIMM with 2-rank 64-bit bus (x8)
    
    NOTICE:  32 GB DDR4, 64-bit, CL=22, ECC on, 256B, CS0+CS1
    NOTICE:  BL2: Booting BL31
    NOTICE:  BL31: v1.5(release):LSDK-20.04
    NOTICE:  BL31: Built : 22:02:07, Aug 20 2020
    NOTICE:  Welc
    
    U-Boot 2019.10 (Aug 14 2020 - 17:43:28 +0530)
    
    SoC:  LX2160ACE Rev2.0 (0x87360020)
    Clock Configuration:
           CPU0(A72):2000 MHz  CPU1(A72):2000 MHz  CPU2(A72):2000 MHz
           CPU3(A72):2000 MHz  CPU4(A72):2000 MHz  CPU5(A72):2000 MHz
           CPU6(A72):2000 MHz  CPU7(A72):2000 MHz  CPU8(A72):2000 MHz
           CPU9(A72):2000 MHz  CPU10(A72):2000 MHz  CPU11(A72):2000 MHz
           CPU12(A72):2000 MHz  CPU13(A72):2000 MHz  CPU14(A72):2000 MHz
           CPU15(A72):2000 MHz
           Bus:      700  MHz  DDR:      2900 MT/s
    Reset Configuration Word (RCW):
           00000000: 50777738 24500050 00000000 00000000
           00000010: 00000000 0c010000 00000000 00000000
           00000020: 02e001a0 00002580 00000000 00000096
           00000030: 00000000 00000000 00000000 00000000
           00000040: 00000000 00000000 00000000 00000000
           00000050: 00000000 00000000 00000000 00000000
           00000060: 00000000 00000000 00027000 00000000
           00000070: 08b30010 00150020
    Model: NXP Layerscape LX2160ARDB Board
    Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#1

     

 

 

Version history
Revision #:
11 of 11
Last update:
‎10-22-2020 03:35 AM
Updated by:
 
Contributors