Wireless Connectivity Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Wireless Connectivity Knowledge Base

Discussions

Sort by:
This article shares setup steps and test examples of mfg_tool. The mfg_tool is used for non-singling RF test and calibration.  The test environment as belows:  SW: J-Link: https://www.segger.com/downloads/jlink/JLink_Windows_x86_64.exe MFG Software Package: https://www.nxp.com/webapp/Download?colCode=MFG-RW61X-MF-BRG-U16-WIN-X86-200200-18806-p1&appType=license HW: Rd-RW612-BGA-IPA-2A/1A-V4 LitePoint MW7G Windows PC   For more cmd details and calibration steps, please refer to following document: AN13619; UM11801
View full article
The RW61x series is a highly integrated, low-power tri-radio wireless MCU with an integrated MCU and Wi-Fi ®  6 + Bluetooth ®  Low Energy (LE) 5.4 / 802.15.4 radios designed for a broad array of applications, including connected smart home devices, enterprise and industrial automation, smart accessories and smart energy. The RW61x series MCU subsystem includes a 260 MHz Arm ®  Cortex ® -M33 core with Trustzone ™ -M, 1.2 MB on-chip SRAM and a high-bandwidth Quad SPI interface with an on-the-fly decryption engine for securely accessing off-chip XIP flash. The RW61x series includes a full-featured 1x1 dual-band (2.4 GHz/5 GHz) 20 MHz Wi-Fi 6 (802.11ax) subsystem bringing higher throughput, better network efficiency, lower latency and improved range over previous generation Wi-Fi standards. The Bluetooth LE radio supports 2 Mbit/s high-speed data rate, long range and extended advertising. The on-chip 802.15.4 radio can support the latest Thread mesh networking protocol. In addition, the RW612 can support Matter over Wi-Fi or Matter over Thread offering a common, interoperable application layer across ecosystems and products. NXP RW61x Block Diagram Documents RW610 Datasheet: RW610 Datasheet RW612 Datasheet: RW612 Datasheet RW61x User Manual: UM11865: RW61x User Manual RW61x Register Manual: RM00278: RX16x Registers     RW61x Modules Azurewave: RW612 - AW-CU570is a highly integrated, low-power tri-radio Wireless RW612 MCU with an integrated MCU and Wi-Fi 6 + Bluetooth Low Energy (LE) 5.2 / 802.15.4 radios designed for a broad array of applications. RW610 - AW-CU598 is a highly integrated, low-power tri-radio Wireless RW610 MCU with an integrated MCU and Wi-Fi 6 + Bluetooth Low Energy (LE) 5.3 radios designed for a broad array of applications U-blox: RW612 - IRIS-W10 Series are small, stand-alone, dual-band Wi-Fi and Bluetooth Low Energy wireless microcontroller unit (MCU) modules. The modules are ideal for users looking to add advanced wireless connectivity to their end products. RW610 - IRIS-W16 Series are small, stand-alone, dual-band Wi-Fi and Bluetooth Low Energy wireless modules, with everything needed for integration into end-products. The modules are ideal for users looking to add advanced wireless connectivity to their end products.  Murata: RW612 - LBES0ZZ2FR-580 Murata’s Type 2FR is a small and very high-performance module based on NXP RW612 combo chipset, supporting IEEE 802.11a/b/g/n/ac/ax + Bluetooth LE 5.4 / IEEE 802.15.4. RW610 - LBES0ZZ2FP-580 Type 2FR/2FP is a family of small and highly integrated multi-radio modules with built-in high-performance MCU with advanced security features for connected smart devices in smart homes, enterprise and industrial automation, smart accessories, and smart energy. It supports the latest Matter smart home connectivity protocol.   Evaluation boards  FRDM-RW612 FRDM-RW612 is a compact and scalable development board for rapid prototyping of the RW61x series of Wi-Fi 6 + Bluetooth Low Energy + 802.15.4 tri-radio wireless MCUs. It offers easy access to the MCU’s I/O's and peripherals, integrated open-standard serial interfaces, external flash memory and on-board MCU-Link debugger. FRDM-RW612 Getting Started Getting Started with FRDM-RW612 FRDM-RW612 User Manual: UM12160: FRDM-RW612 Board User Manual FRDM-RW612 Quick Start Guide FRDM-RW612 Quick Start Guide u-blox   USB-IRIS-W1 The USB-IRIS-W1 development platform is built on the dual-band Wi-Fi 6 and Bluetooth LE module IRIS-W1, based on the NXP RW610/612 chip. The board is designed with a USB interface to simplify evaluation and prototyping directly from a PC. In addition to the IRIS-W1 module with integrated antenna, it also integrates four buttons, an RGB LED, and a USB/UART converter, to further support an easy evaluation. u-blox   EVK-IRIS-W1 The EVK-IRIS-W1 evaluation kit provides stand-alone use of the IRIS-W1 module series featuring the NXP RW610/612 chipset. Azurewave    AW-CU570-EVB Evaluation board for AW-CU570 module includes wireless MCU with Integrated Tri-radio Wi-Fi 6 + Bluetooth Low Energy 5.3 /802.15.4. Murata   2FR EVK Evaluation kit for Murata Type 2FR module (Murata part number LBES0ZZ2FR) includes 3 radios: Wi-Fi, BLE and 802.15.4. It is based on NXP’s RW612 chip. Application Notes RM00287: Wi-Fi Driver API for SDK 2.16.100     The radio driver source code provides APIs to send and receive packets over the radio interfaces by communicating with the firmware images. This manual provides the reference documentation for the Wi-Fi driver and Wi-Fi Connection Manager.  UM12133: NXP NCP Application Guide for RW612 with MCU Host - User manual     This user manual describes: • The NXP NCP application for RW612 with MCU host platform i.MX RT1060 as example. • The hardware connections for one of the four supported interfaces to enable NCP mode on the NXP RW612 BGA V4 board (UART, USB, SDIO, or SPI). • The method to build and run the NCP applications on both the NCP host (i.MX RT1060) and the NCP device (RW612). The applications apply to Wi-Fi, Bluetooth Low Energy and OpenThread (OT)    UM12095:  NXP NCP Application Guide for RW612 with MPU Host - User manual      This user manual describes: • The NXP NCP application for RW612 with MPU host platform i.MX 8M Mini as example. • The hardware connections for one of the four supported interfaces to enable NCP mode on the NXP RW612 BGA V4 board (UART, USB, SDIO, or SPI). • The method to build and run the NCP applications on both the NCP host (i.MX 8M Mini) and the NCP device (RW612). The applications apply to Wi-Fi, Bluetooth Low Energy and OpenThread (OT).  AN14439: Migration Guide from FRDM-RW612 Board to Third-Party Module board This Application note provides an overview of what it means to migrate the application to a different board with different flash and pSRAM AN14111: Target Wake Time (TWT) on RW16x This application note describes the target wake time feature and provides examples for RW61X AN13006: Compliance and Certification Considerations This application note provides guidance and tips on how to test products on NXP Wi-Fi devices for regulatory compliance. AN13049: Wi-Fi/Bluetooth/802.15.4 M.2 Key E Pinout Definition This Application note defines M.2 usage for both NXP Wi-Fi/Bluetooth and Tri-Radio M.2 module design   Community Support If you have questions regarding RW61x series, please leave your comments in our Wireless MCU Community! here    Training FRDM-RW612 Training Wi-Fi 6 Tri-Radio in a secure i.MX RT MCU RW61x Series Training - NXP Community   Equipment Wireless Equipment: This article provides the links to the wireless equipment to help you accelerate your project development Development Tools  SDK builder  The MCUXpresso SDK brings open-source drivers, middleware, and reference example application to speed your software development. NXP MCUXpresso MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging and supports connections with all general-purpose Arm Cortex-M.  VSCode MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOS  The Zephyr OS is based on a small-footprint kernel designed for use on resource-constrained and embedded systems: from simple embedded environmental sensors and LED wearables to sophisticated embedded controllers, smart watches, and IoT wireless applications. NXP Application Code Hub Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool Is an application that helps the user to perform an over the air firmware update of an NXP development board. SDK Examples for Wireless MCUs The wireless examples feature many common connectivity configurations.   Useful Links     Bluetooth Specifications Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview  
View full article
Default init case By default, when no country regulatory setting is defined, we use WW (World Wide safe setting, meaning we only transmit on bands which are allowed worldwide, with the TX power compatible with all countries regulations)   Setting country 1/ When operating in AP mode: - we usually set country code (ex : country_code=JP) in hostapd.conf to define the country. - this country definition will be advertised to all connected STA if ieee80211d=1 is set in hostpad.conf - the country can also be set with "iw reg set" command   2/ When operating in STA mode - country code can be set with "iw reg set" command or in wpa_supplicant.conf (ex : country=jp) - once connected to the AP (with 80211d enabled), the STA will switch to the AP country setting (this behaviour can be disabled by adding country_ie_ignore=1 driver parameter)   Once country is set: - we will only transmit on channels allowed for that country - with country maximum TX power - we might use DFS feature on channels declared as DFS channels for that specific country   TX power settings   1/ By default, using Linux regulatory settings (/lib/firmware/regulatory.db, generated from db.txt) These settings define allowed channels, DFS flags and max TX power on a country basis See section "Regulatory db" further.   2/ Linux regulatory settings can be overwritten by: a. cntry_txpwr=0 and txpwrlimit_cfg=nxp/txpower.bin driver param (generated from txpower.conf (channel/MCS->txpower), see AN13009) Same setting for all countries (static). Using channels/flags from db.txt, and minimum TX power between db.txt and txpower.bin/rgpower.bin b. cntry_txpwr=1 (look for nxp/txpower_XX.bin files (generated from txpower.conf (channel/MCS->txpower), see AN13009) Need one txpower_XX.bin file for each country XX (dynamically loaded, for instance with iw reg set XX) Using channels/flags from db.txt, and minimum TX power between db.txt and txpower_XX.bin   cntry_txpwr txpwrlimit_cfg TX power limit Method 0 nxp/txpower.bin nxp/txpower.bin (static) V1 1 - nxp/txpower_XX.bin (dynamic) V1 cfg     We have default TX power tables, but customer can tune these TX power settings, based on their HW. Please refer to "AN13009 Wi-Fi Tx Power Management in Linux"       Regulatory db   Source https://wireless.wiki.kernel.org/en/developers/Regulatory/wireless-regdb   Wifi regulatory setting (allow channels, etc) are defined in db.txt, then converted to regulatory.db (store in /lib/firmware) We can get official db.txt from here, and build regulatory.db with below command   git clone git://git.kernel.org/pub/scm/linux/kernel/git/wens/wireless-regdb.git make   Kernel regulatory.db integrity is checked by the Linux kernel. Disabling REGDB signature check with the folllowing kernel config: CONFIG_EXPERT=y CONFIG_CFG80211_CERTIFICATION_ONUS=y # CONFIG_CFG80211_REQUIRE_SIGNED_REGDB is not set   Rebuilding kernel and flashing scp Image root@192.168.0.2:/run/media/mmcblk0p1/      iw reg command examples and other notes   root@imx8mqevk:~# iw reg get global country 00: DFS-UNSET         (2402 - 2472 @ 40), (N/A, 20), (N/A)         (2457 - 2482 @ 20), (N/A, 20), (N/A), AUTO-BW, PASSIVE-SCAN         (2474 - 2494 @ 20), (N/A, 20), (N/A), NO-OFDM, PASSIVE-SCAN         (5170 - 5250 @ 80), (N/A, 20), (N/A), AUTO-BW, PASSIVE-SCAN         (5250 - 5330 @ 80), (N/A, 20), (0 ms), DFS, AUTO-BW, PASSIVE-SCAN         (5490 - 5730 @ 160), (N/A, 20), (0 ms), DFS, PASSIVE-SCAN         (5735 - 5835 @ 80), (N/A, 20), (N/A), PASSIVE-SCAN         (57240 - 63720 @ 2160), (N/A, 0), (N/A) root@imx8mqevk:~# iw reg get global country FR: DFS-ETSI         (2400 - 2483 @ 40), (N/A, 20), (N/A)         (5150 - 5250 @ 80), (N/A, 23), (N/A), NO-OUTDOOR, AUTO-BW         (5250 - 5350 @ 80), (N/A, 20), (0 ms), NO-OUTDOOR, DFS, AUTO-BW         (5470 - 5725 @ 160), (N/A, 26), (0 ms), DFS         (5725 - 5875 @ 80), (N/A, 13), (N/A)         (57000 - 66000 @ 2160), (N/A, 40), (N/A)   By default (if no country is set), we are using the world domain. this is the most restrictive. Then you can set the country (using driver module parameter, wpa_supplicant.conf, etc) or get the country automatically provided by the access point (80211d). This will update the regulatory domain, meaning the allowed channels, etc. You can check the country settings with "iw reg get" command.   The regulatory domain has priority, compared to the channel list you would set in the wpa_supplicant.conf.  
View full article
CMSIS, the ARM Cortex Microcontroller Software Interface Standard, can be used to distribute software components in standard package format. CMSIS compliant software components allow: • Easy reuse of example applications or template code • Combination of SW components from multiple vendors CMSIS packages available here: https://www.keil.arm.com/packs/ NXP WiFi package available here: https://www.keil.arm.com/packs/wifi-nxp/versions/   Getting NXP WiFi/BT software   Please find the minimal setup required to download the NXP WiFi/BT software CMSIS packs: First, get cpackget binary from the Open CMSIS Pack toolbox binaries Then, install the NXP WiFi and Bluetooth packages and their dependencies using below commands cpackget add NXP::WIFI@2.0.0 cpackget add NXP::WIRELESS_WPA_SUPPLICANT@2.0.0 cpackget add NXP::EDGEFAST_BT_BLE@2.0.0   Please note that the CMSIS software packs are installed in below directory: ~/.cache/arm/packs/NXP/   Building NXP WiFi/Bluetooth software   Using combined WiFi+Bluetooth application on i.MXRT1060-revC board, as an example.   Prerequisite Follow below steps to install all the required tools to get CMSIS packages and build them . <(curl https://aka.ms/vcpkg-init.sh -L) . ~/.vcpkg/vcpkg-init vcpkg new --application vcpkg add artifact arm:cmsis-toolbox vcpkg add artifact microsoft:cmake vcpkg add artifact microsoft:ninja vcpkg add artifact arm:arm-none-eabi-gcc vcpkg activate Refer to CMSIS toolbox installation documentation    Activate required tools . ~/.vcpkg/vcpkg-init vcpkg activate Install the NXP i.MXRT1060-REVC Bluetooth examples and their dependencies cpackget add NXP::MIMXRT1060-EVKC_EDGEFAST_BLUETOOTH_Examples@1.0.0 Workaround: current NXP SW is aligned with ARM::CMSIS@5.8.0, and does not support latest ARM::CMSIS@6.0.0, so we need to use older version with below commands cpackget rm ARM::CMSIS@6.0.0 cpackget add ARM::CMSIS@5.8.0 List the installed packages cpackget list Building combined WiFi+BT example application Copy example application to local directory and provide write permissions mkdir -p ~/test cp -r ~/.cache/arm/packs/NXP/MIMXRT1060-EVKC_EDGEFAST_BLUETOOTH_Examples/1.0.0/boards/evkcmimxrt1060/edgefast_bluetooth_examples/wifi_cli_over_ble_wu/ ~/test/ cd ~/test/wifi_cli_over_ble_wu/ && chmod -R u+w .   Build the application csolution convert wifi_cli_over_ble_wu.csolution.yml cbuild wifi_cli_over_ble_wu.flexspi_nor_debug+armgcc.cprj Convert elf to bin for flashing cd armgcc/flexspi_nor_debug arm-none-eabi-objcopy wifi_cli_over_ble_wu.elf -O binary wifi_cli_over_ble_wu.bin
View full article