Trusted Firmware for Cortex-A (TF-A) is an implementation of EL3 secure firmware. TF-A replaces PPA in secure firmware role.
Note: Please note the steps listed in this topic can only be performed with LSDK 18.12 and newer releases.
To migrate to the TF-A boot flow from the previous boot flow (with PPA), you need to compile the TF-A binaries, bl2_<boot_mode>.pbl and fip.bin, and flash these binaries on the specific boot medium on the board.
For SD/eMMC boot, you need to compile the following TF-A binaries.
TF-A binary name | Components |
---|---|
bl2_sd.pbl/bl2_emmc.pbl |
|
fip.bin |
|
Follow these steps to compile and deploy TF-A binaries (bl2_sd.pbl/bl2_emmc.pbl and fip.bin) on the SD/eMMC card.
You need to compile the RCW binary to build the bl2_sd.pbl/bl2_emmc.pbl binary.
Clone the rcw repository and compile the RCW binary.
The compiled RCW binary for SD/eMMC boot on LX2160ARDB for core frequency 2000 MHz, platform frequency 700 MHz and DDR memory data rate 2900 MT/s, with serdes1 = 19 serdes2 = 5 serdes3 = 2, rcw_2000_700_2900_19_5_2.bin is available at:
Note: See the rcw/lx2160ardb/README or rcw/lx2160ardb_rev2/README file for an explanation of the naming convention for the directories that contain the RCW source and binary files.
You need to compile the u-boot.bin binary to build the fip.bin binary.
Clone the u-boot repository and compile the U-Boot binary for TF-A.
Note: If the make command shows the error "*** Your GCC is older than 6.0 and is not supported", ensure that you are using Ubuntu 18.04 64-bit version for building the LSDK 18.12 and above U-Boot binary.
The compiled U-Boot binary, u-boot.bin, is available at u-boot/.
You need to compile the tee.bin binary to build fip.bin with OPTEE. However, OPTEE is optional, you can skip the procedure to compile OPTEE if you want to build the FIP binary without OPTEE.
Clone the optee_os repository and build the OPTEE binary.
The compiled OPTEE image, tee.bin, is available at optee_os/out/arm-plat-ls/core/.
Clone the atf repository and compile the TF-A binaries, bl2_sd.pbl/bl2_emmc.pbl and fip.bin.
The compiled BL2 images, bl2.bin and bl2_sd.pbl/bl2_emmc.pbl are available at atf/build/lx2160ardb/release/.
For any update in the BL2 source code or RCW binary, the bl2_sd.pbl/bl2_emmc.pbl binary needs to be recompiled.
To compile the BL2 binary without OPTEE:
For SD boot: $ make PLAT=lx2160ardb bl2 BOOT_MODE=sd pbl RCW=<path_to_rcw_binary>/rcw_2000_700_2900_19_5_2.bin
For emmc boot: $ make PLAT=lx2160ardb bl2 BOOT_MODE=emmc pbl RCW=<path_to_rcw_binary>/rcw_2000_700_2900_19_5_2.binThe compiled BL31 and FIP binaries, bl31.bin, fip.bin, are available at atf/build/lx2160ardb/release/.
For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled.
To compile the FIP binary without OPTEE and without trusted board boot:
For SD boot: $ make PLAT=lx2160ardb fip BOOT_MODE=sd BL33=<path_to_u-boot_binary>/u-boot.bin
For eMMC boot: $ make PLAT=lx2160ardb fip BOOT_MODE=emmc BL33=<path_to_u-boot_binary>/u-boot.bin
To compile the FIP binary with trusted board boot, refer the read me at <atf repository>/plat/nxp/README.TRUSTED_BOOFor LX2160ARDB Rev 1, in boot log, you'll see:
Board: LX2160ACE Rev1.0-RDB, Board version: B, boot from FlexSPI DEV#0
For LX2160ARDB Rev 2, in boot log, you'll see:
Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from FlexSPI DEV#0
When board boots up, U-Boot prints a list of enabled Ethernet interfaces.
DPMAC2@xlaui4, DPMAC3@xgmii [PRIME], DPMAC4@xgmii, DPMAC5@25g-aui, DPMAC6@25g-aui, DPMAC17@rgmii-id, DPMAC18@rgmii-id, e1000#0
=> setenv serverip <ipaddress1>
Set ethact and ethprime as the Ethernet interface connected to the TFTP server.
Note: See LX2160ARDB Ethernet port mapping for the mapping of Ethernet port names appearing on the chassis front panel with the port names in U-Boot and Linux.
=> setenv ethprime <name of interface connected to TFTP server>
For example:
=> setenv ethprime DPMAC3@xgmii
=> setenv ethact <name of interface connected to TFTP server>
For example:
=> setenv ethact DPMAC3@xgmii
Static IP address assignment:
=> setenv ipaddr <ipaddress2>
=> setenv netmask <subnet mask>
=> setenv gatewayIP <gateway IP>
Dynamic IP address assignment:
=> dhcp
=> ping $serverip
Using DPMAC3@xgmii device
host 192.168.1.1 is alive
Note: For details about the flash image layout for TF-A binaries, refer LSDK memory layout for TF-A boot flow.
Flash bl2_sd.pbl:
Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size.
For example, when you load bl2_sd.pbl from the TFTP server, if the bytes transferred is 103353 (193b9 hex), then blk_cnt is calculated as "103353/512 = 201 (C9 hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: => mmc write 82000000 8 D3
=> mmc dev 0; mmc write 82000000 800 <blk_cnt>
Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size.
For example, when you load fip.bin from the TFTP server, if the bytes transferred is 1178967 (11fd57 hex), then blk_cnt is calculated as "1178967/512 = 2302 (8FE hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: => mmc write 82000000 800 908
LX2160ARDB will boot with TF-A. In the boot log, you will see:
=> NOTICE: BL2: v1.5(release):LSDK-20.04
NOTICE: BL2: Built : 22:01:10, Aug 20 2020
NOTICE: UDIMM 18ADF2G72AZ-3G2E1
NOTICE: DDR4 UDIMM with 2-rank 64-bit bus (x8)
NOTICE: 32 GB DDR4, 64-bit, CL=22, ECC on, 256B, CS0+CS1
NOTICE: BL2: Booting BL31
NOTICE: BL31: v1.5(release):LSDK-20.04
NOTICE: BL31: Built : 22:02:07, Aug 20 2020
NOTICE: Welc
U-Boot 2019.10 (Aug 14 2020 - 17:43:28 +0530)
SoC: LX2160ACE Rev2.0 (0x87360020)
Clock Configuration:
CPU0(A72):2000 MHz CPU1(A72):2000 MHz CPU2(A72):2000 MHz
CPU3(A72):2000 MHz CPU4(A72):2000 MHz CPU5(A72):2000 MHz
CPU6(A72):2000 MHz CPU7(A72):2000 MHz CPU8(A72):2000 MHz
CPU9(A72):2000 MHz CPU10(A72):2000 MHz CPU11(A72):2000 MHz
CPU12(A72):2000 MHz CPU13(A72):2000 MHz CPU14(A72):2000 MHz
CPU15(A72):2000 MHz
Bus: 700 MHz DDR: 2900 MT/s
Reset Configuration Word (RCW):
00000000: 50777738 24500050 00000000 00000000
00000010: 00000000 0c010000 00000000 00000000
00000020: 02e001a0 00002580 00000000 00000096
00000030: 00000000 00000000 00000000 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00027000 00000000
00000070: 08b30010 00150020
Model: NXP Layerscape LX2160ARDB Board
Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from SD
Note: For details about the flash image layout for TF-A binaries, refer LSDK memory layout for TF-A boot flow.
Flash bl2_emmc.pbl:
Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size.
For example, when you load bl2_emmc.pbl from the TFTP server, if the bytes transferred is 103353 (193b9 hex), then blk_cnt is calculated as "103353/512 = 201 (C9 hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: => mmc write 82000000 8 D3
=> mmc dev 1; mmc write 82000000 800 <blk_cnt>
Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size.
For example, when you load fip.bin from the TFTP server, if the bytes transferred is 1178967 (11fd57 hex), then blk_cnt is calculated as "1178967/512 = 2302 (8FE hex)" + "few sectors for rounding up so that last block is not missed". So, if you round up by 10 (A hex) sectors, for this example, mmc write command will be: => mmc write 82000000 800 908
LX2160ARDB will boot with TF-A. In the boot log, you will see:
=> NOTICE: BL2: v1.5(release):LSDK-20.04
NOTICE: BL2: Built : 22:01:10, Aug 20 2020
NOTICE: UDIMM 18ADF2G72AZ-3G2E1
NOTICE: DDR4 UDIMM with 2-rank 64-bit bus (x8)
NOTICE: 32 GB DDR4, 64-bit, CL=22, ECC on, 256B, CS0+CS1
NOTICE: BL2: Booting BL31
NOTICE: BL31: v1.5(release):LSDK-20.04
NOTICE: BL31: Built : 22:02:07, Aug 20 2020
NOTICE: Welc
U-Boot 2019.10 (Aug 14 2020 - 17:43:28 +0530)
SoC: LX2160ACE Rev2.0 (0x87360020)
Clock Configuration:
CPU0(A72):2000 MHz CPU1(A72):2000 MHz CPU2(A72):2000 MHz
CPU3(A72):2000 MHz CPU4(A72):2000 MHz CPU5(A72):2000 MHz
CPU6(A72):2000 MHz CPU7(A72):2000 MHz CPU8(A72):2000 MHz
CPU9(A72):2000 MHz CPU10(A72):2000 MHz CPU11(A72):2000 MHz
CPU12(A72):2000 MHz CPU13(A72):2000 MHz CPU14(A72):2000 MHz
CPU15(A72):2000 MHz
Bus: 700 MHz DDR: 2900 MT/s
Reset Configuration Word (RCW):
00000000: 50777738 24500050 00000000 00000000
00000010: 00000000 0c010000 00000000 00000000
00000020: 02e001a0 00002580 00000000 00000096
00000030: 00000000 00000000 00000000 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00027000 00000000
00000070: 08b30010 00150020
Model: NXP Layerscape LX2160ARDB Board
Board: LX2160ACE Rev2.0-RDB, Board version: B, boot from eMMC