

Freescale Semiconductor

How to add an endpoint and a cluster to a

ZigBee device in the BeeStack

By: Technical Information Center

Introduction

Does your ZigBee application have only one cluster per device? The answer to this

question is usually no so it is very important to know how to add clusters to an application. This

document describes in detail how to do this in the BeeStack.

Freescale Semiconductor

Contents

Introduction ... 1

1. About this document.. 3

2. Create a BeeKit solution ... 4

3. Add the new endpoint .. 8

4. Disable the EZ mode commissioning .. 12

5. Enable the End Device Bind feature .. 14

6. Export the project to IAR or CodeWarrior .. 16

7. Declare the new endpoint ... 17

8. Add the Temperature Report Callback .. 18

9. Register the thermostat callback .. 19

10. Get the thermostat endpoint number .. 19

11. Add the new variable into the ASL user interface environment 20

12. Add binding support from the thermostat endpoint.. 21

13. Program the devices and test the network .. 22

14. Conclusion .. 27

Freescale Semiconductor

1. About this document

This document is focused in the BeeStack which is the ZigBee stack produced by

Freescale. The solution is created with the BeeKit 3.0.2 with the HCS08 BeeStack codebase 3.1.1

for the MC13234 MCUs but it works with other MCUs and codebases.

A HA OnOffSwitch device is taken, it will be modified to add a Thermostat cluster in the

same device. Then, it will be tested by creating a network with a HA OnOffLight and a HA

TempSensor devices.

Figure 1. The resulting network.

 Let's get down to business…

Freescale Semiconductor

2. Create a BeeKit solution

 The first step is to create the full solution. For this document the MC13234 MCU is used

so the HCS08 BeeStack codebase is selected but this procedure applies to other MCUs like

Kinetis, if you want to change it, click over the Select other codebase… option and mark the

desired codebase as Active in BeeKit.

Figure 2. How to change the codebase.

Freescale Semiconductor

Then create a new project, go to File > New Project… to open the wizard, in the Project

types field select ZigBee Home Automation Applications and then in the Templates space

select Ha OnOffLight. Don’t forget to give a meaningful name to the solution in the field Solution

name.

Figure 3. Create the HA solution.

Freescale Semiconductor

 A wizard will be opened, for this document only the MAC address is changed and the other

options are the default ones. This is done by changing the default MAC in the wizard.

Figure 4. Change the MAC address.

The solution is created with three devices:

 HA OnOffLight, which will be the network's coordinator.

 HA OnOffSwitch, which will be a router.

 HA TempSensor, which will be another router.

 It is recommended to use the MC1323x-RCM board in the HA OnOffSwitch project to

see the Thermostat capabilities in the display, this document uses the MC1323x-REM board.

Freescale Semiconductor

Open the wizard again to add the other two projects to the solution, by right-clicking over

the project’s folder in the Solution explorer and then click over the Add… option.

Figure 5. Add a new device to the solution.

Freescale Semiconductor

3. Add the new endpoint

 Once the solution is created, it is time to modify the HA OnOffSwitch device to add a new

Thermostat endpoint. In the Solution explorer, right-click on the Endpoints category of the HA

OnOffSwitch project and then click the Add Software component… option.

Figure 6. Add a new endpoint.

Freescale Semiconductor

A new window with a list of endpoints is shown, select the HA Thermostat Endpoint

option and then click OK.

Figure 7. Select the thermostat endpoint.

Freescale Semiconductor

Since the endpoint numbers must be unique within a ZigBee node, it is needed to change

the new endpoint's number. To do this, click over the new HA Thermostat Endpoint of the

OnOffSwitch project, then click on the simple descriptor configuration that appears in the

Property List tab.

Figure 8. Change the endpoint number.

Freescale Semiconductor

 The Simple Descriptor editor window appears, change the Endpoint number from 8 to

9 and then click the OK button.

Figure 9. Change the endpoint number.

Freescale Semiconductor

4. Disable the EZ mode commissioning

 It is recommended to disable the EZ mode commissioning, this is done by selecting the

Freescale BeeApps option in the Solution explorer and looking for the options that are shown

in the image below. These options must be turned to False on all the devices! The other options

don’t need to be changed.

EZ-Mode is a commissioning method that defines network steering and device reset on

the node as well as finding and binding for endpoints with target or initiator clusters. For a node

that is not already joined to a network, EZ-Mode network steering is the action of creating a

network or searching for and joining an open network. For a node that has joined a network, EZ-

Mode network steering is the action of opening the network to allow new nodes to join. EZ-Mode

finding and binding is the process of automatically establishing application connections, by using

the identify cluster, between matching operational clusters on two or more devices.

Figure 10. Disable the EZ mode commissioning in BeeKit.

Freescale Semiconductor

Disabling EZ mode commissioning could also be done in the code by changing these

macro definitions in the file Ha OnOffLight\BeeStack\Freescale BeeApps\zclOptions.h from

TRUE to FALSE.

Figure 11. Disable the EZ mode commissioning in the code.

Freescale Semiconductor

5. Enable the End Device Bind feature

 The End Device Bind request is generated from a Local Device wishing to be binded with

a remote device. It is usually generated by some user action like a button press. The End Device

Bind response is generated by the ZigBee Coordinator in response to a request and contains its

status.

 It is enabled by turning the ZDP: Enable End_Device_Bind_req and ZDP: Enable

End_Device_Bind_rsp from False to True. This must be done on all the devices!

Figure 12. Enable the End Device Bind in BeeKit.

Freescale Semiconductor

This could also be done in the code by changing these macro definitions in the file Ha

OnOffLight\BeeStack\Freescale BeeApps\BeeStackConfiguration.h from FALSE to TRUE.

Figure 13. Enable the End Device Bind in the code.

Freescale Semiconductor

6. Export the project to IAR or CodeWarrior

 Depending on the MCUs and the installed IDEs, these projects can be exported to IAR or

CodeWarrior. In this case, these are exported to CodeWarrior.

 To do this, it is recommended to Validate the solution by pressing the Check button as

it is shown in the image below and if there is not an error proceed to Export and open the

solution in the desired IDE.

Figure 14. Export the solution.

Freescale Semiconductor

This will open a new window where the IDE is chosen and then the OK button is pressed

to open the solution.

Figure 15. Export the solution.

7. Declare the new endpoint

 Now that the solution is exported, it is time to handle the two endpoints in the application.

The first step to do this is to declare a new zbEndPoint_t variable in the file Freescale

BeeApps\BeeApp.c to handle the new endpoint.

zbEndPoint_t appEndPoint_Thermostat;

Depending on your code or application, you may want to declare an appEndPoint array

with all the endpoints instead of a variable for each one.

Freescale Semiconductor

8. Add the Temperature Report Callback

 Add the AppThermostatTemperatureReport callback to the BeeApps\BeeApp.c file.

This is taken from the HA Thermostat demo which we want to merge into the HA OnOffSwitch.

 Paste the function somewhere in the BeeApp.c file, don't forget to add its prototype.

void AppThermostatTemperatureReport(zbApsdeDataIndication_t *pIndication,
afDeviceDef_t *pDevice);

/***
 AppThermostatTemperatureReport

 Callback to report the temperature from the sensor to the thermostat.
 ***/
void AppThermostatTemperatureReport
(
 zbApsdeDataIndication_t *pIndication,
 afDeviceDef_t *pDevice
)
{
 int16_t Temperature;
 zclCmdReportAttr_t * pReport;
 zclFrame_t *pFrame;
 zbClusterId_t aClusterId;
 pFrame = (void *)pIndication->pAsdu;
 if (pFrame->command == gZclCmdReportAttr_c && IsEqual2BytesInt(pIndication-
>aClusterId, gZclClusterTemperature_c))
 {
 pReport = ZCL_GetPayload(pIndication);
 Temperature = TwoBytesToUint16(pReport->aData);
 Set2Bytes(aClusterId, gZclClusterThermostat_c);

 /* Writes the Temperature from the temperature sensor */
 (void)ZCL_SetAttribute(appEndPoint_Thermostat, aClusterId,
gZclAttrThermostat_LocalTemperatureId_c, gZclServerAttr_c,&Temperature);
 ASL_DisplayTemperature(gASL_LocalTemperature_c, Temperature,
gZclDisplayMode_TempCelsius_c, gASL_HCUOff_c);
 }
 (void)pDevice;
}

Please note that the first parameter required by the function ZCL_SetAttribute makes

reference to the new endpoint so if you are copying this function from the original demo don't

forget to change it.

Freescale Semiconductor

9. Register the thermostat callback

 Once the thermostat callback is in the code, it is time to be registered. It is done in the

BeeAppInit function inside the BeeApps\BeeApp.c file through the ZCL_Register function.

 /* Register the thermostat callback */
 ZCL_Register(AppThermostatTemperatureReport);

10. Get the thermostat endpoint number

 The new variable appEndPoint_Thermostat should contain the endpoint's number, this

is done in the BeeAppInit function too. It is given from the endPointList array which contains the

endpoints' information.

/* where to send switch commands from */
 appEndPoint = endPointList[0].pEndpointDesc->pSimpleDesc->endPoint;
 appEndPoint_Thermostat = endPointList[1].pEndpointDesc->pSimpleDesc->endPoint;

The resulting BeeAppInit function looks as follows.

/***
 * BeeAppInit
 *
 * Initializes the application
 *
 * Initialization function for the App Task. This is called during
 * initialization and should contain any application specific initialization
 * (ie. hardware initialization/setup, table initialization, power up
 * notification.
 ***/
void BeeAppInit
(
 void
)
{
 index_t i;
 bool_t updateDeviceData = TRUE;

 /* register the application endpoint(s), so we receive callbacks */
 for(i=0; i<gNum_EndPoints_c; ++i) {
 (void)AF_RegisterEndPoint(endPointList[i].pEndpointDesc);
 }

 /* where to send switch commands from */

Freescale Semiconductor

 appEndPoint = endPointList[0].pEndpointDesc->pSimpleDesc->endPoint;
 appEndPoint_Thermostat = endPointList[1].pEndpointDesc->pSimpleDesc->endPoint;

 /* initialize common user interface */
 ASL_InitUserInterface("HaOnOffSwitch");

 /* init application timers */
 gAppGenericTimerId = TMR_AllocateTimer();

 /* Register the thermostat callback */

ZCL_Register(AppThermostatTemperatureReport);

#if gASL_EnableEZCommissioning_d
 /* EZ commissioning Init */
 EZCommissioning_Init();

 /* Check EZ commissioning State */
 if(NvRestoreDataSet(gNvDataSet_App_ID_c))
 {
 if (gZclIdentifyCommissioningState &
gZclCommissioningState_NetworkState_d)
 {
 ZDO_Start(gStartSilentRejoinWithNvm_c);
 updateDeviceData = FALSE;
 }
 }
#endif

 if(updateDeviceData)
 {
 BeeApp_FactoryFresh();
 }

}

11. Add the new variable into the ASL user interface environment

The ASL User Interface provides a bridge between the human and the ZigBee device. Here,

the binding and the application are done, that's why the new endpoint needs to be reachable in

this environment. The new endpoint is added by declaring the endpoint in the

BeeApps\ASL\APS_UserInterface.h file.

extern zbEndPoint_t appEndPoint_Thermostat;

Freescale Semiconductor

12. Add binding support from the thermostat endpoint

 The binding is usually done through a button press. By default, the HA OnOffLight and

the HA OnOffSwitch are binded after press the SW3 button on both boards so it is required to

use another button to make the bind between the HA Thermostat (inside HA OnOffSwitch) and

the HA TempSensor. After inspect the ASL_HandleKeys function in the HA OnOffSwitch

device, it is noticed that the SW2 (PERMIT_JOIN_SW case) can be used to this purpose so it will

be used.

 The binding is done by calling the two functions listed below. Note that the third parameter

requested by the ASL_EndDeviceBindRequest requires the element 1 from the endPointList

array which is related to the thermostat endpoint.

ASL_UpdateDevice(appEndPoint_Thermostat, gBind_Device_c);

ASL_EndDeviceBindRequest(NULL, aDestAddress, endPointList[1].pEndpointDesc->

pSimpleDesc);

Freescale Semiconductor

The entire PERMIT_JOIN_SW case looks as follows.

 case PERMIT_JOIN_SW: /* SW3 on MC1322x-LPN, SW2 on other boards */
 if (appState != mStateIdle_c) {
#if gCoordinatorCapability_d || gRouterCapability_d || gComboDeviceCapability_d
#if gComboDeviceCapability_d
 if (NlmeGetRequest(gDevType_c) == gEndDevice_c)
 {
 break;
 }
#endif
 if(PermitJoinStatusFlag)
 PermitJoinStatusFlag = PermitJoinOff;
 else
 PermitJoinStatusFlag = PermitJoinOn;
 ASL_UpdateDevice(DummyEndPoint,gPermitJoinToggle_c);
 APP_ZDP_PermitJoinRequest(PermitJoinStatusFlag);
#endif
 }

 ASL_UpdateDevice(appEndPoint_Thermostat, gBind_Device_c);

ASL_EndDeviceBindRequest(NULL, aDestAddress,
endPointList[1].pEndpointDesc->pSimpleDesc);

 break;

13. Program the devices and test the network

 We are almost done, now is time to build and program the boards as usual. These

applications, like all the demo applications, start in the configuration mode, where key presses

cause the network formation and setup. When that is done, another key press takes the

application to run mode, where it can do whatever the application is designed to do.

 The suggested steps to run this network are:

a. Press SW1 in the HA OnOffLight, which is the network coordinator, to start the network.

Figure 16. Once the network is created, the coordinator sends beacon requests.

Freescale Semiconductor

b. Press SW1 in the other two boards to join the network.

Figure 17. Sniffer capture of when the routers join the network.

Freescale Semiconductor

c. Press SW3 in the HA OnOffLight and in the HA OnOffSwitch to bind the OnOff

endpoints.

Figure 18. Sniffer capture for the OnOff binding.

Freescale Semiconductor

d. Press SW3 in the HA TempSensor and the SW2 in the HA OnOffSwitch (which is a HA

Thermostat, too) to bind the thermostat and the temperature sensor endpoints.

Figure 19. Sniffer capture for the temperature binding.

e. Keep SW1 pressed for one second on all the boards to turn into the run mode.

Freescale Semiconductor

f. Press SW1 in the HA OnOffSwitch to toggle the remote light in the HA OnOffLight.

Figure 20. Sniffer capture for On/Off toggles.

g. Keep SW2 pressed for one second in the HA TempSensor to start to send periodical

temperature reports to the HA Thermostat.

Figure 21. Sniffer capture for periodical temperature measurement report attributes.

h. Press SW1 to decrease and SW2 to increment the simulated temperature in the HA

TempSensor. It is seen in the HA OnOffSwitch that the LEDs change their state

depending on the HA TempSensor temperature.

 LED2 flashing - Temperature is below 5°C

 All LEDs off - Temperature is between -5°C and 10°C

 LED2 On, LED3 and LED4 off - Temperature is between 10°C and 20°C

 LED2 and LED3 on, LED4 off - Temperature is between 20°C and 30°C

Freescale Semiconductor

 LED2, LED3 and LED4 on - Temperature is between 30°C and 40°C

 LED2, LED3 and LED4 flashing - Temperature is above 40°C

14. Conclusion

 This guide showed how easy is to add a new cluster to add new functionalities to a ZigBee

device in the BeeStack. This procedure is a good starting point for the Applications Engineer to

design more complex devices.

	Introduction
	1. About this document
	2. Create a BeeKit solution
	3. Add the new endpoint
	4. Disable the EZ mode commissioning
	5. Enable the End Device Bind feature
	6. Export the project to IAR or CodeWarrior
	7. Declare the new endpoint
	8. Add the Temperature Report Callback
	9. Register the thermostat callback
	10. Get the thermostat endpoint number
	11. Add the new variable into the ASL user interface environment
	12. Add binding support from the thermostat endpoint
	13. Program the devices and test the network
	14. Conclusion

