## ISO26262 AND IEC61508 FUNCTIONAL SAFETY OVERVIEW

KAVYA PRABHA DIVAKARLA
SYSTEM ENGINEER
AUTOMOTIVE MICROCONTROLLER AND PROCESSORS
AMF-AUT-T2713 | JUNE 2017





SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.



## **AGENDA**

- 1. Functional Safety Introduction
- 2. IEC 61508, ISO 26262 Introduction
- 3. Safety Integrity Levels
- 4. Hardware
- 5. Software
- 6. Tools
- 7. Customer Documents
- 8. What's next





An Introduction to Functional Safety



## What is functional Safety?

#### ISO 26262 Definition:

- Absence of unacceptable risk due to hazards caused by mal-functional behavior of electrical and/or electronic systems and the interactions of these systems

#### IEC 61508 Definition:

- Safety is the freedom from unacceptable risk of physical injury or of damage to the health of people, either directly, or indirectly as a result of damage to property or to the environment.
- Functional Safety is part of the overall safety that depends on a system or equipment operating correctly in response to its inputs.

What is relevant to NXP is that for the first time these standards call out requirements for electronic components

## **Functional Safety Basic Concepts**

- All systems will have some inherent, <u>quantifiable failure rate</u>. It is not possible to develop a system with zero failure rate.
- For each application, there is some tolerable failure rate which does not lead to unacceptable risk.
- Acceptable failure rates vary per application, based on the potential for direct or indirect physical injury in the event of system malfunction.
- The hazards and risks of applications can be analyzed and assigned categories based on the <u>level of acceptable risk</u>. These categories are known as *Safety Integrity Levels*, or *SILs*.



## **Terms & Definitions**

#### Fault

- Operational issue in a system which may lead to a failure

#### Failure

- Result of a fault which leads to an inability to execute safety critical functionality

#### Fault Tolerance

- Ability to continue safe operation after a fault

#### Fail Safe System:

- System where a fault which may lead to failures is detected and the system is put into a safe state such that faults may not propagate to other systems

#### Fail Functional/Operational System

- System where a fault which may lead to failures is detected and the system can continue operation without loss of safety function

#### Reliability

- Ability to execute operations in system without failure (generally independent of consideration for a safety function)

#### Availability

 Amount of time in which a safety function is available divided by total system operation time. Systems with high reliability and fail functional systems tend to have higher availability than fail safe systems

#### Security

- Ability to detect, resist, or prevent tampering with product functionality

#### Dependability

Availability + Reliability + Safety + Security + Maintainability





## Safety Failures and their causes

Failures in a functional safety system can be broadly classified into two categories:

Systematic and Random failures

- Systematic Failures
  - Result from a failure in design or manufacturing
  - Often a result of failure to follow best practices
  - Occurrence of systematic failures can be reduced through continual and rigorous process improvement and robust analysis of any new technology
- Random Failures
  - Result from random defects or soft errors inherent to process or usage condition
  - Rate of random faults cannot generally be reduced; focus must be on the detection and handling of random faults to prevent application failure



Systematic

**Failures** 

Random

## Implementing Functional Safety is about

### How products are developed:

- Addresses the aspect of <u>Systematic</u> Failures
  - Result from a failure in design or manufacturing
  - Relevant to Hardware and Software
  - Occurrence of failures can be reduced through continual and rigorous process improvement

#### Products that detect and handle faults:

- Addresses the aspect of <u>Random</u> Failures
  - Inclusion of mechanisms to detect and handle random defects inherent to process or usage condition
  - Relevant to Hardware only
  - Supported by FMEDA\*, Dependency and Fault Tree Analysis and communicated as FIT\*



FMEDA – Failure Mode Effects and Diagnostic Analysis

FIT – Failure in Time

## **Functional Safety is not**

- Security
- Reliability
- Quality



## **Functional Safety Standards**

| Standard  | Targeted End Equipment Applications                     |  |  |  |
|-----------|---------------------------------------------------------|--|--|--|
| IEC 61508 | Electrical, Electronic, Programmable Electronic Systems |  |  |  |
| ISO 26262 | Road Vehicles (except Mopeds) up to 3500Kg*             |  |  |  |
| EN 50129  | Railway Signaling                                       |  |  |  |
| ISO 22201 | Elevator / Escalator                                    |  |  |  |
| IEC 61511 | Process Industry (Chemical, Oil Refining etc.)          |  |  |  |
| IEC 61800 | Adjustable speed AC motor drive                         |  |  |  |
| IEC 62061 | Industry Machinery (electronics)                        |  |  |  |
| ISO 13849 | Industry Machinery                                      |  |  |  |
| IEC 60730 | Automatic Controls for Household use                    |  |  |  |

<sup>\*</sup> Weight restriction will be removed in 2<sup>nd</sup> edition





**02.**IEC 61508, ISO 26262 Introduction

Introduction to the standards and key concepts



# IEC 61508 – Functional Safety of Electrical, Electronic, and Programmable Electronic (E/E/PE) Systems



- Basic Safety Publication
- 1st edition in 1998, updated to 2nd edition in 2010.
- Performance based targets for both systematic and random failure management
- Covers safety management, system/HW design, SW design, production, and operation of safety critical E/E/PE systems

## Scope of IEC 61508

- IEC 61508 has specific requirements for E/E/PE systems and SW
  - In 1st edition, there is no recognition of HW beyond system level.
  - In 2nd edition, HW component requirements are introduced for "ASICs"
- IEC 61508 definition of ASIC is not 100% clear. It can be interpreted to cover a number of products:
  - Custom ICs designed for a specific safety system
  - Semi-custom ICs designed for a type of safety system
  - FPGA, PLD, and CPLD devices
- A HW component compliant to IEC 61508 is called a "compliant item"
- For easy application to the largest market, new HW components should be developed as IEC 61508 compliant items.



## IEC 61508 Reading recommendation

|                                               | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------------------------------------------|---|---|---|---|---|---|---|---|
| Marketing/Sales                               | • | O | 0 | O | • | 0 | 0 | O |
| Field Applications and<br>Systems Engineering | • | • | • | • | • | O | O | O |
| Engineering<br>Management                     | • | • | O | O | • | O | O | O |
| HW Developers                                 | • | O | • | 0 | • | 0 | • | • |
| SW Developers                                 | • | O | 0 | • | • | O | • | • |
| Quality Engineering                           | • | • | O | O | • | • | O | O |
| Safety Engineering                            | • | • | • | • | • | • | • | • |

- part 0, Technical Report: Functional Safety and IEC 61508
- part 1, General Requirements
- part 2, Requirements for E/E/PE Systems
- part 3, Software Requirements
- part 4, Definitions and Abbreviations
- part 5, Examples of Methods for the determination of Safety Integrity Levels
- part 6, Guidelines on the Application of IEC 61508-2 and IEC 61508-3
- part 7, Overview of Techniques and Measures



## ISO 26262 – Functional Safety of Road Vehicles



- Vertical standard, performance based.
- First edition published in 2011.
- Follows similar structure to IEC 61508, but totally replaces instead of augmenting.
- Separates system design from hardware component design.
   As a result, most components used require compliance.
- 2nd edition available in draft

## ISO 26262 Reading recommendation

|                                               | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-----------------------------------------------|---|---|---|---|---|---|---|---|---|----|
| Marketing/Sales                               | • | 0 | O | O | 0 | 0 | 0 | 0 | O | •  |
| Field Applications and<br>Systems Engineering | • | 0 | • | • | • | • | 0 | 0 | 0 | •  |
| Engineering<br>Management                     | • | • | O | O | 0 | 0 | 0 | O | O | •  |
| HW Developers                                 | • | 0 | • | • | • | 0 | 0 | • | • | •  |
| SW Developers                                 | • | 0 | • | • | 0 | • | 0 | • | • | •  |
| Quality Engineering                           | • | • | O | O | 0 | 0 | • | O | O | •  |
| Safety Engineering                            | • | • | • | • | • | • | • | • | • | •  |

- part 1, Vocabulary
- part 2, Management of functional safety
- part 3, Concept phase
- part 4, Product development: system level
- part 5, Product development: HW level
- part 6, Product development: SW level
- part 7, Production and operation
- part 8, Supporting processes
- part 9, Safety analyses
- part 10, Guideline
- Part 11, Semiconductor Guideline\*
- Part 12, Adaptation for Motor cycles\*



<sup>\*</sup> New to 2<sup>nd</sup> edition

## Scope of ISO 26262

- ISO 26262 addresses
  - Safety-related systems including one or more E/E systems installed in series production road vehicles (except Mopeds) with a maximum gross weight up to 3500 Kg\*.
- ISO 26262 does not address
  - unique E/E systems in special purpose vehicles such as vehicles designed for drivers with disabilities

For Vehicles (and their components) released for production prior to the publication date of ISO 26262:

 Proven in use concept allows continued use of existing systems, sub-systems and components only if no changes are made to the implementation



## **Safety Lifecycle**





ISO 26262



## ISO 26262 Key Differences from IEC 61508

- ISO 26262 aligns with auto industry use cases and definition of acceptable risk
- IEC 61508 concept of safety function is replaced with ISO 26262 safety goals.
  - Safety function concept was based on the idea of defining a system under control and then "bolting-on" risk reduction measures
  - Safety goal concept requires that risk reduction be part of the initial control system design
- Typical IEC 61508 systems are installed and then validated in place. ISO 26262 systems must be validated before release to market.
- ISO 26262 standard clearly defines work products for each requirement. This makes determination of compliance easier but limits flexibility of development system definition.
- ISO 26262 has hazard and risk analysis, failure rates and metrics adapted for Automotive use cases.





03.
Safety Integrity Levels

Classification of functional safety products



## **Determining ISO 26262 ASIL Level**

- To determine the ASIL level of a system a Risk Assessment must be performed for all Hazards identified.
- Risk is comprised of three components: Severity, Exposure & Controllability





## **ASIL Determination Table**

Risk = Severity x (Exposure \* Controllability)

|                                                          |             | Controllability |           |              |  |  |
|----------------------------------------------------------|-------------|-----------------|-----------|--------------|--|--|
| Severity                                                 | Exposure    | C1 Simply       | C2 Normal | C3 Difficult |  |  |
|                                                          | E1 Very Low | QM              | QM        | QM           |  |  |
| S1                                                       | E2 Low      | QM              | QM        | QM           |  |  |
| Light and moderate injuries                              | E3 Medium   | QM              | QM        | ASIL A       |  |  |
|                                                          | E4 High     | QM              | ASILA     | ASIL B       |  |  |
|                                                          | E1 Very Low | QM              | QM        | QM           |  |  |
| S2                                                       | E2 Low      | QM              | QM        | ASIL A       |  |  |
| Severe and life-threatening injuries (survival probable) | E3 Medium   | QM              | ASILA     | ASIL B       |  |  |
|                                                          | E4 High     | ASIL A          | ASIL B    | ASIL C       |  |  |
| S3                                                       | E1 Very Low | QM              | QM        | ASIL A       |  |  |
| Life-threatening injuries (survival uncertain), fatal    | E2 Low      | QM              | ASILA     | ASIL B       |  |  |
| injuries                                                 | E3 Medium   | ASIL A          | ASIL B    | ASIL C       |  |  |
|                                                          | E4 High     | ASIL B          | ASIL C    | ASIL D       |  |  |



## Automotive Application Safety levels (e.g.)

| Subsystem                         | <b>ASIL Safety Level</b> |  |  |
|-----------------------------------|--------------------------|--|--|
| ADAS – Vision/Radar               | B-D                      |  |  |
| Airbags                           | D                        |  |  |
| Alternator                        | C-D                      |  |  |
| <b>Body Control Module</b>        | A-B                      |  |  |
| Brake System (ABS, ESC, Boost)    | A-D+                     |  |  |
| Collision Warning -               | A-B                      |  |  |
| Cruise Control                    | A-D                      |  |  |
| <b>Drowsiness Monitor</b>         | A-B                      |  |  |
| E-Call / Telematics               | A-B                      |  |  |
| Fuel Pump                         | В                        |  |  |
| Engine Oil Pump                   | В                        |  |  |
| Electric Mirrors                  | A-B                      |  |  |
| Electrochromatic Mirrors          | A-B                      |  |  |
| Engine Control                    | B-D                      |  |  |
| Lighting                          | A-B                      |  |  |
| Night Vision                      | A-B                      |  |  |
| Power Door, Liftgate, Roof, Trunk | A-B                      |  |  |
| Rain Sense Wipers                 | A-B                      |  |  |
| Steering (EPS)                    | D-D+                     |  |  |
| Throttle Control                  | A-D                      |  |  |
| Tire Pressure Warning             | A-B                      |  |  |
| Transmission                      | B-D                      |  |  |
| Transmission Oil Pump             | B-C                      |  |  |
| Window Lift                       | A-B                      |  |  |

- Many applications that don't have strict safety requirements today may have them in the future.
- For example, SAE is providing guidelines for determining ASILs. Applying these guidelines will mean that auto apps that haven't been "safety" to-date could be held subject to ISO26262.
- Carmakers who require conformance will open a market window for safety-capable suppliers like NXP.



## Safety – ISO26262 Decomposition

Decomposition is more relevant at the system level vs. component level

Achieve an ASIL level with QM products

- It is possible to achieve an ASIL level by developing a subsystem of multiple components which achieves the ASIL level as a whole.
- Decomposition redundantly assigns the same safety requirement to two independent and diverse elements.



- Enables the use of lower rated ASIL or QM products (from a systematic integrity point of view).
- Key Point: Decomposition makes it possible to use components that achieve lower ASIL independently.

#### Way to achieve Fault Metrics

- IO must be handled / checked by ASIL product
- Decision must be made / checked by ASIL product
- QM product must be TS-16949



## IEC 61508 Terminology for Safety Systems

- Low demand mode safety functions are required to operate at low frequencies, typically once or so per year.
- High demand mode safety functions are required to operate at high frequencies, typically many times per hour
- Continuous demand mode safety functions operate continuously.
- Hardware Fault Tolerance (HFT) is the number of faults that can occur without failure of the safety function. HFT>0 requires redundancy.
- Safe Failure Fraction (SFF) is the ratio of safe and dangerous (but detected)
  failures in a system safety function to the total failure rate



## **Determining IEC 61508 SIL**

| Likelihood | Definition                         | Range (failures/year)                |
|------------|------------------------------------|--------------------------------------|
| Frequent   | Many times in system lifetime      | > 10 <sup>-3</sup>                   |
| Probable   | Several times in system lifetime   | 10 <sup>-3</sup> to 10 <sup>-4</sup> |
| Occasional | Once in system lifetime            | 10 <sup>-4</sup> to 10 <sup>-5</sup> |
| Remote     | Unlikely in system lifetime        | 10 <sup>-5</sup> to 10 <sup>-6</sup> |
| Improbable | Very unlikely to occur             | 10 <sup>-6</sup> to 10 <sup>-7</sup> |
| Incredible | Cannot believe that it could occur | < 10 <sup>-7</sup>                   |

| Category     | Definition                            |
|--------------|---------------------------------------|
| Catastrophic | Multiple loss of life                 |
| Critical     | Loss of a single life                 |
| Marginal     | Major injuries to one or more persons |
| Negligible   | Minor injuries at worst               |

|            | Consequence  |          |          |            |  |  |  |
|------------|--------------|----------|----------|------------|--|--|--|
|            | Catastrophic | Critical | Marginal | Negligible |  |  |  |
| Frequent   | I            | I        | I        | II         |  |  |  |
| Probable   | I            | I        | II       | Ш          |  |  |  |
| Occasional | 1            | II       | III      | III        |  |  |  |
| Remote     | II           | III      | III      | IV         |  |  |  |
| Improbable | III          | III      | IV       | IV         |  |  |  |
| Incredible | IV           | IV       | IV       | IV         |  |  |  |

- Class I: Unacceptable in any circumstance
- Class II: Undesirable, tolerable only if risk reduction is impracticable or if the costs are grossly disproportionate to the improvement gained
- Class III: Tolerable if the cost of risk reduction would exceed the improvement
- Class IV: Acceptable as it stands, though it may need to be monitored



## **SIL** Requirements

Table 2 - Safety integrity levels - target failure measures for a safety function operating in low demand mode of operation

| Safety integrity level | Average probability of a dangerous failure on demand of the safety function |  |  |  |
|------------------------|-----------------------------------------------------------------------------|--|--|--|
| (SIL)                  | (PFD <sub>avg</sub> )                                                       |  |  |  |
| 4                      | $\geq 10^{-5} \text{ to} < 10^{-4}$                                         |  |  |  |
| 3                      | ≥ 10 <sup>-4</sup> to < 10 <sup>-3</sup>                                    |  |  |  |
| 2                      | $\geq 10^{-3} \text{ to} < 10^{-2}$                                         |  |  |  |
| 1                      | $\geq 10^{-2} \text{ to} < 10^{-1}$                                         |  |  |  |

Table 3 – Safety integrity levels – target failure measures for a safety function operating in high demand mode of operation or continuous mode of operation

| Safety integrity level | Average <u>frequency</u> of a dangerous failure of the safety function [h <sup>-1</sup> ] (PFH) |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| (SIL)                  |                                                                                                 |  |  |  |  |
| 4                      | $\geq 10^{-9} \text{ to} < 10^{-8}$                                                             |  |  |  |  |
| 3                      | ≥ 10 <sup>-8</sup> to < 10 <sup>-7</sup>                                                        |  |  |  |  |
| 2                      | $\geq 10^{-7} \text{ to } < 10^{-6}$                                                            |  |  |  |  |
| 1                      | $\geq 10^{-8} \text{ to} < 10^{-5}$                                                             |  |  |  |  |

- Low demand functions have less stringent requirements on PFD<sub>avg</sub> to achieve a specific SIL.
- High demand and continuous demand functions have more stringent requirements on PFH to achieve a specific SIL.
- Process and machinery applications mix low and high demand functions.
- Transportation applications are typically high demand.



## **Determination of SIL based on HFT and SFF**

Table 2 – Maximum allowable safety integrity level for a safety function carried out by a type A safety-related element or subsystem

| Safe failure fraction of an element | Hardware fault tolerance |       |       |  |  |  |
|-------------------------------------|--------------------------|-------|-------|--|--|--|
|                                     | 0                        | 1     | 2     |  |  |  |
| < 60 %                              | SIL 1                    | SIL 2 | SIL 3 |  |  |  |
| 60 % – < 90 %                       | SIL 2                    | SIL 3 | SIL 4 |  |  |  |
| 90 % – < 99 %                       | SIL 3                    | SIL 4 | SIL 4 |  |  |  |
| ≥ 99 %                              | SIL 3                    | SIL 4 | SIL 4 |  |  |  |

Table 3 – Maximum allowable safety integrity level for a safety function carried out by a type B safety-related element or subsystem

| Safe failure fraction of an element | Hardware fault tolerance |       |       |  |  |  |
|-------------------------------------|--------------------------|-------|-------|--|--|--|
|                                     | 0                        | 1     | 2     |  |  |  |
| <60 %                               | Not Allowed              | SIL 1 | SIL 2 |  |  |  |
| 60 % – <90 %                        | SIL 1                    | SIL 2 | SIL 3 |  |  |  |
| 90 % – <99 %                        | SIL 2                    | SIL 3 | SIL 4 |  |  |  |
| ≥ 99 %                              | SIL 3                    | SIL 4 | SIL 4 |  |  |  |

- Type A products are simple products in which all failure modes are known
- Type B products are complex products in which all failure modes are not known (e.g. semiconductor).
- Hardware Fault Tolerance (HFT) is the number of faults that can occur without failure of the safety function. HFT>0 requires redundancy.
- Safe Failure Fraction (SFF) is defined as the ratio of safe and dangerous (but detected) failures in a system safety function to the total failure rate
- SFF is calculated at element (component) or system level for a safety function. It should not be applied for sub-elements.



## ISO 26262 vs IEC 61508 Safety Integrity Levels

- ISO 26262 was developed to meet automotive industry specific needs as replacement for IEC 61508.
- IEC 61508 defines 4 safety integrity levels (SIL1,2,3,4)
- ISO26262 defines a Quality Managed level in addition to 4 safety integrity levels (ASIL A,B,C,D
- There is no direct correlation between IEC61508 SIL and ISO 26262 ASIL levels







04.
Hardware

Expectations established on hardware development and products

## **ISO 26262 Failure Rates**

#### Failure Rate λ



$$\lambda = \lambda_{SPF} + \lambda_{RF} + \lambda_{MPF} + \lambda_{S}$$



**λ<sub>SPF</sub>** - Single Point Faults

 $\lambda_{RF}$  - Residual Faults

**λ**<sub>MPFDP</sub> - Detected/Perceived Multi Point Faults

**λ**<sub>MPFL</sub> - Latent Multi Point Faults

 $\lambda_{MPF}$  -  $\lambda_{MPFDP}$  +  $\lambda_{MPFL}$  = Multi Point Faults\*

λ<sub>s</sub> – Safe Faults



<sup>\*</sup> multiple-point fault is an individual fault that, in combination with other independent faults, leads to a multiple-point failure

## **ISO 26262 Fault Metrics**

## Minimize single point and residual faults.

✓ Detected and handled by system within system safety response time.



| Metric                    | ASIL B | ASIL C | ASIL D |
|---------------------------|--------|--------|--------|
| Single point fault metric | ≥ 90%  | ≥ 97%  | ≥ 99%  |



✓ Detected and handled within hours through test algorithms.

latent fault metric = 1 - 
$$\frac{\Sigma(\lambda_{\mathsf{MPFL}})}{\Sigma(\lambda - \lambda_{\mathsf{SPF}} - \lambda_{\mathsf{RF}})} = \frac{\Sigma(\lambda_{\mathsf{MPFDP}} + \lambda_{\mathsf{S}})}{\Sigma(\lambda - \lambda_{\mathsf{SPF}} - \lambda_{\mathsf{RF}})}$$

| Metric              | ASIL B | ASIL C | ASIL D |
|---------------------|--------|--------|--------|
| Latent fault metric | ≥ 60%  | ≥ 80%  | ≥ 90%  |





## **IEC 61508 Failure Rates**

#### Failure Rate λ



- $\lambda_S$  Safe failure rate
  - No impact on safety function
  - $-\lambda_{SD}$  Safe detected failure rate
  - $-\lambda_{SU}$  Safe undetected failure rate
- λ<sub>D</sub> Dangerous failure rate
  - Impact on safety function
  - $-\lambda_{DD}$  Dangerous detected failure rate
  - $-\lambda_{DII}$  Dangerous undetected failure rate

$$\lambda = \lambda_{S} + \lambda_{D} = (\lambda_{SD} + \lambda_{SU}) + (\lambda_{DD} + \lambda_{DU})$$

FIT = Failures In Time = 1 failure in 109 device hours



## IEC 61508 Safe Failure Fraction & SIL Determination



Safe Failure Fraction (SFF) = 
$$1 - \frac{\lambda_{DU}}{\lambda}$$

High Demand System

#### **Hardware Fault Tolerance = 0 (single channel)**

1 Fault may lead to loss of safety function. EX: 1001, 1001D, 2002...

#### **Hardware Fault Tolerance = 1 (redundant)**

2 or more faults needed to loss of safety function. 2003, 4005...

| Safe Failure Fraction | Hardware Fault Tolerance |         |  |  |
|-----------------------|--------------------------|---------|--|--|
| (High Demand System)  | HFT = 0                  | HFT = 1 |  |  |
| 0 < 60%               | -                        | SIL1    |  |  |
| 60% < 90%             | SIL1                     | SIL2    |  |  |
| 90% < 99%             | SIL2                     | SIL3    |  |  |
| ≥ 99%                 | SIL3                     | SIL4    |  |  |





# 05. Software

Expectations established on software development and products

## Software component development



ISO 26262

Software failures are considered to be systematic

**IEC 61508** 





## Coding guidelines and design principles

|    | Topics                                      |    | ASIL |    |    |  |  |  |
|----|---------------------------------------------|----|------|----|----|--|--|--|
|    | ropics                                      | Α  | В    | С  | D  |  |  |  |
| 1a | Enforcement of low complexity <sup>a</sup>  | ++ | ++   | ++ | ++ |  |  |  |
| 1b | Use of language subsets <sup>b</sup>        | ++ | ++   | ++ | ++ |  |  |  |
| 1c | Enforcement of strong typing <sup>c</sup>   | ++ | ++   | ++ | ++ |  |  |  |
| 1d | Use of defensive implementation techniques  | 0  | +    | ++ | ++ |  |  |  |
| 1e | Use of established design principles        | +  | +    | +  | ++ |  |  |  |
| 1f | Use of unambiguous graphical representation | +  | ++   | ++ | ++ |  |  |  |
| 1g | Use of style guides                         | +  | ++   | ++ | ++ |  |  |  |
| 1h | Use of naming conventions                   | ++ | ++   | ++ | ++ |  |  |  |

| Г  | Methods                                                            |    | ASIL |    |    |  |  |
|----|--------------------------------------------------------------------|----|------|----|----|--|--|
|    |                                                                    |    | В    | С  | D  |  |  |
| 1a | Hierarchical structure of software components                      | ++ | ++   | ++ | ++ |  |  |
| 1b | Restricted size of software components <sup>a</sup>                | ++ | ++   | ++ | ++ |  |  |
| 1c | Restricted size of interfaces <sup>a</sup>                         | +  | +    | +  | +  |  |  |
| 1d | High cohesion within each software component <sup>b</sup>          | +  | ++   | ++ | ++ |  |  |
| 1e | Restricted coupling between software components <sup>a, b, c</sup> | +  | ++   | ++ | ++ |  |  |
| 1f | Appropriate scheduling properties                                  | ++ | ++   | ++ | ++ |  |  |
| 1g | Restricted use of interrupts <sup>a, d</sup>                       | +  | +    | +  | ++ |  |  |

ISO 26262

## **IEC 61508**

- O → Optional
- R → Recommended
- HR → Highly Recommended
- M → Mandatory

|    | Technique/Measure *                                                |         | SIL 1 | SIL 2 | SIL 3 | SIL 4 |
|----|--------------------------------------------------------------------|---------|-------|-------|-------|-------|
| 1  | 1 Use of coding standard to reduce likelihood of errors            |         | HR    | HR    | HR    | HR    |
| 2  | 2 No dynamic objects                                               |         | R     | HR    | HR    | HR    |
| 3a | 3a No dynamic variables                                            |         |       | R     | HR    | HR    |
| 3b | Online checking of the installation of dynamic variables           | C.2.6.4 |       | R     | HR    | HR    |
| 4  | 4 Limited use of interrupts                                        |         | R     | R     | HR    | HR    |
| 5  | Limited use of pointers                                            | C.2.6.6 |       | R     | HR    | HR    |
| 6  | Limited use of recursion                                           | C.2.6.7 |       | R     | HR    | HR    |
| 7  | No unstructured control flow in programs in higher level languages | C.2.6.2 | R     | HR    | HR    | HR    |
| 8  | No automatic type conversion                                       | C.2.6.2 | R     | HR    | HR    | HR    |

NOTE 1 Measures 2, 3a and 5. The use of dynamic objects (for example on the execution stack or on a heap) may impose requirements on both available memory and also execution time. Measures 2, 3a and 5 do not need to be applied if a compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will be allocated before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved; b) that response times meet the requirements.

#### NOTE 2 See Table C.11.

NOTE 3 The references (which are informative, not normative) "B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

\* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be justified in accordance with the properties, given in Annex C. desirable in the particular application.



## Software error detection and handling

|    | Methods                                   |    | ASIL |    |    |  |  |
|----|-------------------------------------------|----|------|----|----|--|--|
|    |                                           |    | В    | C  | D  |  |  |
| 1a | Range checks of input and output data     | ++ | ++   | ++ | ++ |  |  |
| 1b | Plausibility check <sup>a</sup>           | +  | +    | +  | ++ |  |  |
| 1c | Detection of data errors <sup>b</sup>     | +  | +    | +  | +  |  |  |
| 1d | External monitoring facility <sup>c</sup> | 0  | +    | +  | ++ |  |  |
| 1e | Control flow monitoring                   | 0  | +    | ++ | ++ |  |  |
| 1f | Diverse software design                   | 0  | 0    | +  | ++ |  |  |

|    | Methods                                      |   | ASIL |    |    |  |
|----|----------------------------------------------|---|------|----|----|--|
|    |                                              |   | В    | С  | D  |  |
| 1a | Static recovery mechanism <sup>a</sup>       | + | +    | +  | +  |  |
| 1b | Graceful degradation <sup>b</sup>            | + | +    | ++ | ++ |  |
| 1c | Independent parallel redundancy <sup>c</sup> | 0 | 0    | +  | ++ |  |
| 1d | Correcting codes for data                    | + | +    | +  | +  |  |

ISO 26262

- O → Optional
- R → Recommended
- HR → Highly Recommended
- M → Mandatory

**IEC 61508** 

| Technique/Measure * |                                                                                    | Ref            | SIL 1 | SIL 2 | SIL 3 | SIL 4 |
|---------------------|------------------------------------------------------------------------------------|----------------|-------|-------|-------|-------|
| 1                   | Test case execution from cause consequence diagrams                                | B.6.6.2        | ***   | ***   | R     | R     |
| 2                   | Test case execution from model-based test case generation                          | C.5.27         | R     | R     | HR    | HR    |
| 3                   | Prototyping/animation                                                              | C.5.17         |       |       | R     | R     |
| 4                   | Equivalence classes and input partition testing, including boundary value analysis | C.5.7<br>C.5.4 | R     | HR    | HR    | HR    |
| 5                   | Process simulation                                                                 | C.5.18         | R     | R     | R     | R     |

NOTE 1 The analysis for the test cases is at the software system level and is based on the specification only.

NOTE 2 The completeness of the simulation will depend upon the safety integrity level, complexity and application.

NOTE 3 See Table C.13.

NOTE 4 The references (which are informative, not normative) "B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

Appropriate techniques/measures shall be selected according to the safety integrity level.





06.
Tools

Expectations established on software development tools



## **Tool Confidence Level**

ISO 26262

- Part 8: 11. Confidence in the use of software tools
- 11.4.5: Evaluation of a software tool by analysis
  - Determine Tool Impact (TI)

if a software tool can introduce or fail to detect errors in a safety-related

- TI1: No impact
- TI2: Impact

| <ul> <li>Determine Tool Detection</li> </ul> | (TD | ) in | usage | of to | ol |
|----------------------------------------------|-----|------|-------|-------|----|
|----------------------------------------------|-----|------|-------|-------|----|

- TD1: HIGH probability of detecting/preventing potential tool errors
- TD2: MEDIUM probability of detecting/preventing potential tool errors
- TD3: All other cases (LOW/unknown)

#### - Determine the Tool Confidence Level (TCL)

- 11.4.6: Qualification of a software tool
  - TCL1: no qualification needed
  - TCL2,TCL3: qualification according to tables

|             |     | Tool error detection |      |      |  |  |
|-------------|-----|----------------------|------|------|--|--|
|             |     | TD1                  | TD2  | TD3  |  |  |
| Tool impact | TI1 | TCL1                 | TCL1 | TCL1 |  |  |
| Tool impact | TI2 | TCL1                 | TCL2 | TCL3 |  |  |

Table 4 — Qualification of software tools classified TCL3

|    | Methods                                                              |    | ASIL |    |    |  |  |  |
|----|----------------------------------------------------------------------|----|------|----|----|--|--|--|
|    |                                                                      |    | В    | С  | D  |  |  |  |
| 1a | Increased confidence from use in accordance with 11.4.7              | ++ | ++   | +  | +  |  |  |  |
| 1b | Evaluation of the tool development process in accordance with 11.4.8 | ++ | ++   | +  | +  |  |  |  |
| 1c | Validation of the software tool in accordance with 11.4.9            | +  | +    | ++ | ++ |  |  |  |
| 1d | Development in accordance with a safety standard <sup>a</sup>        | +  | +    | ++ | ++ |  |  |  |



## Requirements for Software Tools and Programming Languages

Table A.3 – Software design and development – support tools and programming language

(See 7.4.4)

| Technique/Measure * |                                                      | Ref.  | SIL 1 | SIL 2 | SIL 3 | SIL 4 |
|---------------------|------------------------------------------------------|-------|-------|-------|-------|-------|
| 1                   | Suitable programming language                        | C.4.5 | HR    | HR    | HR    | HR    |
| 2                   | Strongly typed programming language                  | C.4.1 | HR    | HR    | HR    | HR    |
| 3                   | Language subset                                      | C.4.2 |       |       | HR    | HR    |
| 4a                  | Certified tools and certified translators            | C.4.3 | R     | HR    | HR    | HR    |
| 4b                  | Tools and translators: increased confidence from use | C.4.4 | HR    | HR    | HR    | HR    |

NOTE 1 See Table C.3.

NOTE 2 The references (which are informative, not normative) "B.x.x.x", "C.x.x.x" in column 3 (Ref.) indicate detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.



- O → Optional
- R → Recommended
- HR → Highly Recommended
- M → Mandatory



<sup>\*</sup> Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be justified in accordance with the properties, given in Annex C, desirable in the particular application.



07.

## Customer documents

Supporting documentation NXP provides to our customers to help in functional safety compliant development

## **NXP SafeAssure Products**

To support the customer to build a safety system, the following deliverables are provided as standard for all ISO 26262 developed products.

- Public Information available via NXP Website
  - Quality Certificates
  - Safety Manual\* (HW and SW)
  - Reference Manual
  - Data Sheet
- Confidential Information available under NDA
  - Safety Plan
  - ISO 26262 Safety Case (HW and SW)
  - Permanent Failure Rate data (Die & Package) IEC/TR 62380 or SN29500
  - Transient Failure Rate data (Die) JEDEC Standard JESD89
  - Safety Analysis (FMEDA\*, DFA) & Report
  - SW FMEA and Test Reports
  - PPAP
  - Confirmation Measures Report (summary of all applicable confirmation measures)







# 08. What's next

ISO 26262 is going through a revision that will be incorporated into the next revision ISO 26262:2018

## ISO 26262:2018

- Overall the 2018 ISO 26262 is an incremental improvement
  - Very little new content towards fail operational / autonomous vehicles indicating not yet mature enough in industry to standardize
  - Minor references to address interaction of Safety & Security
- New content in current draft (ISO 26262:2016)
  - Scope now for series production road vehicles, except mopeds.
  - Specific content added for Trucks, Buses, Trailers, Semitrailers and motorcycles (although very minimal)
  - Part 11 guideline added for Semiconductors
  - Part 12 added for motorcycles (mapping of MSIL to ASIL)
  - Interaction between safety and security organizations mentioned (no specifics)
  - Method for dependent failure analysis provided in multiple examples
  - Guidance for fault tolerance

- Biggest impacts for NXP
  - Part 2 changes for confirmation measures
  - Part 8.13 changes for evaluation of hardware elements
  - Part 11 guideline for Semiconductors
- When do we implement 2018 content changes
  - 25% already implemented
  - 50% during BCaM7 (deploying in 2017)
  - 25% in 2018





## SECURE CONNECTIONS FOR A SMARTER WORLD