

NXP Sensor Fusion
NXP Sensor Fusion for Kinetis MCUs

Rev. <2.0> — 26 April 2016 User manual

Document information

Info Content

Keywords Sensor fusion, accelerometer, gyroscope, magnetometer, altimeter,
pressure

Abstract Provides full details on the structure and use of the NXP Sensor Fusion
Library for Kinetis MCUs.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 2 of 114

Contact information

For more information, please visit: http://www.nxp.com/sensorfusion

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

2.0 20160714 This version of the user manual documents Version 7.00 of the NXP Sensor Fusion
Library. The prior published version was Version 5.00 of the NXP Sensor Fusion Library.
The kit has undergone major restructuring, and most of this document is new. This
document was written by Michael Stanley and Mark Pedley.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 3 of 114

1. Introduction

Sensor fusion is a process by which data from several different sensors are fused to

compute something more than could be determined by any one sensor alone. An

example is computing the orientation of a device in three dimensional space. That

orientation is then used to alter the perspective presented by a 3D GUI or game.

The NXP Sensor Fusion Library for Kinetis MCUs (also referred to as Fusion Library or

development kit) provides advanced functions for computation of device orientation,

linear acceleration, gyro offset and magnetic interference based on the outputs of NXP

inertial and magnetic sensors.

Version 7.00 of the development kit has the following features:

• Full source code for the sensor fusion libraries

• IDE-independent software based upon the NXP Kinetis Software Development Kit

(KSDK).

• The Fusion Library no longer requires Processor Expert for component

configuration.

• Supports both bare-metal and RTOS-based project development. Library code is

now RTOS agnostic.

• Optional standby mode powers down power hungry sensors when no motion is

detected.

• 9-axis Kalman filters require significantly less MIPS to execute

• All option require significantly less memory than those in the Version 5.xx library.

• Full documentation including user manual and fusion data sheet

The fusion library is supplied under a liberal BSD open source license, which allows the

user to employ this software with NXP MCUs and sensors, or those of our competitors.

Support for issues relating to the default distribution running on NXP reference hardware

is available via standard NXP support channels. Support for non-standard platforms and

applications is available at https://community.nxp.com/community/sensors/sensorfusion.

This document is part of the documentation for NXP Sensor Fusion Library for Kinetis

MCUs software. Its use and distribution are controlled by the license agreement in the

Software Licensing section.

1.1 Software Licensing

Copyright © 2016, Freescale Semiconductor, Inc. All rights reserved

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

• Neither the name of Freescale Semiconductors, Inc., nor the names of its

contributors may be used to endorse or promote products derived from this

software without specific prior written permission.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 4 of 114

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL NXP SEMICONDUCTORS N.V. BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Software Features

Version 7.00 of the Fusion Library is delivered as part of the Intelligent Sensing SDK

(ISSDK), which itself is included within various Kinetis SDKs generated via the Kinetis

Expert or KEX tool (http://kex.nxp.com). By “various”, we mean that ISSDK and the

fusion library are being released in a phased manner within the KEX ecosystem. Initially,

only the FRDM_K22F and FRDM_K64F Freedom boards will be supported. Others will

be added as time goes on.

V7.00 was redesigned from the ground up for easy portability. It provides access to

source code for all functions. Software features include:

• Fusion and magnetic calibration algorithms

• Programmable multi-rate sensor sampling

• Programmable sensor fusion rate

• Supported frames of reference include AEROSPACE, Android and Windows 8.

• Includes drivers for NXP motion sensors

• Minimum functions to learn.

o Write sensor readings into one set of global structures using the addToFifo

function.

o Read fusion results from a different set of global structures

• Ability to compile and link any combination of standard algorithms

o Accelerometer only (tilt)

o Magnetometer only eCompass (vehicle)

o Gyro only orientation (relative rotation)

o Accelerometer plus magnetometer 6-axis eCompass

o Accelerometer plus gyroscope orientation (gaming)

o Accelerometer plus magnetometer and gyroscope (full 9-axis)

• NXP’s award-winning magnetic calibration software, which provides

geomagnetic field strength, hard and soft iron corrections and quality-of-fit

indication

• Optional standby mode powers down power hungry sensors when no motion is

detected

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 5 of 114

• Directly compatible with the NXP Sensor Fusion Toolbox for Android and Windows

(Fusion Toolbox). Example programs include predefined Bluetooth/UART

interfaces compatible with the Fusion Toolbox.

1.3 Supporting Documentation

1.3.1 Included in the Kit

Included in the docs directory mentioned in Section 1.2, you will find:

• This user guide

• NXP Sensor Fusion Library for Kinetis Data Sheet

• NXP Application Note AN5016, Rev. 2.0: Trigonometry Approximations

• NXP Application Note AN5017, Rev 2.0: Aerospace, Android and Windows 8

Coordinate Systems

• NXP Application Note AN5018, Rev. 2.0: Basic Kalman Filter Theory

• NXP Application Note AN5019, Rev. 2.0: Magnetic Calibration Algorithms

• NXP Application Note AN5020, Rev. 2.0: Determining Matrix Eigenvalues and

Eigenvectors by Jacobi Algorithm

• NXP Application Note AN5021, Rev. 2.0: Calculation of Orientation Matrices from

Sensor Data

• NXP Application Note AN5022, Rev. 2.0: Quaternion Algebra and Rotations

• NXP Application Note AN5023, Rev. 2.0: Sensor Fusion Kalman Filters

• NXP Application Note AN5286, Rev. 2.0: Precision Accelerometer Calibrations

1.3.2 Found Elsewhere

• www.nxp.com/sensorfusion

• MCU on Eclipse blog at https://mcuoneclipse.com/

• Kinetis Design Studio software at www.nxp.com/kds

• Euler Angles at en.wikipedia.org/wiki/Euler_Angles

• Introduction to Random Signals and Applied Kalman Filtering, 3rd edition, by

Robert Grover Brown and Patrick Y.C. Hwang, John Wiley & Sons, 1997

• Quaternions and Rotation Sequences, Jack B. Kuipers, Princeton University Press,

1999

• NXP Freedom development platform home page at nxp.com/freedom

• OpenSDA User’s Guide, NXP Semiconductors N.V., Rev 0.93, 2012-09-18

• NXP OpenSDA support page at nxp.com/opensda

• PE micro OpenSDA support page at www.pemicro.com/opensda

• Segger OpenSDA support page at https://www.segger.com/opensda.html

1.4 Requirements

1.4.1 MCU

Minimum requirements for the standard “all algorithms / no RTOS” build are:

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 6 of 114

• 40MHz ARM Cortex M0+ or higher MCU

• 60K bytes Flash NVM

• 12.5K bytes RAM

• 1 I
2
C Port

• 1 UART Port

MCUs which include floating point units will consume significantly fewer CPU cycles,

although an FPU-less M0+ works fine.

In practice, the sensor fusion code has proven highly portable, and can be ported to

almost any 32-bit MCU meeting the requirements above.

NXP markets a line of Arduino
TM

 compatible Freedom Development Boards which make

an ideal platform for sensor fusion development projects. Figure 1 below illustrates the

FRDM-K64F, which easily meets all of the requirements above.

Fig 1. K64F Freedom Development Platform

NXP Freedom boards proven to be compatible on past releases of the toolkit include:

• FRDM_KL25Z

• FRDM_KL26Z

• FRDM_KL46Z

• FRDM_K20D50M

• FRDM_K22F

• FRDM_K64F

• FRDM_KV31F

• FRDM_KEAZ128

The above is not an all inclusive list, it simply represents the list of boards that the sensor

fusion team at NXP has targeted in the past. The initial release of Version 7.00 sensor

fusion offers out-of-the-box support for only the boards shown in bold.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 7 of 114

Please consult http://www.nxp.com/freedom, the relevant MCU datasheet, and the NXP

Sensor Fusion for Kinetis MCUs Datasheet for additional detail.

1.4.2 Sensors

The development kit supports sensors with both I
2
C and SPI interfaces. Table 1

specifies the sensor types required on a per algorithm basis. The descriptions shown in

the left column match those used in the Sensor Fusion Toolbox for Windows GUI. The

2
nd

 column includes the enabling bit-field as defined in build.h in your project.

Table 1. Sensor Types Required as Function of Algorithm

Algorithm Pressure Accelerometer Magnetometer Gyro

Altitude F_1DOF_P_BASIC X

Tiltmeter F_3DOF_G_BASIC X

2D Automotive Compass F_3DOF_B_BASIC X

Rotation F_3DOF_G_BASIC X

Tilt Compensated
Compass

F_6DOF_GB_BASIC X X

Gaming Handset F_6DOF_GY_KALMAN X X

Gyro Stabilized Compass F_9DOF_GBY_KALMAN X X X

Many NXP Freedom development boards include one or more sensors. These are

summarized in Error! Reference source not found..

Table 2. Sensors by Freedom Development Platform

Board Sensors

FRDM-KL02Z MMA8451 accel

FRDM-KL05Z MMA8451 accel

FRDM-KE02Z MMA8451 accel

FRDM-KE06Z MMA8451 accel

FRDM-KL25Z MMA8451 accel

FRDM-K20D50M MMA8451 accel

FRDM-KL26Z FXOS8700 accel + mag

FRDM-K64F FXOS8700 accel + mag

FRDM-K22F FXOS8700 accel + mag

KV31F FXOS8700 accel + mag

FRDM-KL46Z MMA8451 accel + MAG3110

FRDM-KEAZ128 No Sensors

In addition, NXP has released a number of Freedom-compatible sensor boards

specifically designed to support various algorithms shown in Table 1. These include:

• FRDM-FXS-9-AXIS (deprecated), which contains an FXOS8700CQ 6-axis

accelerometer/magnetometer combination sensor and an FXAS21000

gyroscope

• FRDM-FXS-MULTI (deprecated), which contains all features of the FRDM-FXS-9-

AXIS plus additional sensors

• FRDM-FXS-MULTI-B (deprecated), which contains all features of the FRDM-FXS-

MULTI plus Bluetooth Module and battery

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 8 of 114

• FRDM-STBC-AGM01, which replaces the FRDM-FXS-9-AXIS. It contains

FXOS8700CQ 6-axis accelerometer/magnetometer combination sensor and an

FXAS21002 gyroscope

• The FRDM-FXS-MULT2-B replaces the FRDM-FXS-MULTI and FRDM-FXS-

MULTI-B. It uses the newer FXAS21002 gyroscope, but it otherwise has the

same sensor content.

The first three boards were built from the same PCB design and differ only in the number

of parts on the platform. Those first three boards are no longer in production, but the

Fusion Library works with any of the above boards. The FRDM-FXS-MULTI-B & FRDM-

FXS-MULT2-B boards are the only ones that supports Bluetooth communications to the

NXP Sensor Fusion Toolbox for Android.

Key components of the FRDM-FXS-MULTI-B and FRDM-FXS-MULT2-B are identified in

Fig 2. The two boards have essentially the same layout. The major difference between

the two is the new and improved FXAS21002 on the FRDM-FXS-MULT2-B.

Fig 2. FRDM-Mult2-B with key components

Fig 3 shows the FRDM-FXS-MULTI-B Sensor Development Platform plugging in to the

FRDM-KL25Z Freedom Development Platform.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 9 of 114

Fig 3. FRDM-FXS-MULTI-B mated to FRDM-KL25Z

NOTE: When mating the two boards, check to ensure that sensor board, when

configured with a battery mounted on the back, is free of any obstacles presented by the

base, NXP Freedom Development board. In particular, we’ve noted problems with

FRDM-K22F boards. You will need to remove or relocate the battery.

The FRDM-STBC-AGM01 is shown in Fig 4. It is a much simpler board than those

shown above, but it still has all the components necessary to implement full 9-axis

sensor fusion. It is compatible with all the base boards listed above. Note J6 and J7

jumpers near the bottom of the board. These let you select between two different

sources of I
2
C signals.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 10 of 114

Fig 4. FRDM-STBC-AGM01 Freedom Development Platform

1.4.3 MCU Peripherals

Version 7.00 of the development kit represents a major departure from the design flow

supported by Version 5.00 and earlier. Reference designs are no longer based on

Processor Expert components, and instead rely on the Kinetis SDK. The software has

been refactored to improve portability and support a more intuitive, object-oriented,

interface. Accordingly, specific hardware requirements are associated with subsystems

that will be explored in more detail in Section 3. A basic summary is:

Table 3. Primary Subsystems and Associated Peripherals

Table description (optional)

Subsystem Required Peripherals Required Comments

Main Yes Timer PIT or similar if bare metal;

SysTick commonly used for RTOS

Control Debug
minimum

UART Example projects utilize two, one for
OpenSDA wired connections, one for
Bluetooth.

Status No Tri-Color LED

ISSDK Yes I
2
C and/or SPI As required by the specific set of sensors

used

Each project contains an include file called issdk_hal.h. This file pulls in header files for

a Freedom board and sensor shield. When starting with a new board configuration, you

should gather the schematics and user manuals for your board(s), then fill out a table

similar to Table 4.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 11 of 114

Table 4. FRDM-K64F & FRDM-FXS-MULT2-B / Peripheral Assignments

Subsystem Function Suggestion Comments

Bare-metal main Timer PIT0 Encapsulated in driver_pit.c/.h

FreeRTOS main Timer SysTick Possible interaction with Sensor
Toolbox metrics measurement

Control UART UART3 on
PTC17:16

Connects to Bluetooth module on
sensor shields

 UART0 on
PTB17:16

Connects to OpenSDA CDC
1

(UART/USB) on the Freedom board

Status Red LED PTB22

 Green LED PTE26

ISSDK I
2
C I

2
C0 on PTC11:10 All I

2
C sensors on FRDM-FXS-

MULT2-B (excluding the FXLS8471Q)

 Accel/Mag FXOS8700 I
2
C address 0x1E on the FRDM-FXS-

MULT2-B

 Gyro FXAS21002 I
2
C address 0x20 on the FRDM-FXS-

MULT2-B

 Altimeter MPL3115A2 I
2
C address 0x60 on the FRDM-FXS-

MULT2-B

1.4.4 IDE Independence

As mentioned in the prior section, version 7.00 of the development kit represents a major

departure from the design flow supported by Version 5.00 and earlier. Reference

designs are no longer based on Processor Expert components, and instead rely on the

Kinetis SDK. CodeWarrior support has been dropped. IAR support has been added,

and any screen shots shown in this user manual will generally be taken from IAR

projects.

The fusion library itself is written entirely in C, and should be portable to any IDE.

The Kinetis Design Studio IDE is available for no cost at: http://www.nxp.com/kds.

1.4.5 Enablement Tools

The demo sensor fusion builds include a serial command interpreter which can

communicate sensor and fusion status back to Windows or Android-based graphical user

interfaces. Using those same interfaces, the user can select which fusion algorithm to

monitor and experiment with other fusion options. There are two versions of the GUI,

which are described in the following two sections.

Both versions of the toolbox are supported by the same serial packet protocol which is

encapsulated within the control subsystem shown in Fig 26. This subsystem can be

omitted in your final product build, but we highly recommend that it be retained

throughout the product development/debug phases. NXP support via the Sensor Fusion

Community generally requires that the developer have access to the Sensor Fusion

Toolbox for Windows. Section 9 discusses many ways in which the visualization

capabilities of this tool can help you to easily diagnose many implementation common

problems.

Both versions of the Sensor Fusion Toolbox are free.

1. CDC = Communications Device Class

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 12 of 114

1.4.5.1 Sensor Fusion Toolbox for Android

This is the original GUI first released to the world via Google Play in early 2013. The app

is designed to communicate via standard Bluetooth with an NXP Freedom board

equipped with a FRDM-FXS-MULT2-B sensor shield.

The application lets you visually explore sensor fusion tradeoffs. It also includes

extensive sensor fusion tutorial information in the in-app documentation.

The latest version of this app may be downloaded at

https://play.google.com/store/apps/details?id=com.sensors.fusion.

Fig 5. The Sensor Fusion Toolbox for Android

Select the Navigation icon and then Documentation to bring up the in-app help

(shown on the right side of Fig 5.

1.4.5.2 Sensor Fusion Toolbox for Windows

The Android version of the toolbox described above can provide a lot of insights into the

behavior of the various sensor fusion algorithms in the toolkit, but it pales in comparison

to the advanced features contained in the Windows version of the tool (Fig 6).

In addition to the device view shown above, it includes:

• sensor outputs versus time graphs

• fusion outputs versus time graphs

• magnetic calibration sample constellation and calibration outputs

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 13 of 114

• altimeter/temperature sensor tab

• precision accelerometer calibration functions (new for this release)

• INS tab to play with double integration to approximate position (new for this

release)

• the ability to save and restore accelerometer, magnetometer and gyroscope

calibration coefficients for quick startup.

If your Windows PC has a Bluetooth interface or USB dongle, you can communicate

wirelessly via Bluetooth to your FRDM-FXS-MULT2-B equipped Freedom board. If your

shield does not include Bluetooth support, you can connect via USB to your PC. The

interface controls are identical in both cases.

Fig 6. Sensor Fusion Toolbox for Windows

The Sensor Fusion Toolbox for Windows can be downloaded from

http://www.nxp.com/sensorfusion.

2. Sensor Fusion Topics & Options

If you are familiar with accelerometers, magnetometers, gyroscopes and frames of

reference, you can skip Section 2.1. Likewise, if you are already an experienced user of

prior versions of the Freescale/NXP sensor fusion library, you can skip all the way to

Section 2.8, which addresses a topic new to Version 7.00.

2.1 Vocabulary

If you consult any text on the dynamics of rigid bodies, you will quickly learn that any

movement of any rigid body from point A to point B can be characterized as a translation

plus a rotation.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 14 of 114

Any movement from point A to point B can be decomposed into a translation plus

optional rotation

In 3 dimensions, we need 6 DOF: ∆X, ∆Y, ∆Z, φ, θ, ψ

Fig 7. Degrees of Freedom Explained

It takes six numbers to characterize that movement: change in X, Y and Z and rotations

about X, Y and Z axes. Notice that we are talking about the minimum set of numbers

required to unambiguously specify a given movement. We are NOT talking about the

number of sensors required to measure that movement.

So now, let’s talk about sensors. A basic 3-axis accelerometer returns values for linear

acceleration in each of 3 orthogonal directions.

Fig 8. 3-Axis Accelerometer

When you look at the figure, you can immediately see where the terms axis/axes come

from. They refer to the sensor coordinate system axes.

There’s an important thing you should consider about accelerometers at rest. When one

of the axes associated with the sensor frame of reference is parallel to the gravity vector,

as it is in the figure above, you will get no additional information from the other two

acceleration numbers. They will both be zero, and you will be unable to tell if the

accelerometer is rotated about the axis parallel to gravity.

The next device in our toolbox is the gyro which returns rates of rotation about each of

the 3 sensor axes. Notice that we are talking about sensor axes here. As the sensor

rotates, so does its frame of reference for the next measurement.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 15 of 114

Fig 9. 3-Axis Gyroscope returns the rotation rates about each of X, Y & Z axes

A 3-axis magnetometer will return the X, Y & Z components of the ambient magnetic

field. This is nominally the earth field for many applications, but readings may include

significant offsets and distortions due to hard/soft iron effects. The magnetometer is

also subject to the same issue as an accelerometer – if one of the sensor axes is

parallel to the ambient magnetic field vector, then the other two sensor axes will

return values of zero. The good news is that since the earth magnetic field and gravity

are never co-linear
2
, between our accelerometer and magnetometer, we have enough

information to figure out the current device orientation, regardless of how we rotate the

sensor.

Fig 10. 3-Axis Magnetometer will allow you to align yourself with the earth’s magnetic

field

Our 1st three sensors each returned a 3-dimensional vector. But the pressure sensor

returns just a single scalar value. Changes in pressure can be used to infer changes in

altitude, which adds another source of information when computing vertical locations.

2. Except at the geomagnetic poles

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 16 of 114

Fig 11. Pressure
3
 can be our 10th axis.

Combine an accelerometer with a gyro and you get a 6-axis Inertial Measurement Unit,

or IMU.

Add a magnetometer to an IMU and you have a MARG (Magnetic, Angular Rate and

Gravity) sensor. Add a compute engine to a MARG and you get an AHRS (Attitude and

Heading Reference System).

A full 10-axis sensor subsystem = accelerometer + gyro + magnetometer + pressure

Use “DOF” when describing motion. Use “axis” or “axes” when describing sensor

configurations.

2.2 3-Axis Tilt

The 3-axis tilt algorithm is enabled with the F_3DOF_G_BASIC parameter in build.h.

This algorithm requires only a single 3-axis accelerometer. It is only capable of modeling

roll, pitch and tilt from vertical. It has no sense of compass orientation. This implies that

the four orientations shown in Fig 12 will return exactly the same tilt value.

Fig 12. Equivalent Tilt Cases

This can result in some interesting behaviors when you invert the sensor board in the

Sensor Fusion Toolbox. You may observe a “twist” by 180 degrees in the apparent

orientation of the board. Both before and after are correct because of the ambiguity in

the orientation representation.

3. The NXP MPL3115A2 can provide pressure or an estimate of altitude. It can also provide a

temperature measurement.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 17 of 114

2.3 2D Automotive eCompass

This algorithm utilizes a 3-axis magnetometer to compute compass heading, while

forcing the apparent orientation of the board to always be flat with respect to the earth.

For general use, the 6-axis tilt compensated eCompass discussed later is considered

superior. But that algorithm is subject to errors due to linear acceleration. In contrast,

the 2D automotive eCompass has no accelerometer, and therefore is immune to that

issue. But it IS still sensitive to magnetic interference, and tilt will introduce errors in the

apparent heading.

Tilt errors result from the fact that over most of the Earth’s surface, the magnetic field

does not point to magnetic north, it points north and down. So tilting the sensor can

rotate some of the up-down component of the field into the X-Y components. This then

introduces errors in the heading computation.

This is easy to see using the Sensor Fusion Toolbox. Simply select the 2D algorithm

option and tilt the board from horizontal.

2.4 3-Axis Rotation

This option, which utilizes only a 3-axis gyroscope, is excellent for modeling rotations in

three dimensions. But is has zero sense of up and down or compass heading.

Orientation can be computed by integrating rotational rates over time, but if you don’t

know the initial orientation, you have no baseline for determining absolute orientation at

any point in time.

2.5 6-Axis Tilt-Compensated eCompass

In Section 2.3, we noted that the 2D compass was subject to tilt error. When we utilize

both an accelerometer and a magnetometer, we can mathematically align the sensor

axes to the global earth frame of reference. This gives a full orientation estimate as well

as accurate compass heading.

The limitations of this particular algorithm is that it is sensitive to magnetic interference as

well as linear acceleration. Again, this is easy to see using the Sensor Fusion Toolbox.

Wave a magnet a few inches from your board, or simply shake the board vigorously, and

you will see the effects.

2.6 6-Axis Gaming

This algorithm requires a 3-axis accelerometer and a 3-axis gyroscope. The gyro gives

us the beautiful rotations we saw in the 3-axis rotation algorithm, and the accelerometer

gives us an orientation with respect to gravity. What we don’t get is compass heading.

And this algorithm is still sensitive (although much less than the eCompass algorithm) to

linear acceleration.

2.7 9-Axis

The 9-axis algorithm is generally considered to be the gold standard, as it does a good

job of trading off the strengths and weaknesses of accelerometer, gyroscope and

magnetometer to compute orientation with respect to the global earth frame. It also

includes logic to identify magnetic and acceleration jamming, and ignore the affected

sensor. The “Main” tab of the Sensor Fusion Toolbox for Windows includes a feature

that identifies when magnetic jamming is detected.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 18 of 114

You can still see some effects due to magnetic interference or linear acceleration, but

they are largely attenuated. However, they cannot be fully attenuated when those

sources of interference are nearing steady state. The algorithm takes advantage that

we know how each of the 3 vectors in question (gravity, earth field and rotation) should

change relative to the others when the board rotates. Introduction of constant offsets into

assumed gravity and earth field vectors will throw off those calculations.

2.8 Inertial Navigation – Truth or Fiction?

Accelerometers measure linear acceleration minus gravity. If you know the orientation of

the accelerometer, you can subtract out the gravity component, leaving you with only

linear acceleration. The linear acceleration vector can then be rotated from sensor to

global frame of reference. Integrate that once and you get velocity, twice you get

position. We all learned that in college. This is the basis for inertial navigation, AKA

dead reckoning. These techniques have been in use since World War II.

BUT… those systems could afford to spend lots of money carefully calibrating sensors to

remove offset and gain errors in the sensors. Today’s MEMS and solid state sensors are

mass manufactured with low cost in mind.

Let’s consider a modern commercial MEMS accelerometer, with a specified post board

mount accuracy of +/- 20mg and an output noise level of 99µg/√Hz. Conservatively

modeling that 20mg solely in the X direction and with random noise distributed across all

3 axes, a simple Matlab simulation shows:

X displacement in meters

0 0.5 1 1.5 2 2.5

Y
 d
is
p
la
c
e
m
e
n
t
in
 m
e
te
rs

10-3

-4

-2

0

2

4

6

8
Position over time

Fig 13. XY displacement over a 5 second interval (10 runs) for an uncallibrated

accelerometer

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 19 of 114

The large displacement in X is due to the 20mg offset in X. That 20 mg offset yields a

velocity error which increases linearly with time, and a position error that grows

quadratically.

The smaller displacement in Y is strictly due to wideband noise. Velocity errors in

accelerometer noise will grow as a function of the square root of time. Position errors will

grow as a function of time
2/3

.

Doubly integrating even small input errors produces very large errors in time. Not

understanding this basic math is one of the most common errors we see engineers new

to the field making. If you would like to dig deeper, reference [9] provides a solid basis

for understanding these relationships.

But what if we could calibrate out that 20mg post-board mount offset? Version 7.00 of

the sensor fusion library includes routines which allow you to do a one-time/one-

temperature calibration which can reduce that 20mg offset down to much lower levels.

The same simulation used above, but with a value of 350µg residual non-linearity, yields

the graph below.

X displacement in meters

-0.01 0 0.01 0.02 0.03 0.04 0.05

Y
 d
is
p
la
c
e
m
e
n
t
in
 m
e
te
rs

10-3

-8

-6

-4

-2

0

2

4

6
Position over time

Fig 14. XY displacement over a 5 second interval (10 runs) for a calibrated accelerometer

Notice the dramatic improvement in the X-displacement, from a maximum of 2.5 meters

to 5cm. Bear in mind that these errors will continue to grow over time. But the point is

that using inertial data to aide other systems (like GPS) is now possible so long as you

do a reasonable job of pre-calibrating out known sensor errors.

The new “INS” tab in the Sensor Fusion Toolbox for Windows let’s you experiment with

errors in position over time. You will see very quick explosions in error for uncalibrated

sensors. But as the discussion above shows, you will get better results after calibrating

your sensors.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 20 of 114

3. Quick Start Guides

3.1 Getting Hardware

Hardware requirements were outlined in Sections 1.4.1, 1.4.2 and 0. No matter what

MCU and sensor set you select for your final application, we recommend that you start

with (and keep available) a known working solution based on the boards in those

sections. When it comes time to debug your production design, you will find it useful to

have that working example of sensor fusion as a reference.

The KSDK includes both bare-metal and FreeRTOS sensor fusion projects for each

ISSDK-supported MCU. Start with the sensor shield required by one of those projects.

Any V7.00 sensor fusion community pre-releases will include an example utilizing FRDM-

K64F and FRDM-FXS-MULT2-B boards

1. Development boards can be purchased at http://www.nxp.com/freedom.

2. Visit http://www.nxp.com/opensda and install the appropriate OpenSDA drivers

for your board. If desired, update the bootloader firmware on your board using

the procedures outlined.

Note: Programming boards via the Sensor Fusion Toolbox requires that the

OpenSDA implementation on your embedded board supports drag and

drop programming.

3.2 Getting the KSDK

Version 2.xx of the KSDK is custom generated for each specific Kinetis MCU. It contains

only code and examples compatible with that MCU and the RTOS and tool options you

select. You can configure and download your version at http://www.nxp.com/kex.

Within a KEX-created KSDK, you can expect to see a directory tree similar
4
 to:

• SDK_2.x_FRDM-K64F

o boards

� frdmk64f

• demo_apps

• driver_examples

• …

� frdmk64f_agm01

• frdm_k64f.c

• frdm_k64f.h

• frdm_stbc_agm01_shield.h

• issdk_examples

o algorithms

� sensorfusion

o sensors

� fxas21002

� fxos8700

� frdmk64f_mult2b

• frdm_k64f.c

• frdm_k64f.h

• frdm_stbc_mult2b_shield.h

4. This document was written prior to the final KSDK inclusion of ISSDK and the Sensor Fusion V7.00

library. Some changes may have occurred in the interim.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 21 of 114

• issdk_examples

o algorithms

� sensorfusion

o sensors

� fxas21002

� fxos8700

� fxls8471q

� mag3110

� mma865x

� mpl3115

o CMSIS

o devices

� MK64F12

• drivers

• iar

o docs

o middleware

� issdk_1.0

• algorithms

o sensorfusion

� docs

� sources

• sensors

o fxas21002.h

o fxos8700.h

o fxls8471q.h

o mag3110.h

o mma865x.h

o mpl3115.h

o rtos

� freertos_8.2.3

KSDK elements highlighted in red are utilized by the sensor fusion examples.

See the Section 1.3.1 for supporting documentation included in the sensorfusion/docs

directory. The issdk_examples/algorithms/sensorfusion directory will include

example projects for both bare-metal and FreeRTOS-based applications. Eventually you

can expect to see example projects for KDS, Keil, IAR and other IDEs. Pre-release

versions of the Fusion Library will only include IAR examples.

3.3 Compiling Binaries

The development kit is compatible with any number of different development

environments. Additional information on software and tool options for Kinetis MCUs can

be found at http://www.nxp.com/products/software-and-tools/run-time-software/kinetis-

software-and-tools:KINETIS_SWTOOLS.

The Kinetis Design Studio IDE can be downloaded for free from http://kex.nxp.com.

Sample projects are completely preconfigured. You should only have to:

1. Open the supply project(s) in the IDE of your choice

2. Compile

3. Download into your board

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 22 of 114

3.4 Microsoft Windows

You do not need to do any program development to start experimenting with sensor

fusion algorithms on your board. The Sensor Fusion Toolbox for Windows comes with a

variety of prebuilt binaries that can be installed on your development board.

The Sensor Fusion Toolbox for Windows can be downloaded from

http://www.nxp.com/sensorfusion. The tool is free and is compatible with all the fusion

features discussed in this user guide.

Assuming you already have a Freedom board and sensor shield in hand:

3. Connect Freedom board to PC using a USB cable

4. Start the Sensor Fusion Toolbox

Fig 15. Sensor Fusion Toolbox For Windows at Startup

5. Program your board:

a. Click File->Flash Kinetis Binary-><freedom board name>-><shield name>-

><sensor_combo>.

b. Check your USB connection as per the resulting dialog box and click OK

after reading the full set of directions

c. Select your board (MBED if using the ARM CMSIS-DAP bootloader) in the

“Save As” dialog and click “Save”

d. Click OK when informed that the board flashed.

e. unplug and plug the board back in

6. Click the Auto Detect button. If your board is recognized, you will see the

following dialog.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 23 of 114

Fig 16. Get ready to calibrate your gyroscope

Put your board flat on a tabletop before hitting OK. This will allow the board

discovery process to also measure stationary gyro offsets. These are then used to

initialize Kalman filter gyro offset values. Next you should see

Fig 17. Sensor Fusion Toolbox For Windows at Startup

7. Pick up your board and rotate in space (away from any furniture and away from

your notebook) until the Magnetic Interference notice disappears.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 24 of 114

Fig 18. Sensor Fusion Toolbox For Windows after Magnetic Calibration

At this point, you have a working board that is properly communicating to the Sensor

Fusion Toolbox. You can now start experimenting with the features listed in Section

1.4.5.2.

3.5 Android

The Sensor Fusion Toolbox for Android communicates via a development board via

Bluetooth. Supported shield boards are the FRDM-FXS-MULTI-B and FRDM-FXS-

MULT2-B boards. The former is no longer in production, having been replaced by the

latter. The two boards look almost identical.

1. Program your development board using the standard sensor fusion demo
(see Section 3.3).

2. The Sensor Fusion Toolbox for Android can be directly downloaded from
Google’s Play Store at
https://play.google.com/store/apps/details?id=com.sensors.fusion.

Alternately you can search for [NXP sensor fusion] in Google Play.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 25 of 114

Fig 19. Searching for the App in Google’s Play Store

If you search instead of using the direct link above, you may see two versions

listed. The top version (with the diamond chip logo) is the legacy Freescale

version of the tool. It will not be maintained going forward.

Fig 20. Sensor Fusion Toolbox For Android Options

3. You should select the icon with the white and pastel NXP logo. It has all the

features of the original, and will be the Android platform going forward.

4. Install the application in the normal manner.

5. Power up your sensor board. Ensure that the power jumper next to the

Bluetooth module is installed (“A” in Fig 21).

6. FRDM-FXS-MULTI-B and FRDM-FXS-MULT2-B boards utilize Bluetooth

modules from BlueRadios. Note the last six digits on the second line of the radio

module (“B” in Fig 21).

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 26 of 114

Fig 21. Key Features on the FRDM-FXS-MULT2-B

7. On your Android device, select “Settings->Bluetooth” and search for a device

beginning with “BlueRadios” and ending with the digits you noted above. Pair

your Android device with that device.

8. Exit Settings

9. Startup the application by clicking the “NXP” logo on your device.

Fig 22. Startup screen when no paired device is found

10. Select the options menu in the upper right and choose “Preferences”

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 27 of 114

Fig 23. Sensor Fusion Toolbox for Android Options Menu

11. Check the checkbox labeled “Automatically enable Bluetooth on entry”.

Fig 24. Key Features on the FRDM-FXS-MULT2-B

12. Click the Save and Exit button, then exit the program and restart it.

Fig 25. Key Features on the FRDM-FXS-MULT2-B

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 28 of 114

13. Click Source/Algorithm and select Remote 9-axis. The PCB displayed on your

Android device should track the physical board.

The Android version of the Sensor Fusion Toolbox includes extensive documentation

and tutorial information. Select the Navigation icon and then Documentation to explore

your options.

3.5.1 iOS

Unfortunately, NXP does not offer the Sensor Fusion Toolbox on iOS.

4. Architecture

4.1 High Level Overview

Version 7.00 of the sensor fusion library represents a major departure from Version 5.00

and prior kits. The software has been repartitioned to localize hardware interfaces into a

small number of subsystems with well defined interfaces. This makes it possible for

developers to retarget the library to entirely different MCUs, sensors and tool chains

simply by swapping out the various subsystems and drivers.

Fig 26 illustrates the overall architecture. At the bottom of the stackup is the 2
nd

generation Kinetis Software Design Kit (KSDK v2). The KSDK is available for all NXP

Kinetis MCUs, and can be freely downloaded from nxp.com/ksdk.

Kinetis SDK v2 is a collection of comprehensive software enablement for NXP Kinetis

Microcontrollers that includes system startup, peripheral drivers, USB and connectivity

stacks, middleware and real-time operating system (RTOS) kernels. The Kinetis SDK

also includes getting started and API documentation along with usage examples and

demo applications designed to simplify and accelerate application development on

Kinetis MCUs.

All software is provided free-of-charge as assembly and C source code under permissive

and open-source licensing. Support is provided through the Kinetis SDK Community

Forum.

On top of the KSDK, we have:

• the status subsystem, which provides a simple visual indicator of the system status.

The default implementation assumes an RGB LED driven via GPIOs.

• the control subsystem provides an interface to/from the NXP Sensor Fusion

Toolbox. This is via UART serial port communication.

• the ISSDK provides a CMSIS compliant set of low level APIs for accessing sensor

registers via I2C and/or SPI. All sensor drivers are written in terms of 6 ISSDK

functions.

• flash memory storage can be used to store/retrieve sensor calibration parameters

on Kinetis devices. Other MCU families can swap this interface (which has only

one function) out to support external EEPROM or other NVM options.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 29 of 114

Fig 26. High Level Architecture

The board specific hardware abstraction layer (HAL) does not require the KSDK. It is

responsible for mathematically aligning the axes of all sensors used to compute

orientation.

The core functions of the sensor fusion library are designed for use with or without an

RTOS. The status and control subsystems, which are considered design dependent, are

dynamically installed at run time. In a similar fashion, the installSensor() function is

used to specify which sensors are to be used to provide raw data for the fusion process.

Each sensor driver must include a function to initialize the sensor, and another to read

values.

The initializeFusionEngine() sets up all the fusion engine data structures. Then

readSensors(), conditionSensorReadings() and runFusion() functions are called

periodically to read and process new data. For bare-metal implementations, loop timing

can be provided by any hardware timer. A periodic interval timer, or PIT, driver is

provided as an example. Various Real Time Operating systems will generally have their

own mechanisms. Often this may utilize the ARM sysTick timer.

4.2 Data Structures

C header files have been extensively annotated with for use with Doxygen. The

development kit will ship with a software reference manual in HTML format. Details of

individual data structures can be found there.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 30 of 114

4.2.1 High Level View

The V7.00 design kit never calls malloc(). All storage is allocated at compile time and

defined statically in the calling program. To make this easier, this version of the kit has

in-lined structures which, in previous releases, were free-standing.

(1) Bold black are in-line structures

(2) Bold red are function pointers

(3) Normal text = scalars and pointers

Fig 27. Sensor Fusion High Level Data Structures

The top level structure is of type SensorFusionGlobals. As seen in Fig 27, everything

associated with a sensor fusion application can be accessed starting with an instance of

this structure. The structure grows and shrinks as a function of compile-time

configuration parameters defined in build.h.

By convention, we declare this structure:

SensorFusionGlobals sfg;

in our main.c. The address of structure sfg is commonly passed to fusion routines, which

then use pointer de-referencing to access data. This user guide will use this notation in

examples from this point forward. For instance:

B[CHX] = sfg->Mag.fBc[CHX];

reads the averaged, calibrated, magnetometer measurement in the X direction.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 31 of 114

Note that an object-oriented style of programming has been used, wherein public

functions associated with a given system are referenced via function pointers in the

applicable structure. So the high level sensor fusion functions are accessed via the

SensorFusionGlobals structure, the ControlSubsystem functions via that structure,

and the same for the StatusSubsystem. The exception to this general rule are those

functions necessary to populate the structures in the first place.

4.2.2 Sensor Data Structures

The sensor fusion development kit supports sensors of type:

• pressure/altimeter

• accelerometer

• magnetometer

• gyroscope

Each sensor type has an associated substructure defined within the

SensorFusionGlobals structure. It is the responsibility of the sensor <sensor>_Read()
5

functions to populate raw sensor readings into these structures at the start of each loop

through the sensor fusion.

In the case of pressure/altimeter sensors, this is a simple write operation directly into the

appropriate fields (i.e., iH and iT) of the structure.

The other three sensor types utilize software FIFOs, which can be filled incrementally

over the course of several sampling loops prior to processing by the fusion routines. In

these cases, you use the addToFifo() function to transfer values from the sensor’s

hardware FIFO into the fusion library’s software FIFO. A good example of how to do this

is contained within driver_MMA8652.c.

Compile time build.h parameters which control which sensor structures are used are:

#define F_USING_ACCEL 0x0001

#define F_USING_MAG 0x0002

#define F_USING_GYRO 0x0004

#define F_USING_PRESSURE 0x0008

#define F_USING_TEMPERATURE 0x0010

If the sensor type is needed, use the values shown. Otherwise change the unneeded

field value to 0x000.

4.2.3 Reading Sensor Values

NOTE: CHX, CHY and CHZ are conveniently defined as 0, 1 and 2 for readability in the

library. Sensor data types are defined in types.h.

All of the examples that follow assume that sfg is a pointer to the top level sensor fusion

structure.

4.2.3.1 Accelerometer

Accelerometer values are stored as int16_t. Multiply by sfg->Accel->fgPerCount to

convert to gravities. Both calibrated and uncalibrated results are available.

For calibrated outputs:

void getAccel1(SensorFusionGlobals *sfg, float fAcc[3])

{

5. 5 defined within the corresponding driver_<sensor>.c file.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 32 of 114

 fAcc[CHX] = (float) sfg->Accel.iGc[CHX]*sfg->Accel.fgPerCount;

 fAcc[CHY] = (float) sfg->Accel.iGc[CHY]*sfg->Accel.fgPerCount;

 fAcc[CHZ] = (float) sfg->Accel.iGc[CHZ]*sfg->Accel.fgPerCount;

}

Alternately, simply read the averaged measurements, which are already stored as floats:

void getAccel2(SensorFusionGlobals *sfg, float fAcc[3])

{

fAcc[CHX] = sfg->Accel.fGc [CHX];

fAcc[CHY] = sfg->Accel.fGc [CHY];

fAcc[CHZ] = sfg->Accel.fGc [CHZ];

}

for uncalibrated, use iGs and fGs instead of iGc and fGc above. Please note that

calibrated results differ from uncalibrated results only if you are using the precision

accelerometer calibration functions of the toolkit.

4.2.3.2 Magnetometer

Magnetometer values are stored as int16_t. Multiply by thisMag->fuTPeruCount to

convert to µTs. Both raw and calibrated magnetometer outputs are available. Scaling is

the same for both.

For calibrated outputs:

void getMag1(SensorFusionGlobals *sfg, float fMag[3])

{

 fMag[CHX] = (float) sfg->Mag.iBc[CHX]*sfg->Mag.fuTPerCount;

 fMag[CHY] = (float) sfg->Mag.iBc[CHY]*sfg->Mag.fuTPerCount;

 fMag[CHZ] = (float) sfg->Mag.iBc[CHZ]*sfg->Mag.fuTPerCount;

}

OR

void getMag2(SensorFusionGlobals *sfg, float fMag[3])

{

 fMag[CHX] = sfg->Mag.fBc [CHX];

 fMag[CHY] = sfg->Mag.fBc [CHY];

 fMag[CHZ] = sfg->Mag.fBc [CHZ];

}

For uncalibrated outputs, use iBs and fBs instead of iBc and fBc in the code above.

4.2.3.3 Gyroscope

Gyroscope values are stored as int16_t. Multiply by thisGyro->fDegPerSecPerCount to

convert to degrees/second. Uncalibrated readings can be read:

void getAV1(SensorFusionGlobals *sfg, float fAV[3])

{

 fAV[CHX] = (float) sfg->Gyro.iYs[CHX]* sfg->Gyro.fDegPerSecPerCount;

 fAV[CHY] = (float) sfg->Gyro.iYs[CHY]* sfg->Gyro.fDegPerSecPerCount;

 fAV[CHZ] = (float) sfg->Gyro.iYs[CHZ]* sfg->Gyro.fDegPerSecPerCount;

}

OR

void getAV2(SensorFusionGlobals *sfg, float fAV[3])

{

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 33 of 114

 fAV[CHX] = sfg->Gyro.fYs [CHX];

 fAV[CHY] = sfg->Gyro.fYs [CHY];

 fAV[CHZ] = sfg->Gyro.fYs [CHZ];

}

Calibrated gyro measurements are available as angular velocity numbers computed by

the Kalman filters in the sensor fusion library. They are read as the iOmega fields in the

state vector structures associated with the two different Kalman filter options shown in

Table 6.

4.2.3.4 Pressure Sensor / Altimeter

The sensor fusion libratry includes a driver for the MPL3115A2 pressure/sensor

altimeter. This driver configures the 3115 to output an estimate of altitude which is based

upon the fixed NASA standard atmospheric model [10]. Altitude estimates will vary as a

function of pressure and temperature, and are best used as a relative indicator of altitude

change.

These can be retrieved in a fashion similar to the sensor types already described.

void checkAltimeter1(SensorFusionGlobals *sfg,

float *altitude,

float *temperature)

{

 *altitude = (float) sfg->Pressure.iH*sfg->Pressure.fmPerCount;

 temperature = (float) sfg->Pressure.iT

sfg->Pressure.fCPerCount;

}

OR

void checkAltimeter2(SensorFusionGlobals *sfg,

float *altitude,

float *temperature)

{

 *altitude = sfg->Pressure.fH;

 *temperature = sfg->Pressure.fT;

}

4.2.4 State Vector structures for fusion algorithms

Each fusion algorithm has its own dedicated state vector (SV_) data structure within the

larger SensorFusionGlobals. Each has a compile time control similar to those

discussed in the previous section within build.h. Table 5 enumerates the options.

Table 5. State Vector Substructures within SensorFusionGlobals

Algorithm names match those used by the Sensor Fusion Toolbox for Windows

Sub-Structure Algorithm build.h control

SV_1DOF_P_BASIC Altimetry F_1DOF_P_BASIC

SV_3DOF_G_BASIC Tilt F_3DOF_G_BASIC

SV_3DOF_B_BASIC 2D Automotive Compass F_3DOF_B_BASIC

SV_3DOF_Y_BASIC Rotation F_3DOF_Y_BASIC

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 34 of 114

Sub-Structure Algorithm build.h control

SV_6DOF_GB_BASIC Tilt Compensated

eCompass

F_6DOF_GB_BASIC

SV_6DOF_GY_KALMAN Gaming Handset F_6DOF_GY_KALMAN

SV_9DOF_GBY_KALMAN Gyro Stabilized Compass F_9DOF_GBY_KALMAN

The routines which compute orientation (all but the first in the table above) return a

common set of parameters (such as output quaternion), as well as algorithm-specific

values in their output data structures. Table 6 lists the C field names within each of those

structures. Because the field names are determined based on algorithm-specific naming

conventions, they do not always match for equivalent fields. The SV_COMMON and

SV_ptr data types can be used to cast any of the six structure types into a common

naming convention.

For instance, the following utility function is used to scale streaming fusion results for

transmission over a serial line to the Sensor Fusion Toolbox:

void readCommon(SV_ptr data,

 Quaternion *fq,

 int16_t *iPhi,

 int16_t *iThe,

 int16_t *iRho,

 int16_t iOmega[],

 uint16_t *isystick)

{

 *fq = data->fq;

 iOmega[CHX] = (int16_t) (data->fOmega[CHX] * 20.0F);

 iOmega[CHY] = (int16_t) (data->fOmega[CHY] * 20.0F);

 iOmega[CHZ] = (int16_t) (data->fOmega[CHZ] * 20.0F);

 *iPhi = (int16_t) (10.0F * data->fPhi);

 *iThe = (int16_t) (10.0F * data->fThe);

 *iRho = (int16_t) (10.0F * data->fRho);

 *isystick = (uint16_t) (data->systick / 20);

}

readCommon() could then be called:

SV_ptr A;

A = ((SV_ptr)&sfg->SV_3DOF_G_BASIC; // or

A = ((SV_ptr)&sfg->SV_3DOF_B_BASIC; // or

A = ((SV_ptr)&sfg->SV_3DOF_Y_BASIC; // or

A = ((SV_ptr)&sfg->SV_6DOF_GB_BASIC; // or

A = ((SV_ptr)&sfg->SV_6DOF_GY_KALMAN; // or

A = ((SV_ptr)&sfg->SV_9DOF_GBY_KALMAN;

readCommon(A, &fq, &iPhi, &iThe, &iRho, iOmega, &isystick);

Table 6 defines the values found in the various state vector structures, along with the

generalized name defined in the SV_COMMON type definition.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 35 of 114

Table 6. Location of individual variables within the global structures

Description Data Type

Fusion Algorithm Option

SV_COMMON G

(accel)

B

(auto
compass)

Y

(gyro)

GB

(eCompass)

GY

(accel + gyro)

GBY

(9-axis)

roll in degrees float fLPPhi fLPPhi fPhi fLPPhi fPhiPl fPhiPl fPhi

pitch in degrees float fLPThe fLPThe fThe fLPThe fThePl fThePl fThe

yaw in degrees float fLPPsi fLPPsi fPsi fLPPsi fPsiPl fPsiPl fPsi

compass heading in

degrees
float fLPRho fLPRho fRho fLPRho fRhoPl fRhoPl

fRho

tilt angle in degrees float fLPChi fLPChi fChi fLPChi fChiPl fChiPl fChi

orientation matrix

(unitless)
float fLPR[3][3] fLPR[3][3] fR[3][3] fLPR[3][3] fRPl[3][3] fRPl[3][3] fRM[3][3]

quaternion (unitless) Quaternion fLPq fLPq fq fLPq fqPl fqPl fq

rotation vector float fLPRVec[3] fLPRVec[3] fRVec fLPRVec[3] fRVecPl[3] fRVecPl[3] fRVec[3]

angular velocity in dps float fOmega[3] fOmega[3] fOmega[3] fOmega[3] fOmega[3] fOmega[3] fOmega[3]

systick Int32_t systick systick systick systick systick systick systick

magnetic inclination

angle in degrees
float N/A N/A N/A fLPDelta N/A fDeltaPl

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 36 of 114

Description Data Type

Fusion Algorithm Option

SV_COMMON G

(accel)

B

(auto
compass)

Y

(gyro)

GB

(eCompass)

GY

(accel + gyro)

GBY

(9-axis)

gyro offset in

degrees/sec
float N/A N/A N/A N/A fbPL[3] fbPL[3]

linear acceleration in

the global frame in

gravities

float N/A N/A N/A N/A fAccGl[3] fAccGl[3]

time interval in seconds float fdeltat fdeltat fdeltat fdeltat deltat deltat

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 37 of 114

4.2.5 Secret Decoder Ring for Variable Names

You may wonder where the various variable names in the earlier sections come from.

This section answers that question.

Fusion Algorithm Options correspond to the following:

G = SV_3DOF_G_BASIC (accel only)

B = SV_3DOF_B_BASIC (2-axis auto compass)

Y = SV_3DOF_B_BASIC (gyro integration)

GB = SV_6DOF_GB_BASIC (accel + mag eCompass)

GY = accel + gyro Kalman

GBY = 9-axis Kalman

Table 6 variable names follow a strict naming convention.

• Core variable names

o m = magnetic

o b = gyro offset

o a = acceleration

o q = quaternion

• angle names= Phi, The, Psi, Rho and Chi

• f prefix = floating point variable

• LP = low pass filtered

• Pl suffix = a posteriori estimate from Kalman filter

• Gl suffix = global frame

• R = rotation / orientation

• Se = sensor frame

4.3 Status Subsystem

The status subsystem provides a visual indication of the current state of the sensor

fusion system. The default implementation is to simply control the color and rate of the

tricolor LEDs available on many NXP Freedom boards.

This subsystem includes the following source files:

• status.c (core functions)

• status.h (primary interface)

• sensor_fusion.c (encapsulates core functions)

• sensor_fusion.h (defines fusion_status_t and function typedefs)

The only consumer of the system status is the status subsystem itself. Consider it a

“write only memory”. You should feel free to swap out the default implementation with

your own so long as it adheres to the same interface – even if it has zero functionality.

Status states which can be set are of type fusion_status_t. Legal values are shown in

Table 7.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 38 of 114

Table 7. Legal Status States

State Name LED Status Description

OFF OFF The application hasn't started

INITIALIZING Solid Green Initializing sensors and algorithms

NORMAL Blinking Green Operation is Nominal

HARD_FAULT Solid Red Non-recoverable FAULT = something went very
wrong.

SOFT_FAULT Red Flash Recoverable FAULT = something went wrong, but we
can keep going

Functions for setting status are encapsulated and inherited by the core fusion system.

As seen by your application, they are defined in Table 8.

Table 8. Functional interface for the status subsystem

sss = pointer to status subsystem, sfg=pointer to sensor fusion globals, State = variable of type

fusion_status_t.

Command Function

initializeStatusSubsystem(sss) Initializes hardware interfaces and data structures

sfg->setStatus(sfg, State) Changes system status immediately

sfg->queueStatus(sfg, State) Queue up a next status which will take effect the next time that
updateStatus is called.

sfg->updateStatus(sfg) Promotes previously queued next status to current status.

The low level functions for implementing this subsystem are status.c and status.h.

Note that when you set your status to HARD_FAULT, the application will halt in the

status function. The intent is that HARD_FAULT conditions should never occur in

normal practice. So never returning from the set/update status function call makes it

easier to examine the call stack in your debugger.

Install your status subsystem using the initSensorFusionGlobals() core function at the

start of your main().

4.4 Control Subsystem

The control subsystem is responsible for all serial communication between the MCU

running sensor fusion and either version of the Sensor Fusion Toolbox. Fusion controls

maintained by this subsystem are shown in Table 9.

Table 9. Controls maintained by the control subsystem

Field Used by Function

DefaultQuaternionPacketType sensor_fusion.c default quaternion transmitted at power on

QuaternionPacketType Initial value set in
sensor_fusion.c

quaternion type transmitted over UART

AngularVelocityPacketOn Only the control
subsystem itself

flag to enable angular velocity packet

DebugPacketOn flag to enable debug packet

RPCPacketOn flag to enable roll, pitch, compass packet

AltPacketOn flag to enable altitude packet

AccelCalPacketOn sensor_fusion.c variable used to coordinate accelerometer
calibration

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 39 of 114

This subsystem includes the following source files:

• control.c (core functions)

• control.h (primary interface)

• DecodeCommandBytes.c (command decoder)

• output_stream.c (creates streams to Sensor Fusion Toolbox)

Table 10. Functional interface for the control subsystem

sfg=pointer to sensor fusion globals, sBuffer is a large (256) character buffer.

Command Function

initializeControlPort(&controlSubsystem) Initializes hardware and software interfaces for
the control subsystem.

sfg.pControlSubsystem->stream(&sfg, sBuffer); Stream sensor and fusion data to the Sensor
Fusion Toolbox

It is possible to build an application which does not include a control subsystem, but it is

highly recommended that this capability be kept at least through initial PCB and algorithm

debug. As mentioned elsewhere, NXP Community support generally requires that

developers have access to the features of the Sensor Fusion Toolbox for Windows,

which requires this interface for proper operation.

The packet protocol for this system is defined in Section 7.

Install your control subsystem using the initSensorFusionGlobals() core function at the

start of your main(). See Section 4.6.1 for additional details.

4.5 Sensor drivers

NXP supplies a number of sensor drivers with the Sensor Fusion Library. If you choose

to add your own, they should adhere to the same design philosophy and structure

outlined in the following sub-sections.

If you are using NXP-supplied drivers on supported NXP boards, you may skip this

section.

4.5.1 Driver philosophy

Let us define two types of sensors:

• A logical sensor of one specific physical quantity. Examples include acceleration,

magnetic field, angular velocity, etc.

• A physical sensor, which contains 1 or more logical sensors. The latter is typically

called a combo sensor.

A sensor driver must be supplied for each physical sensor. That driver is responsible for

handling all of the logical sensors contained in that device package. An example of a

physical device containing more than one logical sensor type is the NXP FXOS8700

Accel/Mag combo sensor.

Each sensor driver contains two to three functions:

1. The first, <sensor>_Init(), is responsible for initializing all logical sensors to start

sampling at regular intervals. This function is required.

2. The second, <sensor>_Read(), is responsible for reading sensor values and

transferring them into the appropriate fields within the SensorFusionGlobals

structure. This function is required.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 40 of 114

3. The third, <sensor>_Idle(), can be optionally used to power down sensors when

not needed. Generally, you won’t need these for accelerometers as these are

the lowest power of the three motion sensor types. We likely will want to keep

accelerometers active to detect motion, whereas gyroscopes and

magnetometers can sometimes be placed in a lower power state.

The only parameter typically affecting sensor initialization is desired sampling rate.

These are set as a function of build.h options at compile time.

We use a polling methodology to simplify software structure. This means there may be

some variable latency from sample to sample, but this is typically many times less than

the physical bandwidth of the motion being measured, and can usually be ignored.

4.5.2 Foundation functions

Fig 26 shows the interaction between the sensor drivers (labeled Physical Sensor #1-n)

and the rest of the system. Drivers are extremely simple and each requires only three

underlying functions. For I
2
C-based devices, these are:

• Register_I2C_Read()

• Sensor_I2C_Write()

• Sensor_I2C_Read()

For SPI-based devices, these are:

• Register_SPI_Read()

• Sensor_SPI_Write()

• Sensor_SPI_Read()

The Register_xxx_Read() commands read a specified number of bytes starting at a

given address offset into a user-provided buffer.

The Sensor_xxx_Read() and Sensor_xxx_Write() are slightly higher level functions.

They access sensor registers that have been specified using a structure of type

registerreadlist_t or registerwritelist_t respectively.

If you are porting the sensor fusion library to an alternate hardware or software

environment, you can reuse the existing drivers simply by swapping in your own

implementation of the read & write functions above.

These functions specify register details using two different typdefs:

typedef struct {

 uint16_t writeTo; ← Address

 uint8_t value; ← Value

 uint8_t mask; ← Generally un-used Mask. Set to 0x00;

} registerwritelist_t;

and

typedef struct {

uint16_t readFrom; ← Address where the value is read

uint8_t numBytes; ← Number of bytes to read

} registerreadlist_t;

These are used to create arrays of registers to be read/written by the functions above.

The following code segments show the register definitions used by the MAG3110 read

and write functions, which will be examined in the sections that follow.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 41 of 114

const registerreadlist_t MAG3110_WHO_AM_I_READ[] =

{

{ .readFrom = MAG3110_WHO_AM_I, .numBytes = 1 },

__END_READ_DATA__

};

const registerreadlist_t MAG3110_DR_STATUS_READ[] =

{

{ .readFrom = MAG3110_DR_STATUS, .numBytes = 1 },

__END_READ_DATA__

};

registerreadlist_t MAG3110_DATA_READ[] =

{

{ .readFrom = MAG3110_OUT_X_MSB, .numBytes = 6 },

__END_READ_DATA__

};

const registerwritelist_t MAG3110_Initialization[] =

{

 { MAG3110_CTRL_REG1, 0x00, 0x00 },

 { MAG3110_CTRL_REG2, 0x90, 0x00 },

#if (MAG_ODR_HZ <= 10) // select 10Hz ODR

 { MAG3110_CTRL_REG1, 0x19, 0x00 },

#elif (MAG_ODR_HZ <= 30) // select 20Hz ODR

 { MAG3110_CTRL_REG1, 0x11, 0x00 },

#elif (MAG_ODR_HZ <= 40) // select 40Hz ODR

 { MAG3110_CTRL_REG1, 0x09, 0x00 },

#else // select 80Hz ODR

 { MAG3110_CTRL_REG1, 0x01, 0x00 },

#endif

 __END_WRITE_DATA__

};

Notice how the last write in the initialization sequence is dependent upon the

MAG_ODR_HZ parameter defined in build.h. Also note that each array sequence is

terminated with __END_WRITE_DATA__. This is a required stopping point utilized by

lower level functions which process these arrays.

4.5.3 <sensor>_Init (required)

The standard typdef for sensor initialization functions is:

typedef int8_t (initializeSensor_t) (

struct PhysicalSensor *sensor,

struct SensorFusionGlobals *sfg

) ;

The sensor parameter is a pointer to a structure of type PhysicalSensor which you

declare statically in your main.c. A pointer to it is passed to the installSensor() function

at startup. The second parameter is simply a pointer to the SensorFusionGlobals

structure.

This prototype MUST be used for all sensor initialization functions.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 42 of 114

The function that <sensor>_Init() functions must perform are:

• check the sensor whoAmI to confirm that expected hardware is present

• configure the sensor for periodic sampling

• store any required constants to convert values read from registers into useful

values

Let’s examine the MAG3110_Init() function. First, we have the function declaration

consistent with initializeSensor_t shown above.

int8_t MAG3110_Init(PhysicalSensor *sensor,

SensorFusionGlobals *sfg)

{

define a couple local variables

 int32_t status;

 uint8_t reg;

Now call the Register_I2C_Read() foundation function to confirm the hardware is

present and check the whoAmI.

 status = Register_I2C_Read(

sensor->bus_driver,

sensor->addr,

MAG3110_WHO_AM_I, 1, ®);

Return early if an error is found

 if (status==SENSOR_ERROR_NONE) {

 sfg->Mag.iWhoAmI = reg;

 if (reg!=MAG3110_WHOAMI_VALUE) {

 return(SENSOR_ERROR_INIT);

 }

 } else {

 return(SENSOR_ERROR_INIT);

 }

 Perform the set of register writes defined earlier to put the part in the proper mode.

 status = Sensor_I2C_Write(

sensor->bus_driver,

sensor->addr,

MAG3110_Initialization

);

Stash some constants for later use.

 sfg->Mag.iCountsPeruT = MAG3110_COUNTSPERUT;

 sfg->Mag.fCountsPeruT = (float)MAG3110_COUNTSPERUT;

 sfg->Mag.fuTPerCount = 1.0F / MAG3110_COUNTSPERUT;

Set some flags used elsewhere for power management.

 sensor->isInitialized = F_USING_MAG;

 sfg->Mag.isEnabled = true;

Return the status code received when we did configuration.

return (status);

}

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 43 of 114

Combo devices may be more complex, but the basic flow is the same for all sensor

initialization functions.

4.5.4 <sensor>_Read (Required)

Read functions use essentially the identical sensor prototype as the initialization

functions:

typedef int8_t (readSensor_t) (

struct PhysicalSensor *sensor,

struct SensorFusionGlobals *sfg

) ;

The parameters are the same previously discussed.

The function of the <sensor>_Read functions is straight forward, read all available

values from a physical sensor, adding those into the appropriate software FIFO within the

sensor fusion structures. Devices with no hardware FIFO will have only 1 value to

transfer. Devices with hardware FIFOs may have more. The MAG3110 we are using as

an example does not have a hardware FIFO.

int8_t MAG3110_Read(

PhysicalSensor *sensor,

SensorFusionGlobals *sfg)

{

You will need to declare a buffer large enough to receive the largest possible sensor

payload.

 uint8_t I2C_Buffer[6]; ← I2C read buffer

 int8_t status; ← I2C transaction status

 int16_t sample[3]; ← Reconstructed sample

Here is the actual read.

 status = Sensor_I2C_Read(

sensor->bus_driver,

sensor->addr,

MAG3110_DATA_READ,

I2C_Buffer

);

Convert bytes read into the proper int16_t form. This may vary from sensor to sensor.

 sample[CHX] = (I2C_Buffer[0] << 8) | I2C_Buffer[1];

 sample[CHY] = (I2C_Buffer[2] << 8) | I2C_Buffer[3];

 sample[CHZ] = (I2C_Buffer[4] << 8) | I2C_Buffer[5];

If no errors have been found, let’s do some basic conditioning and transfer the new value

into the software FIFO. For FIFO-equipped sensors, this will require a loop.

 if (status==SENSOR_ERROR_NONE) {

 conditionSample(sample); // truncate neg values to -32767

 sample[CHZ] = -sample[CHZ]; // +Z should point up

 addToFifo(

(FifoSensor*) &(sfg->Mag),

MAG_FIFO_SIZE, sample);

 } and return the status from our reads.

 return (status);

 }

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 44 of 114

As you can see, the driver functions are intended to be very simple, with little or no

“knobs to twist”. Their job is to set the sensor up once, and then transfer readings into

the software FIFOs whenever called by the program scheduler. The later is either a

simple loom in main() for bare metal, or an RTOS ReadSensor task.

Note: the PressureSensor structure type does not support a software FIFO. This is

because the relatively low data rates associated with this type of sensor simply don’t

require one.

4.5.5 <sensor>_Idle (Optional)

The <sensor>_Idle() functions use the same function prototype as the initialization and

read functions. These functions must perform the following operations:

• Place the sensor into a low power mode (hopefully with a minimum wakeup

latency)

• Clear the sensor->isInitialized flag

• Clear the appropriate sfg-><type>.isEnabled flag, where <type> is one of:

Pressure, Accel, Mag or Gyro

When a sensor has been idled, the fusion routines can continue using the last computed

reading for the given sensor. Calling <sensor>_Init() again should return the sensor to

the active state.

See Section 4.8 for a description of how to implement fusion standby mode in your

application.

4.5.6 Scheduling sensor read operations

Most sensors have the ability to schedule periodic samples based upon their own internal

timer. Each sensor may either raise an interrupt to the MCU to read its values, or simply

wait until the MCU polls the sensor. Either way, the clock used by the sensor will most

likely not be in perfect synchronization with the MCU clock. When you consider that

systems like ours have multiple sensors, it gets more complicated.

This is important, because the equations of motion at the heart of this and many other

fusion-based systems assume that all quantities are measured at the same moments in

time. This may not even be possible to do, as there is no common set of sampling

frequencies that apply to all sensors.

The easiest way to deal with this problem is to ignore it via the simple expedient of

polling all sensors at a fixed rate, while setting their internal sample rates high enough

that you can ignore any sample time jitter. You might even want to sample at a much

higher rate so that you can filter raw sensor samples to reduce noise. This approach has

been taken by all prior versions of the sensor fusion library.

Version 7.00 of the fusion library adds support for sensor hardware FIFOs. So we end

up with a lot of variables to consider:

1. the physical bandwidth of the motion we are measuring

2. the fusion rate

3. sensor noise levels

4. the software sampling rate

5. hardware sampling rates for

o accelerometer

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 45 of 114

o magnetometer

o gyroscope

6. FIFO sizes for the sensors above

7. system power requirements

Many basic human motions have a fairly low bandwidth of 12 Hz or less
[1]

. However

athletes may exceed this many times over. Consider a baseball player swinging a bat for

instance. You will typically want to set your fusion rate at least twice that of the motion

you wish to capture.

Given a desired fusion rate, how fast do you need to sample your sensors? Generally as

fast as you can within your power budget. The noisiest sensor in the system tends to be

the magnetometer. It is subject to both internal sensor noise, as well as spurious fields

within the environment. This noise can have visible effects on orientation results from

eCompass and 9-axis fusion algorithms. Oversampling and averaging sensor samples

helps to minimize those effects.
6

In Version 5.00 and earlier of the fusion library, all sensors were sampled at the same

sampling rate, and hardware FIFOs in the sensors were not utilized. Although workable,

it did limit the ability to utilize each sensor at its optimal settings.

Addition of hardware FIFO support fixes that problem. As long as you read sensor

values fast enough that FIFOs do not fill, you can decouple the various sensor sampling

rates.

The software sampling rate should be an integer multiple of the fusion rate. Generally,

you want the software sampling rate to be at least as high as the sampling rate for the

slowest sensor in your system that is not equipped with a hardware FIFO. For the NXP

sensor set supported by the standard kit, this will be the MAG3110, which has a

maximum rate of 80Hz.

For a MAG3110-equipped system running a fusion rate at 25Hz, you probably want your

software sampling rate at 100Hz. Your gyro and accelerometer can be programmed for

higher rates, and because they are equipped with hardware FIFOs, you can read them at

the same, or even a lower rate than the MAG3110!

A key parameter passed to the system each time a sensor driver is the schedule

parameter. Set it to 1 to read a particular sensor each time the readSensors() function

is called. Set it to 2 for every other time, 4 for every forth time, etc. readSensors divides

the loop_counter by schedule, if the remainder is zero, the sensor is sampled. The

loop_counter variable itself is controlled by the calling program.

4.6 Core Functions

Core Functions refers to the top level function calls used to integrate sensor fusion into

an application. By design these are few and simple. They hide a tremendous amount of

complexity below the surface.

• initSensorFusionGlobals()

• installSensor()

6
 Assuming you have zero-mean evenly distributed noise, you can add n effective bits of

resolution to a signal by oversampling and averaging at a rate of 2
2n

. So oversampling

by 4X gives you an extra bit of resolution, 16X gives you two bits.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 46 of 114

• initializeFusionEngine()

• readSensors()

• conditionSensorReadings()

• runFusion()

• applyPerturbation() (debug only)

4.6.1 InitSensorFusionGlobals

Variable space for sensor fusion is defined statically above main():

SensorFusionGlobals sfg;

ControlSubsystem controlSubsystem

StatusSubsystem statusSubsystem

All of these must be initialized before use:

initializeControlPort(&controlSubsystem);

initializeStatusSubsystem(&statusSubsystem);

initSensorFusionGlobals(&sfg,

&statusSubsystem,

&controlSubsystem

);

At approximately 9K bytes for the full fusion demo, the sfg instance of

SensorFusionGlobals is by far the largest consumer of RAM in the system, as it

encompasses most of the structures used by the sensor fusion system.

The control and status subsystems are both designed with functions responsible for

setting up required hardware and software interfaces. Once these are called, you must

call the initSensorFusionGlobals() function to install the subsystems for sensor fusion

use and initialize internal variables and software interfaces.

4.6.2 InstallSensor

Fusion applications vary in terms of what sensors are used and how often they are

sampled. A way was needed to inform the fusion engine of new sensor types. This is

done with the installSensor() function.

First, you must define storage for a PhysicalSensor for each sensor component used in

your application. This should be dropped into your main.c just below the statements

covered in the prior section:

PhysicalSensor sensors[3]; ← This implementation uses three physical sensors

Then you call installSensor() once per each physical sensor. For example:

sfg.installSensor(

&sfg, ← Pointer to the SensorFusionGlobals structure

&sensors[0] ← storage for this physical sensor

0x1E, ← I2C address of the sensor (zero for SPI sensors)

1, ← sample schedule parameter

(void*) I2Cdrv, ← KSDK serial port driver to drive communications

FXOS8700_Init, ← The initialization function from the sensor driver

FXOS8700_Read ← The read function from the sensor driver

);

See Section 4.5.5 for a description of how to use the sample schedule parameter.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 47 of 114

4.6.3 initializeFusionEngine

inializeFusionEngine() is easy to use. It is typically the last fusion function you call

before you begin the fusion and sampling loops. It is called with one parameter, which is

a pointer to your SensorFusionGlobals structure.

sfg.initializeFusionEngine(&sfg);

initializeFusionEngine() performs the following functions:

• Enables the ARM systick counter

• Sets the initial status using the status control subsystem

• Calls the <sensor>_Init function for all installed sensors

• Determines the default quaternion type to be communicated to the Sensor Fusion

Toolbox

• Initializes all applicable sensor fusion algorithms

• Initializes the magnetic calibration routines

• if applicable, preloads accelerometer calibration parameters

• clears software FIFOs

4.6.4 readSensors

The readSensors() function simply loops through all installed sensor types. If the

(read_loop_counter/sensor schedule parameter) is zero, then sample the sensor.

4.6.5 conditionSensorReadings

conditionSensorReadings() calls three lower level functions to process accelerometer,

magnetometer and gyroscope data. The general flow for these is:

• apply hardware abstraction layer to mathematically align each sensor reading to

the same desired frame of reference

• issue a soft fault error if the software FIFO was overrun

• compute an average of the integer results (mag and accel)

• integrate gyro rotations

• compute floating point averages

• For accelerometer and magnetometer

o compute calibrated readings

o update calibration system data buffers

4.6.6 runFusion

runFusion() does two things:

• run the fusion routine(s)

• clear software FIFOs

Angular velocity vectors out of the fusion routines have the same units as gyroscope

readings, but they have been corrected to account for gyro offsets and other errors.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 48 of 114

4.6.7 applyPerturbation (optional)

The applyPerturbation() function is only useful when you have the default status

subsystem installed and your board is controlled via the Sensor Fusion Toolbox for

Windows as shown in Error! Reference source not found..

Fig 28. Step function test features in the Sensor Fusion Toolbox for Windows

In the center of the display, to the right of the floating PCB, you will see a number of

buttons labeled -90X through 180Z. If you click one of these buttons, the toolbox will fool

the fusion routines on the board into thinking that the prior orientation was off by this

amount. If things are working correctly, you should see the floating PCB flip to that

orientation and then almost immediately rotate back as the fusion routines correct for the

perceived error.

4.7 RTOS or Not?

Version 5.00 and earlier versions of the sensor fusion library were tightly integrated into

the MQX RTOS. This made it difficult to port them to another RTOS or use in a bare-

metal implementation. That all changes with Version 7.00. The RTOS has been

decoupled, and exactly the same functions can be used in both environments.

Using an RTOS allows you to easily juggle more activities at a given time, but the

approach does have a cost in terms of complexity and code size.

Bare metal implementations collapse the sensor sampling and fusion loops into one loop,

controlled by a hardware timer. Hardware FIFO support mentioned earlier means that

even with this simplistic approach, you can often achieve reasonable performance.

The code for both implementations is simple enough to be included in their entirety in the

following sections. We’ve removed comments from the original and annotated the code

as has been done in prior sections. It might be a good idea to open the original

commented files in an editor to follow along with the discussions that follow.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 49 of 114

4.7.1 Bare Metal main

Filename main_baremetal.c provided the source code for the remainder of this section.

4.7.1.1 Required #includes

The first set of headers are part of the KSDK installation for your MCU.

// KSDK Headers

#include "fsl_debug_console.h

#include "board.h"

#include "pin_mux.h"

#include "clock_config.h"

#include "fsl_port.h"

#include "fsl_i2c.h"

The second set of header files are required for the sensor fusion functions. The mixture

of <sensor>.h files will change as a function of your particular hardware.

Notice the inclusion of driver_pit.h. We will be using a periodic interval timer (PIT) as the

source of our main loop timing. You can use any available timer.

// Sensor Fusion Headers

#include "fsl_pit.h"

#include "Driver_I2C_SDK2.h"

#include "fxas21002.h"

#include "mpl3115.h"

#include "fxos8700.h”

#include "sensor_fusion.h"

#include "control.h"

#include "status.h”

#include "drivers.h"

#include "driver_pit.h"

There are two important files that are not shown. Both are pulled in by sensor_fusion.h

• issdk_hal.h pulls in Hardware Abstraction Layer functions for your particular

board(s) and may (along with lower level HAL files) need to be customized if

using your own PCB design.

• build.h specifies build parameters for the sensor fusion library.

4.7.1.2 Global storage

The first set of statements have already been discussed in Sections 4.2, 4.2.5, 4.4 and

4.6.2.

SensorFusionGlobals sfg;

ControlSubsystem controlSubsystem;

StatusSubsystem statusSubsystem;

PhysicalSensor sensors[2];

4.7.1.3 bare metal main()

And now to the heart of things. The first couple blocks in main do nothing more than

standard variable declaration and hardware setup. Note that

I2C_S_DRIVER_BLOCKING is defined as a function of the issdk_hal.h contents.

int main(void)

{

 ARM_DRIVER_I2C* I2Cdrv = & I2C_S_DRIVER_BLOCKING;

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 50 of 114

 uint16_t i=0;

 BOARD_InitPins();

 BOARD_BootClockRUN();

 BOARD_InitDebugConsole();

Here we initialize the I2C port.

 I2Cdrv->Initialize(NULL);

 I2Cdrv->Control(ARM_I2C_BUS_SPEED, ARM_I2C_BUS_SPEED_FAST);

Now we start initializing the various sensor fusion systems. These statements will apply

to almost every application.

 initializeControlPort(&controlSubsystem);

 initializeStatusSubsystem(&statusSubsystem);

 initSensorFusionGlobals(

&sfg,

&statusSubsystem,

&controlSubsystem

);

This particular build only requires two sensors, located at I
2
c addresses 0x1E and 0x20.

The installSensor() function is discussed in detail in Section 4.6.2

 sfg.installSensor(

 &sfg, ← Pointer to the global structure

 &sensors[0], ← Pointer to PhysicalSensor structure

 0x1E, ← Sensor I
2
C address

 1, ← Sample everytime readSensors() is called

 (void*) I2Cdrv, ← Serial port driver

 FXOS8700_Init, ← Sensor driver initialization function

 FXOS8700_Read ← Sensor driver read function

);

 sfg.installSensor(

 &sfg,

 &sensors[1],

 0x20,

 1,

 (void*) I2Cdrv,

 FXAS21002_Init,

 FXAS21002_Read

);

Initialize the fusion engine. This was discussed in detail in Section 4.6.3.

 sfg.initializeFusionEngine(&sfg);

We’ve written a simple PIT driver for use in timing the main loop. Here we call its

initialization function and set it to a period defined via the FUSION_HZ constant defined

in build.h. Then set our system status to NORMAL.

 pit_init(1000000/FUSION_HZ);

 sfg.setStatus(&sfg, NORMAL);

And finally, here is our main loop. pitIsrFlag is set in the PIT interrupt service routine

and cleared here.

 while (true)

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 51 of 114

 {

 if (true == pitIsrFlag) {

 sfg.readSensors(&sfg, 1);

 sfg.conditionSensorReadings(&sfg);

 sfg.runFusion(&sfg);

 sfg.applyPerturbation(&sfg);

 sfg.loopcounter++;

 i=i+1;

 if (i>=4) {

 i=0;

 sfg.updateStatus(&sfg);

 }

 sfg.queueStatus(&sfg, NORMAL);

 sfg.pControlSubsystem->stream(

 &sfg,

 sUARTOutputBuffer

);

 pitIsrFlag = false;

 }

 }

}

Notice that we don’t stream data back to the Sensor Fusion Toolbox until the end of each

loop. Everything is serialized and happens exactly in the sequence shown.

4.7.2 FreeRTOS main.c

Filename main_freertos_two_tasks.c provided the source code for the remainder of this

section. We’ve applied the same treatment as the prior section, but have used color

coding to indicate where the two implementations differ.

4.7.2.1 Required #includes

We’ve had to add a number of FreeRTOS includes over those needed for the bare metal

implementation.

/* FreeRTOS kernel includes. */

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "timers.h"

#include "event_groups.h"

The next set of headers are part of the KSDK installation for your MCU. They are the

same as the bare metal version, with the subtraction of fsl_pit.h. FreeRTOS uses the

ARM systick counter as its default timebase, so we no longer need the PIT.

// KSDK Headers

#include "fsl_debug_console.h

#include "board.h"

#include "pin_mux.h"

#include "clock_config.h"

#include "fsl_port.h"

#include "fsl_i2c.h"

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 52 of 114

The next set of includes are required for the sensor fusion functions. Notice the

exclusion of driver_pit.h.

// Sensor Fusion Headers

#include "Driver_I2C_SDK2.h"

#include "fxas21002.h"

#include "mpl3115.h"

#include "fxos8700.h"

#include "sensor_fusion.h"

#include "control.h"

#include "status.h”

#include "drivers.h"

As noted in the earlier section, there are two important files that are not shown. Both are

pulled in by sensor_fusion.h

• issdk_hal.h pulls in Hardware Abstraction Layer functions for your particular

board(s) and may (along with lower level HAL files) need to be customized.

• buid.h specifies build parameters for the sensor fusion library.

4.7.2.2 Global storage

The first set of statements have already been discussed in Sections 4.2, 4.2.5, 4.4 and

4.6.2. We’re adding an altimeter (the NXP MPL3115A2) to this build, so the sensors

array is larger by one than the bare metal implementation. The event_group will be

utilized later to coordinate between FreeRTOS tasks.

SensorFusionGlobals sfg;

ControlSubsystem controlSubsystem;

StatusSubsystem statusSubsystem;

PhysicalSensor sensors[3];

EventGroupHandle_t event_group = NULL;

4.7.2.3 FreeRTOS specifics

You need to declare the real time tasks that the RTOS will be executing. We have two

for this build. The fusion_task() will run at FUSION_Hz and the read_task() will run at

FAST_LOOP_HZ. Both constants are defined in build.h. FAST_LOOP_HZ should also

be used to set the configTICK_RATE_HZ parameter defined in FreeRTOSConfig.h. A

FreeRTOS configuration file is expected to be present is every FreeRTOS project.

static void read_task(void *pvParameters

static void fusion_task(void *pvParameters

You should review the FreeRTOS documentation to get a better handle on

FreeRTOSConfig.h contents. In particular, the configMINIMAL_STACK_SIZE and

configTOTAL_HEAP_SIZE parameters can easily make your application non-functional.

4.7.2.4 A simpler main()

main() no longer has a loop of any kind, so we’ve eliminated our counter variable.

int main(void)

{

 ARM_DRIVER_I2C* I2Cdrv = &I2C_S_DRIVER_BLOCKING

 BOARD_InitPins();

 BOARD_BootClockRUN()

 BOARD_InitDebugConsole();

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 53 of 114

I
2
C initialization is identical to the bare metal case.

 I2Cdrv->Initialize(NULL);

 I2Cdrv->Control (

ARM_I2C_BUS_SPEED,

ARM_I2C_BUS_SPEED_FAST

);

I2C_S_DRIVER_BLOCKING has been defined in a <shield>.h files to match up with the

I2C port that communicates with the sensors in question. The <shield>.h file is pulled in

via issdk_hal.h.

The fusion systems are initialized identically to the bare metal case.

 initializeControlPort(&controlSubsystem);

 initializeStatusSubsystem(&statusSubsystem);

 initSensorFusionGlobals(

&sfg, &statusSubsystem,

&controlSubsystem

);

Our first two sensors are identical to the bare metal case. Addition of the altimeter here

is independent of the choice of RTOS or not.

 sfg.installSensor(

&sfg, &sensors[0],

0x1E,

1,

(void*) I2Cdrv,

FXOS8700_Init,

FXOS8700_Read

);

 sfg.installSensor(

&sfg,

&sensors[1],

0x20,

1,

(void*) I2Cdrv,

FXAS21002_Init,

FXAS21002_Read

);

 sfg.installSensor(

&sfg,

&sensors[2],

0x60,

2,

(void*) I2Cdrv,

MPL3115_Init,

MPL3115_Read

);

 sfg.initializeFusionEngine(&sfg);

We have eliminated the PIT in favor of creating FreeRTOS controls.

 event_group = xEventGroupCreate();

 xTaskCreate(

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 54 of 114

read_task,

"READ",

configMINIMAL_STACK_SIZE,

NULL,

tskIDLE_PRIORITY + 2,

 NULL

);

 xTaskCreate(

fusion_task,

"FUSION",

configMINIMAL_STACK_SIZE,

NULL,

tskIDLE_PRIORITY + 1,

NULL

);

We still need to set the initial status. But then we start the FreeRTOS scheduler, which

should never return. If it does, we flag a HARD_FAULT.

 sfg.setStatus(&sfg, NORMAL);

 vTaskStartScheduler();

 sfg.setStatus(&sfg, HARD_FAULT);

 for (;;) ;

}

Note: if vTaskStartScheduler() returns, it most likely is because you did not allocate

enough memory in your FreeRTOSConfig.h file.

4.7.2.5 read_task

The read_task() operates at FAST_LOOP_HZ in this implementation.

static void read_task(void *pvParameters)

{

 uint16_t i=0;

 portTickType lastWakeTime;

 const portTickType frequency = 1;

 lastWakeTime = xTaskGetTickCount();

 while (1)

 {

We have a short loop nested within an infinite loop. The OVERSAMPLE_RATE, which

is defined in build.h, determines the ratio of sensor cycles to fusion cycles.

vTaskDelayUntil() is a FreeRTOS function which blocks operation for a specified

interval. xEventGroupSetBits() sets an event bit to trigger the fusion task. We are

taking advantage of the loop interval to determine how often to sample our various

sensors within the readSensors() function.

 for (i=1; i<=OVERSAMPLE_RATE; i++) {

 vTaskDelayUntil(&lastWakeTime, frequency);

 sfg.readSensors(&sfg, i);

 }

 xEventGroupSetBits(event_group, B0);

 }

}

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 55 of 114

4.7.2.6 fusion_task

The fusion_task() runs at FUSION_HZ for this implementation. Notice that the

xEventGroupWaitBits() blocking FreeRTOS command is the primary addition to this

function. It blocks execution until the B0 event_group bit was set in the read_task().

Otherwise, all the components here can also be found in our bare metal implementation.

static void fusion_task(void *pvParameters)

{

 uint16_t i=0; // general counter variable

 while (1)

 {

 xEventGroupWaitBits(event_group,

 B0,

 pdTRUE,

 pdFALSE,

 portMAX_DELAY);

 sfg.conditionSensorReadings(&sfg);

 sfg.runFusion(&sfg);

 sfg.applyPerturbation(&sfg);

 sfg.loopcounter++;

 i=i+1;

 if (i>=4) {

 i=0;

 sfg.updateStatus(&sfg);

 }

 sfg.queueStatus(&sfg, NORMAL);

 sfg.pControlSubsystem->stream(&sfg, sUARTOutputBuffer);

 }

}

4.7.3 Key takeaway

The key message to take away from the prior sections is that the sensor fusion library is

now RTOS-agnostic. The same functions can be used in an RTOS environment or in a

bare metal implementation. We have used FreeRTOS to illustrate the point, however

there is no reason to suppose that the library could not be used with any RTOS.

4.8 Fusion Standby Mode

In Sections 4.5.1 and 4.5.5, we introduced the <sensor>_Idle() function built into some

sensor drivers. It can be used to place affected sensors in a low power state until the

<sensor>_Init() function is called again. This gives us the basis for implementing a mode

of operation in which the application can reduce power during periods of inactivity.

4.8.1 motionCheck

The motionCheck() function is not a sensor fusion function. It is a function that simply

monitors an accelerometer or magnetometer tri-axial sensor output, returning Boolean

true if the sensor appears to be stationary, and false otherwise. The function prototype

is:

bool motionCheck(float sample[3],

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 56 of 114

 float baseline[3],

 float tolerance,

 uint32_t winLength,

 uint32_t *count)

parameters are:

• sample is a 3 element array containing the processed sensor sample. For

accelerometers, these are in units of gravity (g’s).

• baseline is a 3 element array containing the value to which sample is being

compared. If the two arrays do not match within the specified tolerance (the 3
rd

parameter), then baseline is updated to the current sample value.

• tolerance is the amount you have defined to specify the threshold for what you

consider a change. The value of tolerance must have the same units as sample

and baseline. It also must be above the “noise threshold” of the sensor.

• winLength is the number of fusion cycles in which you must see no motion before

asserting the “no motion” flag.

• count is the number of cycles in which no change has been detected. This tops

out at (winLength+1) to prevent counter overflow.

4.8.2 Sample Implementation

Standby mode is implemented at the application level within the fusion task or loop, not

within the fusion library itself. The basic idea is to power down gyro (and possibly

magnetometer) when the board is not moving, and to even skip the fusion call itself.

Since the board is stationary, there is no need to recomputed orientation on every pass

through the loop!

Let’s explore the changes required to the FreeRTOS fusion_task to implement this

functionality. Changes are shown in red.

First, note that we must provide the variables required for the checkMotion() function.

static void fusion_task(void *pvParameters)

{

 uint16_t i=0; // general counter variable

 float motion_baseline[3] = {0.0, 0.0, 0.0};

 bool stationary;

 static bool lastStationary;

 uint32_t stationaryCount = 0;

 while (1)

 {

 xEventGroupWaitBits(event_group,

 B0,

 pdTRUE,

 pdFALSE,

 portMAX_DELAY);

 sfg.conditionSensorReadings(&sfg);

It is important that the conditionSensorReadings() call happen before the motionCheck()

call, as you would like to make this check using the cleanest version of the signal you

have available.

 stationary = motionCheck(

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 57 of 114

 sfg.Accel.fGc, // calibrated accel reading

 motion_baseline,

 0.01,

 120,

 &stationaryCount);

Here’s where we handle the transition between modes. Notice that the runFusion() call

only occurs when the device is in motion.

 if (stationary) {

 if (!lastStationary) { // go into standby

 FXAS21002_Idle(&(sensors[1]), &sfg);

 }

 clearFIFOs(&sfg);

 } else {

 if (lastStationary) { // restart operations

 FXAS21002_Init(&(sensors[1]), &sfg);

 }

 sfg.runFusion(&sfg); // fuse the sensor data

 }

 sfg.loopcounter++;

 i=i+1;

 if (i>=4) {

 i=0;

 sfg.updateStatus(&sfg);

 }

Change the LED indicator depending upon our current “motion status”.

 if (stationary) {

 sfg.queueStatus(&sfg, LOWPOWER);

 } else {

 sfg.queueStatus(&sfg, NORMAL);

 }

 sfg.pControlSubsystem->stream(

 &sfg,

 sUARTOutputBuffer);

 lastStationary = stationary;

 }

}

The using a tolerance of 10mg (0.01 g), the transition between modes is imperceptible

when viewing the motion of the board via the Sensor Fusion Toolbox.

The code shown above does not deal at all with MCU low power modes. These are

outside the scope of the sensor fusion library.

4.9 Reading Results from Global Structures

Section 4.2.3 presented example code segments for reading average sensor outputs.

Raw sensor readings may be read in a similar manner. And accelerometer and

magnetometer outputs are available in both calibrated and uncalibrated forms. Consult

the reference manual pages or source code for sensor_fusion.h for further details.

Section 4.2.4 presented similar information for accessing:

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 58 of 114

φ = fPhi = roll angle in degrees

θ = fThe = pitch angle in degrees

ψ = fPsi = yaw angles in degrees

ρ = fRho = compass heading in degrees

χ = fChi = tilt angle from vertical in degrees

fRM[3][3] = orientation matrix

fq = orientation quaternion

fRVec[3] = rotation vector

ω = fOmega[3] = average angular velocity in degrees/sec

systick = the number of system clocks required to run the algorithm

On an algorithm by algorithm basis, other variables may be available. Consult Table 6

for the location of various parameters within the various structures.

With the exception of loading raw data into the PressureSensor structure, the user

should never write to any sensor or algorithm structure. These should be considered as

“read-only”.

5. Customizing Your Build

This chapter presents a number of recipes for common modifications to the standard

sensor fusion build. Should you not find what you need in this user guide, submit a

question to the NXP Sensor Fusion Community.

5.1 Selecting which algorithms to build

The algorithms in the fusion library have been heavily optimized. You can run any

combination of the algorithms in the development kit on many ARM® Cortex® M0+

platforms, and almost all Cortex M4F platforms.

The process of choosing what algorithms to run is easy:

1. Change the #define for THISCOORDSYSTEM in build.h to one of NED (aka

Aerospace), ANDROID or WIN8. This will define the global frame of reference

you want your algorithm to work in.

Refer to NXP Application Note AN5017, Rev 1.1: Aerospace, Android and

Windows 8 Coordinate Systems for a full description of the differences between

the options.

2. Modify the algorithm selection fields in build.h (see Table 11) to choose which

algorithm builds to include or exclude from your build.

Table 11. Algorithm selection fields in build.h

Algorithm build.h control To Include To Exclude

Altimetry F_1DOF_P_BASIC 0x0100 0x0000

Tilt F_3DOF_G_BASIC 0x0200 0x0000

2D Automotive

Compass

F_3DOF_B_BASIC 0x0400 0x0000

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 59 of 114

Algorithm build.h control To Include To Exclude

Rotation F_3DOF_Y_BASIC 0x0800 0x0000

Tilt Compensated

eCompass

F_6DOF_GB_BASIC 0x1000 0x0000

Gaming Handset F_6DOF_GY_KALMAN 0x2000 0x0000

Gyro Stabilized

Compass

F_9DOF_GBY_KALMAN 0x4000 0x0000

3. Modify the sensor selection fields in build.h (see Table 12) to pull in (at a

minimum) the set of sensors required for your algorithm choice above.

Table 12. Sensor selection fields in build.h

Sensor Type build.h control To Include To Exclude

Accelerometer F_USING_ACCEL 0x0001 0x0000

Magnetometer F_USING_MAG 0x0002 0x0000

Gyroscope F_USING_GYRO 0x0004 0x0000

Pressure F_USING_PRESSURE 0x0008 0x0000

Temperature F_USING_TEMPERATURE 0x0010 0x0000

Unselected algorithm and sensor types are completely eliminated from the build at

compile time, and consume no resources.

5.2 Sample and Fusion Rate Topics

Section 4.5 dealt with sample and fusion rate topics in the context of sensor drivers. Be

sure you read and understand that section before making changes.

From a checklist perspective, here are the things you will need to change to affect

sample and fusion rates:

1. If you are using a bare metal project, set the timer interval which controls your

main loop equal to the software sample/fusion rate (they are equal). The

example project shipped with the development kit allows you to do this by

changing the value passed to pit_init() in main().

2. If you are using FreeRTOS, set configTick_RATE_HZ in FreeRTOSConfig.h

equal to your software sampling loop rate.

3. in build.h, confirm the values for:

• ACCEL_FIFO_SIZE

• MAG_FIFO_SIZE

• GYRO_FIFO_SIZE

• ACCEL_ODR_HZ

• MAG_ODR_HZ

• GYRO_ODR_HZ

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 60 of 114

• FUSION_HZ (25Hz minimum recommended)

• FAST_LOOP_HZ

The FAST_LOOP_HZ parameter must match configTick_RATE_HZ.

The FUSION_HZ value should be defined so that OVERSAMPLE_RATE=

FAST_LOOP_HZ/FUSION_HZ is always an integer.

5.2.1 Using the SysTick Counter to Measure Compute Times

5.2.1.1 The technique

Assuming an ARM M0+ or M4F implementation, key function calls within the fusion

library are wrapped with calls that read the ARM MCU sysTick counter and then use the

difference to compute how many CPU cycles it took to execute the given block. You can

see this in function fFuseSensors() in fusion.c. An example is:

ARM_systick_start_ticks(&(pthisSV_6DOF_GY_KALMAN->systick));

fRun_6DOF_GY_KALMAN(

pthisSV_6DOF_GY_KALMAN,

pthisAccel,

pthisGyro

);

pthisSV_6DOF_GY_KALMAN->systick =

ARM_systick_elapsed_ticks(pthisSV_6DOF_GY_KALMAN->systick);

Notice that the result is stored away in the State Vector structure associated with the

algorithm. This is how the Sensor Fusion Toolbox is able to display compute times for

the different algorithms.

5.2.1.2 Limitations

All of the above works fine so long as the fusion routine in question is allowed to run un-

interrupted by other tasks or interrupts. This will generally be true of bare metal projects

which have a single thread of operation. There may be the occasional UART interrupt

associated with the control subsystem, but we assume those to be negligible.

Some Real Time Operating Systems utilize the SysTick timer for their tick timer. This

generally will imply that the sysTick timer will be reset at the beginning of every software

sample period. On Cortex-M4F class devices, that is generally not a problem, because

the fusion algorithms execute very fast because of the integrated floating point unit. That

may not be true for Cortex-M0+ or M3/M4 devices which have no floating point support.

When in doubt, resort to the age old method of inserting GPIO pin toggles at key points

in your code and observing them on an oscilloscope.

5.3 Frames of Reference and the HAL

3-axis sensors are assumed to have axes aligned to a Cartesian coordinate system that

follows the Right Hand Rule (RHR). As an example, the figure below shows three

sensors that might be used to implement a 9-axis system. You will note that the Z axis

on the MAG3110 is inverted relative to the standard RHR conventions.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 61 of 114

Fig 29. Problem: One of these sensors does not follow the RHR rule

That’s trivial to fix. Simply invert the Z-axis readings in the MAG3110 driver. If you look

at driver_MAG3110.c in the sensor fusion library, you will see that is exactly what we do:

 sample[CHX] = (I2C_Buffer[0] << 8) | I2C_Buffer[1];

 sample[CHY] = (I2C_Buffer[2] << 8) | I2C_Buffer[3];

 sample[CHZ] = -((I2C_Buffer[4] << 8) | I2C_Buffer[5]);

 The corrected axis is shown as Z’ in the figure below.

Fig 30. The Fix: Inverting the MAG3110 Z-axis in the driver

The sensor fusion algorithms also assume that your zero rotation orientation is aligned

with a global RHR reference frame. Unfortunately, there are several global reference

frames in use. The library natively supports Android and Windows 8 coordinate systems.

These are both are East North Up (ENU) variants. It also supports the standard

Aerospace North East Down (NED) coordinate system. Differences are outlined in the

table below.

Table 13. Coordinate system comparison

From Application Note AN5017: Aerospace, Android and Windows 8 Coordinate Systems

Item Aerospace (NED) Android (ENU) Windows 8 (ENU)

Axes alignment XYZ = NED XYZ = ENU XYN = ENU

Accelerometer sign Gravity-
Acceleration

+1g when axis is
down

–1g when axis is
up

Acceleration-
Gravity

+1g when axis is
up

–1g when axis is
down

Gravity-
Acceleration

+1g when axis is
down

–1g when axis is
up

Accelerometer
reading when flat

G[Z] = +1g G[Z] = +1g G[Z] = –1g

Direction of
increasing angles

Clockwise Anticlockwise Clockwise

Compass heading ρ = ψ ρ = ψ ρ = 360°–ψ

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 62 of 114

Item Aerospace (NED) Android (ENU) Windows 8 (ENU)

ρ and yaw angle ψ

So what do you do if your PCB design does not follow the conventions of your standard

frame of reference? Maybe one sensor is rotated 90 degrees relative to the other two in

a 9-axis system. Or maybe one of the sensors is mounted on the bottom of the PCB and

the other two are mounted on the top. This is where the Hardware Abstraction Layer, or

HAL comes into play. The HAL allows you to mathematically map each set of sensor

readings into a single, consistent, frame of reference. NXP supplied HALs also enable

you to switch from one target frame of reference to another with a simple #define flag

change.

In the figure below, we have physically rotated the MMA8451Q 90 degrees from the

desired ENU frame of reference.

Fig 31. Problem: MMA8451 Rotated 90 Degrees

The process to remap the 8551Q’s readings into the standard frame of reference is easy.

Draw a picture of the actual and desired orientations and then write the equations of the

desired sensor’s readings in terms of the physical sensor.

Fig 32. Draw a picture of actual versus desired reference frame

X’= Y;

Y’= -X;

 Z = Z; // no change

These would then go into the HAL function which manages the accelerometer frame of

reference. There are three HAL functions:

• ApplyAccelHAL()

• ApplyMagHAL()

• ApplyGyroHAL()

These are defined in filename hal_<boardname>.c. Standard configurations for NXP

Freedom development boards are included in the kit. You may need to develop your

own HAL if sensors on your board are not aligned similarly. You should start by copying

one of the existing HAL files and making the minimum set of changes necessary to

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 63 of 114

accommodate your sensor placement. Then modify hal.h to remove the old HAL file and

add yours.

5.4 Sensor Calibration Topics

In Section 2.8 we discussed the need for careful sensor calibration for advanced

applications like navigation. Version 5.0 and earlier of the sensor fusion library included

hard/iron magnetic compensation and dynamic gyro offset computation. Version 7.00

adds advanced accelerometer calibration and static gyro offset measurements. It also

adds the option of storing all calibration parameters in non-volatile storage for fast

startup.

5.4.1 Some Background

For an at-rest system, accelerometers and magnetometers are conceptually very similar.

They measure a fixed 3-dimensional vector. In the case of the accelerometer, it is

gravity. The magnetometer measures the earth’s magnetic field. The calibration

algorithms in the sensor fusion library take advantage of the fact that if you measure the

same fixed 3D vector while rotating your sensor in space, and plot the points, you will

ideally obtain a sphere. When you talk with NXP sensor experts, you may hear them

refer to “geomagnetic sphere” or “1g sphere”. This is what they are referring to.

If you linearly distort a sphere, you get an ellipsoid. Since the process is linear, it is

possible to reverse it. That is the heart of the calibration routines for both magnetometer

and accelerometer.

See NXP Application Note AN5286, Rev. 2.0: Precision Accelerometer Calibrations for a

detailed description of the technique.

5.4.2 Accelerometer

Recall that accelerometers measure linear acceleration minus gravity. If the device is at

rest, all you get is the gravity component.

NXP Application Note AN_TBD, Precision Accelerometer Calibration, describes the three

different levels of accelerometer calibration: four parameter, seven parameter and ten

parameter. The first two are proper subsets of the ten parameter model. The choice of

which to use is governed by how many measurements you are willing to take for the use

as inputs to the algorithms. At the end of the day, you end up with an equation of the

form:

where:

S
Gc,k = the kth calibrated accelerometer reading in the sensor frame

∆R = final tilt rotation matrix

W
-1
 = Inverse gain matrix

s
Gk =the kth uncalibrated (raw) accelerometer reading

V = the offset vector

Note that the calibration equation does not include environmental effects at this time.

Computation of calibration coefficients is a manually triggered event. The user model for

accelerometer calibration is to take sufficient measurements (up to 12) to compute all

parameters and store those into device NVM. Later, the final tilt rotation matrix can be

adjusted using a single accelerometer reading taken on the final production line. The

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 64 of 114

modified rotation matrix can then be re-stored in NVM. Thus a board could be factory

programmed and then “tweaked” once installed in the final housing.

A new version of the Sensor Fusion Toolbox for Windows is being released for use with

the Version 7.00 Sensor Fusion Library. It has a new Precision Accelerometer tab that

can be used to accomplish this task during development.

Fig 33. Problem: MMA8451 Rotated 90 Degrees

Clicking any of the “0 Flat”, “1” through “11” buttons instructs firmware on the board to

take a series of measurements (nominally 2 seconds worth), compute the average, and

then store the average into a numbered buffer for use during a least squares fit to

determine V, W
-1

 and
 ∆R. As you add more measurements, those values will be updated

using the four, seven and finally ten parameter calibration models.

The first “0 flat” measurement should be taken with the board flat on a table top. All

other readings can be taken at random orientations which approximately cover the

“geomagnetic sphere” discussed earlier. Fig 34 shows the jig that a member of the

fusion team uses to position his board. The jig was cobbled together using a scrap piece

of 2x4 lumber and some glue. There is no need for precision in building your own jig.

Don’t bother asking for mechanical drawings – they do not exist.

Fig 35 shows the Precision Accelerometer tab after a 12-orientation calibration has

been preformed. The top table shows the raw measurements and error=(vector

magnitude – 1g) computed for each. The maximum error for this particular run was over

49mg on measurement #4. The value on the right side shows an average error of

25.15mg. Contrast this with the table in the center of the screen. It shows a maximum

calibrated error of 0.64mg, with an average error of 0.34mg. Over 70X improvement!

At the bottom of the screen in Fig 35, you see the computed values for V, W
-1

 and
 ∆R.

Bear in mind that what we have done is a linear trim based upon the vector magnitude of

the averaged measurements. Impacts of sensor noise are very low because we’ve taken

a lot of measurements to compute each average. Any errors left over at the end of the

process are, by definition, residual non-linearities.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 65 of 114

Fig 34. Precise control of measurement angles is only required once: flat

Fig 35. Accelerometer calibration has been completed

At this point, we have not yet stored calibration coefficients into non-volatile storage.

This will be discussed in Section 5.4.5.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 66 of 114

5.4.3 Magnetometer

The ambient magnetic field is not nearly as well behaved as the gravity vector, especially

indoors. Stray fields, ferrous materials and magnetic materials are everywhere.

Inclusion of a gyroscope into 9-axis sensor fusion helps negate the effects of random

variations in the environment. Section 11 discusses distortion of the magnetic field, and

shows that we can mathematically eliminate hard and soft iron effects resulting from

materials which are fixed spatially with respect to the sensor.

The trim equation (above) is very similar to the accelerometer trim equation discussed in

the previous section, and the math to determine calibration coefficients is similar as well.

Application Note AN5019, Magnetic Calibration Algorithms, provides the full

mathematical derivation of those equations.

In prior generations of the sensor fusion library, magnetic calibration was run

continuously in a background task whenever sensor sample and fusion tasks were not

running. This had the advantage of quickly determining calibration coefficients with a

simple twist of the wrist while holding a sensor board.

That approach does not work well for a single-threaded bare metal implementation of

sensor fusion. The Version 7.00 sensor fusion uses the same award winning library, but

it “slices” what had been the background magnetic task into smaller chucks of code.

Each is small enough that it can be executed serially with sensor fusion, in the same

thread. Table 14 lists the pros and cons of each approach.

Table 14. Tradeoffs between V5.00 and V7.00 sensor fusion

Table description (optional)

Feature V5.00 and earlier V7.00

Accuracy Same algorithms used for both

Startup time A few seconds Slower if coefficients have to be computed
every time.

Instantaneous if NVM storage is used for pre-
computed coefficients.

Implementation Required
background thread

Not even visible to most programmers

Calibrating your magnetometer with the Sensor Fusion Toolbox for Windows is easier

then it was for accelerometer calibration. The fusion library automatically generates a

magnetic buffer, or constellation, of data points to use for calibration. This is shown in

Fig 36. Since the constellation is three dimensional, the toolbox generates plots of the

data from three different perspectives. If your PCB is magnetically clean, these should

be circular as shown in the figure below.

To see how this works, do the following:

1. Connect your board to the Sensor Fusion Toolbox as described in the Quick

Start guide elsewhere in your manual.

2. Click the Magnetics Tab.

3. Rotate the board a few times, you should see new points added to the

constellation

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 67 of 114

4. Click File->Reset, and the constellation will clear. If calibration data had been

stored in NVM, it will be re-used. Otherwise you will an indication that the

magnetometer is no longer calibrated.

5. Rotate the board again and watch new points added to the constellation.

Fig 36. The magnetic calibration tab

In the top row of the display, you can see the hard iron offset vector V and the Inverse

Soft Iron Gain Matrix W
-1

. Calibration points are only updated when a new calibration

comes along with a better fit error as shown on the right. When starting with an un-

calibrated device, the program will cycle through 4, 7 and 10-element calibration routines

as more points are added to the constellation.

5.4.4 Gyroscope

It is not uncommon for gyroscopes to have offsets, and these can drift over time.

Gyroscope errors are triple integrated
7
 in basic inertial navigation systems, so they can

cause even larger errors than the accelerometer bias example shown in Section 2.8.

The scheme used in first generation systems was to simply measure gyroscope outputs

when the device is stationary. Since gyros are rate sensors, by definition the measured

value equals the offset. But if your system is rarely stationary, that can be problematic.

A different approach was used in Version 5.00 and earlier versions of the sensor fusion

library. The gyro offsets were computed dynamically as one of the outputs of the Kalman

filter. Version 7.00 of the sensor fusion library allows you to use both techniques.

To take a static measurement, simply place your sensor board flat on a table top prior to

startup up the Sensor Fusion Toolbox for Window. The toolbox will pop a dialog box

reminding you to put the unit down. Click OK and you will have your initial offset

estimate.

This will be used as an initial estimate when setting up the Kalman filter.

6. Gyroscope errors are integrated during the orientation calculation which leads to an error in the

apparent gravity vector and an error in acceleration. This acceleration error is then integrated again

to compute velocity and integrated once more to give displacement.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 68 of 114

5.4.5 Storing / Retrieving Parameters from Flash Memory

Once computed, you will want to store trim parameters in nonvolatile memory so that

they can be automatically loaded upon power up. During development, this is easy using

the Calibration pull-down menu in the Sensor Fusion Toolbox for Windows. If you select

that pull-down, you will see the following structure:

• Save to Kinetis Flash

o Magnetic, Gyroscope and Precision Acclerometer Calibrations

o Magnetic Calibration only

o Gyroscope Calibration only

o Precision Accelereometer Calibration only

• Erase from Kinetis Flash

o Magnetic, Gyroscope and Precision Acclerometer Calibrations

o Magnetic Calibration only

o Gyroscope Calibration only

o Precision Accelereometer Calibration only

These functions are implemented as part of the command protocol operating between

your development board and the PC GUI. They are based on the following functions

defined in calibration_storage.h:

void SaveMagCalibrationToNVM(SensorFusionGlobals *sfg);

void SaveGyroCalibrationToNVM(SensorFusionGlobals *sfg);

void SaveAccelCalibrationToNVM(SensorFusionGlobals *sfg);

void EraseMagCalibrationFromNVM(void);

void EraseGyroCalibrationFromNVM(void);

void EraseAccelCalibrationFromNVM(void);

Each of these functions is built on top of the same base function for accessing NVM

memory:

NVM_SetBlockFlash(uint8_t *Source, uint32_t Dest, uint16_t Count)

where

• Source = pointer to data to be written

• Dest = pointer to destination

• Count = number of bytes to be written

The “Save” and “Erase” functions copy any existing calibration out of NVM into a buffer,

modify the buffer with updated information for the appropriate sensor type and then call

NVM_SetBlockFlash(), which erases and then rewrites the NVM. The implementation for

NVM_SetBlockFlash() is hardware dependent. A KSDK-based implementation is

provided in driver_KSDK_NVM.c/.h. If porting to an different architecture, you can

preserve the same functionality simply by swapping in an equivalent version of

NVM_SetBlockFlash().

It is important to understand that trim parameters stored in NVM are specific to a given

instance of a PCB. They need to be computed on a per-board basis. Also, the trim

coefficients are lost if you reprogram the board.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 69 of 114

5.5 Tinkering with Kalman filter parameters in fusion.h

The default filter settings in fusion.h are designed to be a “best compromise” that

addresses the largest application subset possible. But invariably, questions arise like:

“how do I improve fusion tracking relative to north?”, or “how do I make my application

more immune to magnetic interference?”. These two goals typically are at cross

purposes. Improving one makes the other worse. You make these tradeoffs by

adjusting sensor variance constants.

Parameters in fusion.h are organized by algorithm, and we follow the same organization

in the sub-sections that follow. Each contains a table that summarizes available

parameters for that algorithm.

Some general guidelines:

• Tightening sensor variances tends to put more emphasis in the Kalman filter results

on values from that sensor. Loosening them has the opposite effect.

• Increasing low pass filter time constants will smooth results at the expense of

response time.

• If there are no gyro offsets stored in NVM, the Kalman filter initialization sequences

can use the first reading as the starting offsets IF it falls within the limits specified

by “Permissible Power” numbers.

5.5.1 1DOF P Basic Constants (Pressure)

Table 15. Pressure Tuning Constants

Parameter Default

Value

Description

FLPFSECS_1DOF_P_BASIC 1.5 Pressure low pass filter time constant in

seconds

5.5.2 3DOF G Basic Constants (Tilt)

Table 16. Tilt Tuning Constants

Parameter Default

Value

Description

FLPFSECS_3DOF_G_BASIC 1.0 Tilt orientation low pass filter time constant in

seconds

5.5.3 3DOF B Basic Constants (2D Automotive eCompass)

Table 17. 2D Automotive eCompass Tuning Constants

Parameter Default

Value

Description

FLPFSECS_3DOF_B_BASIC 7.0 2D eCompass orientation low pass filter time
constant in seconds

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 70 of 114

5.5.4 6DOF GB Basics (eCompass)

Table 18. eCompass Tuning Constants

Parameter Default

Value

Description

FLPFSECS_6DOF_GB_BASIC 7.0 3D eCompass orientation low pass filter time
constant in seconds

5.5.5 6DOF GY Kalman Constants (Gaming)

Table 19. 6-Axis Kalman Filter Tuning Constants

Parameter Default

Value

Description

FQVY_6DOF_GY_KALMAN 200 Gyro sensor noise variance in units of (deg/s)
2

FQVG_6DOF_GY_KALMAN 1.2E-3 Accelerometer sensor noise variance units g
2

FQWB_6DOF_GY_KALMAN 2E-2 Gyro offset random walk units (deg/s)
2

FMIN_6DOF_GY_BPL -7.0 Minimum permissible power on gyro offsets (deg/s)

FMAX_6DOF_GY_BPL +7.0 Maximum permissible power on gyro offsets (deg/s)

5.5.6 9DOF GBY Kalman Constants (9-Axis)

Table 20. 9-Axis Kalman Filter Tuning Constants

Parameter Default

Value

Description

FQVY_9DOF_GBY_KALMAN 200 Gyro sensor noise variance in units of (deg/s)
2

FQVG_9DOF_GBY_KALMAN 1.2E-3 Accelerometer sensor noise variance units g
2

FQVB_9DOF_GBY_KALMAN 5.0 Magnetometer sensor noise variance units uT
2

defining minimum deviation from geomagnetic
sphere.

FQWB_9DOF_GBY_KALMAN 2E-2 Gyro offset random walk units (deg/s)
2

FMIN_9DOF_GBY_BPL -7.0 Minimum permissible power on gyro offsets (deg/s)

FMAX_9DOF_GBY_BPL +7.0 Maximum permissible power on gyro offsets (deg/s)

6. Additional Porting Topics

6.1 Adding New Sensor Drivers

Section 4.5 provides a detailed review of sensor driver structure. You MUST use exactly

the same prototype structure for all sensor initialization and read functions.

Generally, the easiest way to add a new driver is to copy an existing one and modify it.

Once complete, add the new functions to drivers.h and use the Sensor Fusion Toolbox

for Windows to verify sensor operation (see Section 9, Debugging).

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 71 of 114

6.2 Moving to different MCUs

If your new MCU of choice is a Kinetis ARM core, most of your work should be done for

you when you use Kinetis Expert to generate a Kinetis Software Development System. If

your MCU is not a Kinetis, or even an ARM core, your work is more extensive. You will

need to provide drivers for:

• GPIO (used by the status subsystem)

• UART (used by the control subsystem)

• I
2
C/SPI (used by sensor drivers)

• Non-volatile storage (used for sensor calibration parameters)

Fig 26 illustrates the software stack up for sensor fusion applications. The general

recommendation is to study the functions used in the various control subsystems, and

replicate hardware interfaces used there.

An additional item that needs to be considered is the ARM SysTick timer, which is used

to measure compute times. If you don’t need compute times, simply remove calls to the

driver_systick.c functions. Otherwise you will need to identify and implement an

alternative that will be platform-dependent.

7. Serial Packet Structure

The tables presented in this section are derived from those included with the NXP

Sensor Fusion Toolbox for Android in-app help.

Prior to version 2013.07.18 of the NXP Sensor Fusion Toolbox for Android application,

communication between the Android device and external board was strictly one way,

from board to Android device. Version 2013.07.18 and above add the ability for the

application to send commands to the development board. This is done at application

start-up for flags to enable the following:

• debug mode

• roll/pitch/compass display on the Device view

• virtual compass display on the Device view

The debug mode is now required to be always on, since this packet transmits the

firmware version number that is displayed by the Toolbox. Additionally, a packet may be

sent to change quaternion type whenever the Source/Algorithm selector in the Sensor

Fusion Toolbox is changed.

7.1 Development Board to Fusion Toolbox

Development board to Sensor Fusion Toolbox communication uses a streaming data

protocol. Packets are delimited by inserting a special byte (0x7E) between packets. This

means that we must provide a means for transmitting 0x7E within the packet payload.

This is done on the transmission side by making the following substitutions:

• Replace 0x7E by 0x7D5E (1 byte payload becomes 2 transmitted)

• Replace 0x7D by 0x7D5D (1 byte payload becomes 2 transmitted)

The Fusion Toolbox does the inverse mapping as the data stream is received. Partial

packets are discarded. The options menu on the Android version of the toolbox has a

Toggle Hex Display option available for developers coding their own board interface.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 72 of 114

On the embedded app side, the 0x7E and 0x7D encoding is performed automatically by

function sBufAppendItem(), which is used to create outgoing packet structures. The

developer only needs to explicitly add starting and ending 0x7E delimiters.

1. Orientation and Sensor Data

2. Debug

3. Angular Rate

4. Euler Angles

5. Altitude and Temperature

6. Magnetic

7. Kalman Parameters

8. Accelerometer Calibration

Packet types 9-11 are reserved.

7.1.1 Packet Type 1: Orientation and Sensor Data

This packet type is used to convey timestamp, sensor readings, orientation in quaternion

form and hardware flags.

Table 21. Packet Type 1: Orientation and Sensor Data

Byte # Function Units

0 Packet Start = 0x7E None

1 Packet Type = 01 None

2 Packet # This number increments by 1 for
each sample. Rolls over at 0xFF to
0x00.

6:3 Timestamp 1 LSB = 1.00 microseconds
(Previously 1.33. Updated
2013.07.18)

8:7 ACC X 1 LSB = 122.07 µg

10:9 ACC Y 1 LSB = 122.07 µg

12:11 ACC Z 1 LSB = 122.07 µg

14:13 MAGX 1 LSB = 0.1 µT

16:15 MAGY 1 LSB = 0.1 µT

18:17 MAGZ 1 LSB = 0.1 µT

20:19 GYRO X 1 LSB = 872.66 µrad/s (0.05 dps)

22:21 GYRO Y 1 LSB = 872.66 µrad/s (0.05 dps)

24:23 GYRO Z 1 LSB = 872.66 µrad/s (0.05 dps)

26:25 quaternion q0 1 LSB = 1/30,000 (unitless)

28:27 quaternion q1 1 LSB = 1/30,000 (unitless)

30:29 quaternion q2 1 LSB = 1/30,000 (unitless)

32:31 quaternion q3 1 LSB = 1/30,000 (unitless)

33 Flags Bit field with the following bit

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 73 of 114

Byte # Function Units

definitions:

Bit 0 = valid gyro data

Bit 1 = gyro is virtual

Bit 2 = 6-axis quaternion is valid

Bit 3 = 9-axis quaternion is valid

Bits 5:4 = 00 = Data is NED
(Aerospace) Frame of Reference

Bits 5:4 = 01 = Data is Android
Frame of Reference

Bits 5:4 = 10 = Data is Windows
Frame of Reference

Bits 5:4 = 11 = RESERVED

Bits 7:6 = RESERVED

34 Board ID Two numeric fields with the following
possible values:

Base Board = Bits 4:0:

0. = RESERVED

1. = FRDM-KL25Z

2. = FRDM-K20D50M

3. = RESERVED

4. = FRDM-KL26Z

5. = FRDM-K64F

6. = RESERVED

7. = FRDM-KL46Z

8. = RESERVED

9. = FRDM-K22F

10. = RESERVED

11. = FRDM-KL05Z

12. = RESERVED

13. = FRDM-KL02Z

14. = FRDM-KE02Z

15. = FRDM-KE06Z

 Sensor Shield Board = Bits 7:5

0. = FRDM-FXS-MULTI-B

1. = None

2. = FRDM-STBC-AGM01

3. = FRDM-STBC-AGM02

35 Packet END = 0x7E None

Table 21 represents the packet format adopted by the Fusion Toolbox on 1 August 2013.

The assumption inherent in this format is that the application will instruct the

development board with regard to desired algorithm.

Table 22 specifies the sources used to populate some of the fields above.

Table 22. Packet 1 Sources

Quantity Derived from

Timestamp Assumes packets are sent out at the fusion rate.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 74 of 114

Quantity Derived from

ACC Accel.iGc

MAG Mag.iBc

GYRO Gyro.iYs

QUATERNION SV_ptr->fq

Note that Timestamps are incremented by 1,000,000/FUSION_HZ down to a minimum of

25µs. Packet transmission is throttled to a maximum rate of 40X per second to ensure

that UARTs do not exceed their maximum bandwidth.

7.1.2 Packet Type 2: Debug

The development board may send 1 to n 16-bit words to the app for display on the

Device view of the Sensor Fusion Toolbox for Android. This view is enabled via a

checkbox in the Preferences screen. The Windows version of the toolbox has dedicated

locations in the display for software version number and systick numbers. It does not

display optional entries.

Table 23. Packet type

Byte # Function Units

0 Packet Start = 0x7E None

1 Packet Type = 0x02

2 Packet Number None

4:3 Firmware Version
Number

None

6:5 Systick count / 20 Bytes 6:5 now carry the sysTick
count/20

… Variable Payload

2n + 1:2n Debug Wordn Last of n debug words to transmit

2n + 2 Packet END = 0x7E None

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 75 of 114

Fig 37. Debug packet information displayed on the main form

7.1.3 Packet Type 3: Angular Rate

This packet type is used to send angular rate values (iOmega) to the Sensor Fusion

Toolbox. On the Android version, this view is enabled via a checkbox in the Preferences

screen. On the Windows version, the data is shown on the Dynamics tab (see Fig 38).

Table 24. Packet Type 3: Angular Rate Information

Byte # Function Units

0 Packet Start = 0x7E None

1 Packet Type = 0x03 None

2 Packet # This number increments by 1 for
each sample. Rolls over at 0xFF to
0x00.

6:3 Timestamp 1 LSB = 1.00 microseconds
(Previously 1.33. Updated
2013.07.18)

8:7 X 1 LSB = 872.66 micro-radians/sec
(0.05 dps)

10:9 Y 1 LSB = 872.66 micro-radians/sec
(0.05 dps)

12:11 Z 1 LSB = 872.66 micro-radians/sec
(0.05 dps)

13 Packet END = 0x7E None

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 76 of 114

Fig 38. Angular Velocity Display on the Sensor Fusion Toolbox for Windows

7.1.4 Packet Type 4: Euler Angles

This packet type is used to send roll/pitch/compass heading information to the Sensor

Fusion Toolbox. On the Android version, this is shown on the Device view, and is

enabled via a checkbox in the Preferences screen. On the Windows version, it is

displayed on the Dynamics tab (top row of the display in Fig 38.

Byte # Function Units

0 Packet Start = 0x7E None

1 Packet Type = 0x04 None

2 Packet # This number increments by 1 for
each sample. Rolls over at 0xFF to
0x00.

6:3 Timestamp 1 LSB = 1.00 microseconds
(Previously 1.33. Updated
2013.07.18)

8:7 Phi (Roll) 1 LSB = 0.1degree

10:9 Theta (Pitch) 1 LSB = 0.1degree

12:11 Rho (Compass) 1 LSB = 0.1degree

13 Packet END = 0x7E None

Phi, Theta and Rho correspond to iPhi, iThe and iRho in the SV_COMMON structure

definition.

7.1.5 Packet Type 5: Altitude and Temperature

This packet type is used to send altitude and temperature information to the Sensor

Fusion Toolbox for Windows. The data is shown in the Altimeter tab (Fig 39), which is

present only when the hardware/firmware support this feature.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 77 of 114

Byte # Function Units

0 Packet Start = 0x7E None

1 Packet Type = 0x05 None

2 Packet # This number increments by 1 for
each sample. Rolls over at 0xFF to
0x00.

6:3 Timestamp 1 LSB = 1.00 microseconds

10:7 Altitude 1 LSB = 0.001 meters

12:11 Temperature 1 LSB = 0.01 degree

13 Packet END = 0x7E Use the same notations.

The Altitude field is derived from SV_1DOF_P_BASIC.fLPH. The temperature field is

derived from SV_1DOF_P_BASIC.fLPT.

Fig 39. The Altimeter tab in the Sensor Fusion Toolbox for Windows

7.1.6 Reserved Packet Types

The following packet types are applicable to advanced algorithms that often change from

release to release. Therefore they are not documented for use outside of NXP.

7.1.6.1 Packet Type 6: Magnetic

Used to transmit samples from the magnetic constellation as well as computed

calibration constants and fit parameters. Magnetic data is sent at a low bandwidth.

Magnetic information displayed in the Sensor Fusion Toolbox may lag the actual status

of the embedded code by some seconds.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 78 of 114

7.1.6.2 Packet Type 7: Kalman Parameters

Used to transmit Kalman output and error terms.

7.1.6.3 Packet Type 8: Accelerometer Calibration

Used to read information displayed in the Precision Accelerometer tab of the Sensor

Fusion Toolbox for Windows.

7.1.6.4 Packet Types 9, 10 & 11

Reserved for application-specific data

7.2 Toolbox to Freedom Development Board

Up until version 2013.07.18 of the Fusion Toolbox, communication was strictly one way:

from development platform to Android device. Versions released after that date include

limited ability to configure the embedded board from the Sensor Fusion Toolbox. The

command protocol is subject to change.

Possible 4-byte commands are shown below. Substitute a space for each “#” to enforce

the 4-byte width.

ALT+ Altitude/Temperature packet on

ALT- Altitude/Temperature packet off (default)
8

DB+# debug packet on (default) (transmitted via “Options Menu->Enable debug”)

DB-# debug packet off (transmitted via “Options Menu->Disable debug”)

Q3## transmit 3-axis accelerometer quaternion (tilt) in standard packet

Q3M# transmit magnetometer quaternion (auto compass) in standard packet

Q3G# transmit gyro-based quaternion in standard packet

Q6MA transmit 6-axis mag/accel quaternion in standard packet (transmitted when

“Remote mag/accel” is selected on the Source/Algorithms spinner)

Q6AG transmit 6-axis accel/gyro quaternion in standard packet (transmitted when

“Remote accel/gyro” is selected on the Source/Algorithms spinner)

Q9## transmit 9-axis quaternion in standard packet (default) (transmitted when

“Remote 9axis” is selected on the Source/Algorithms spinner)

RPC+ Roll/Pitch/Compass packet on

RPC- Roll/Pitch/Compass packet off (default)

RST# Sensor Fusion soft reset (resets all sensor fusion data structures)

VG+# Virtual gyro packet on

VG-# Virtual gyro packet off (default)

RINS Reset INS inertial navigation velocity and position

SVAC save all calibrations to Kinetis flash

SVMC save magnetic calibration to Kinetis flash

SVYC save gyroscope calibration to Kinetis flash

SVGC save precision accelerometer calibration to Kinetis flash

7. 8. The debug packet must be enabled for firmware version number and sysTick counts to be properly

displayed by the Toolbox.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 79 of 114

ERAC erase all calibrations from Kinetis flash

ERMC erase magnetic calibration from Kinetis flash

ERYC erase gyro offset calibration from Kinetis flash

ERGC erase precision accelerometer calibration from Kinetis flash

180X apply 180 degree perturbation in X

180Y apply 180 degree perturbation in Y

180Z apply 180 degree perturbation in A

M90X apply -90 degree perturbation in X

P90X apply +90 degree perturbation in X

M90Y apply -90 degree perturbation in Y

P90Y apply +90 degree perturbation in Y

M90Z apply -90 degree perturbation in Z

P90Z apply +90 degree perturbation in Z

PAxx where xx = 00 through 11, return average precision accel location

Note that some of the commands above can request that the embedded board perform

computations in a specific way. Confirm that the proper operation has taken place by

checking the Flags field in Packet type 1.

8. Odds & Ends

8.1 ANSI C

The Sensor Fusion Library software is written according to the ANSI C90 standard and

does not use any of the ANSI C99 or C11 extensions.

Integers are a mixture of standard C long (four byte) integers with typedef as int32_t and

C short (2 byte) integers with typedef as int16_t. Floating point variables are all single

precision of size four bytes.

8.2 Floating Point Libraries

The Sensor Fusion Library software uses single precision floating point arithmetic. C

functions, like sqrt(), which return a double are immediately cast back into single

precision.

Floating point arithmetic is performed using software emulation on the processors with

integer cores or directly on the FPU by processors with an internal FPU.

8.3 Numerical Accuracy

The Sensor Fusion Library software is numerically accurate to the limits of single

precision floating point arithmetic.

Small angle approximations are only used when the relevant angle is, in fact, small so no

accuracy is lost compared to using the standard libraries. For example, sines and

cosines of small angles are computed with a MacLaurin series to give similar accuracy to

the standard sine and cosine libraries but at lower computational expense.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 80 of 114

Conditions that lead to inaccurate results are detected and the results computed using an

alternative algorithm suitable for those cases where the primary algorithm fails. An

example is the calculation of the orientation quaternion from a rotation matrix where the

primary algorithm differencing elements across the diagonal approaches a 0/0

calculation. The alternative algorithm used near 180 degree rotations operates on the

matrix diagonal elements instead.

The sensor fusion algorithms have been tested to be stable for tens of millions of 200 Hz

iterations. Accumulation of rounding errors in the rotation quaternions or matrices is

prevented by regular renormalization.

8.4 Error Handling

NXP Application Note AN5017 provides a comprehensive overview of coordinate

systems and orientation representations. This section simply introduces terms required

by later sections of this user manual.

9. Debugging

9.1 Basic Approach

The sensor fusion library has been downloaded thousands of times over the last few

years. Developer questions often fall into common categories. Those categories have

had a major impact in this rewrite of the user guide. This section discusses what to do

when your application compiles and builds, but does not give expected results.

9.1.1 Start with a working solution

Even if you are porting the library to non-NXP hardware, you should ALWAYS have a

working version based on NXP reference hardware on hand for comparison. And you

should have a working copy of the Sensor Fusion Toolbox for Windows. Reasons for

this recommendation include:

• Many developers new to sensor fusion do not fully understand the sensors

involved. Access to a known good solution helps you through that learning curve

and provides a valuable basis for comparison.

• Similarly, each fusion algorithm has its own set of tradeoffs to be considered.

Experiment with a known good system before proceeding to make one of your

own.

• The Sensor Fusion Toolbox is free and Freedom development platforms are

available for less than $100. There is no financial reason that any engineer

starting in this area can’t have a working system for comparison.

9.1.2 Take a structured approach to debug

Always take a divide and conquer approach to debugging. Start by verifying your low

level drivers and work your way up the stack. Don’t bother trying to debug the Kalman

filter if you don’t know that your sensor drivers and hardware abstraction layer (HAL) are

correct. And don’t debug your HAL until the sensor drivers are known good.

9.1.3 Community support

You should always first read this user guide. We’ve made every effort to anticipate

common problems and include guidance here. But if that fails…

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 81 of 114

NXP (and Freescale before it) has maintained an active user community for some years.

The sensor fusion team at NXP checks it each work day and response times are usually

measured in hours. NXP support will generally be limited to those using NXP hardware,

but we also encourage developers to help one another regardless of the hardware

platform involved. There is no cost to you to utilize the community.

When you submit a question or issue, please give us as much information as possible.

Include:

• a brief description of your application

• what tool chain(s) are you using?

• what MCU/sensors are you using?

• as much detail as possible about your question.

9.1.4 Are your performance expectation levels reasonable?

Table 25. Sensor Strengths & Weaknesses

Sensor Strengths Weaknesses
Accelerometer • Inexpensive

• Extremely low power

• Very linear

• Very low noise

• Measures the sum of

gravity and acceleration.

We need them separate.

Magnetometer • The only sensor that can

orient itself with regard to

“North”

• Insensitive to linear

acceleration

• Subject to magnetic

interference

• Not “spatially constant”

Gyro • Relatively independent of

linear acceleration

• Can be used to “gyro-

compensate” the

magnetometer

• Power hog

• Long startup time

• Zero rate offset drifts over

time

Pressure

Sensor
• The only stand-alone

sensor that can give an

indication of altitude

• Not well understood

• A “relative” measurement

• Subject to many

interferences and

environmental factors

Table 25 provides a high level view of some of the tradeoffs to be considered in the

sensor types used by this development kit. Developers new to sensors often don’t fully

understand the physics of the sensors and algorithms in question:

• There is no difference (from an accelerometer’s perspective) between sustained

acceleration and gravity. The two cannot be separated.

• Indoor magnetic fields vary tremendously over even short distances. These can

swamp out the earth’s magnetic field.

• We do not model all known sources of errors in our Kalman filters. We model

those most important to most applications. There is always a tradeoff between

accuracy, power, complexity and responsiveness. Kalman filters can be thought

of as “least squares fit of a state-based model”. The implication here is that any

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 82 of 114

un-modeled sources of error will manifest as errors in those terms which are

modeled.

Common comments/questions that arise:

Comment: My application requires 1 degree accuracy relative to magnetic north. I

can’t seem to reach that with the library.

Response: In a perfect environment, 10 degrees accuracy is relatively easy, 5

degrees is do-able, 1 degree is a research project.

Question: I am integrating linear acceleration to get velocity and then again to get

position. It is not giving me the results I expect. Why?

Response: Any error in the sensor output will cause the integration to quickly

explode over time. See Section 2.8 for details.

Question: My application is bolted to a stationary piece of equipment and does not

give me expected response. Why?

Response: Our Kalman filters are based upon standard equations of motion. If your

board isn’t moving, it is not collecting data to make the calculations.

9.2 Problems to expect with embedded debuggers

Embedded debuggers are a required tool in any developer’s arsenal. However they can

easily lead you astray, especially if you attempt to single step through your code.

• Compiler optimization can cause some variables to be completely optimized out

and statements to be executed in slightly different order than you might expect.

Turn off compiler optimization if you observe either problem.

• The fusion library programs sensors to sample at regular intervals. This continues

even if you are at a breakpoint. Hardware FIFOs in the sensors will overflow. A

good way to be sure you are getting correct values is to disable all breakpoints,

set the program to run continuously, then dynamically set a breakpoint in your

debugger while the program is running.

• Hardware faults can be especially hard to debug. Single stepping through code to

find the root cause can be an exercise in futility. When using ARM processors,

make sure you understand the various CPU registers which can provide clues to

the root cause. ARM®Keil® Application Note 209: Using Cortex-M3 and Cortex-

M4 Fault Exception is useful in this regard. The old approach of simply

commenting out portions of your code to isolate problems is still one of the best.

9.3 Are drivers called as scheduled?

In keeping with our bottoms-up methodology, start with your drivers. Are each of the

initialization functions being called and are they returning correct status? Initialization

functions are called from within a simple loop inside function initializeSensors() in file

sensor_fusion.c.

Likewise, are your sensor read functions operating correctly? They are called within

function readSensors(), also in sensor_fusion.c.

If you are using an RTOS, is your read_task being invoked?

If your driver never returns, is your I
2
C address correct? Are you using the correct I

2
C

port to access this particular sensor? Most MCUs have multiple I
2
C ports. And it’s

possible to use more than one for even a single application.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 83 of 114

If your driver results in a hard fault, make sure that the peripheral clocks are enabled for

your I
2
C module and associated port/GPIO.

9.4 Are serial communications working properly?

9.4.1 UART

By default, the UART port used to communicate with the Sensor Fusion Toolbox

operates with the following settings:

• 115200 baud

• 8 bits data width

• No parity

• 1 stop bit

If you add to the communications protocol, be sure that you increase the size of the

sUARTOutputBuffer variable. Failing to do so could result in a hardware fault as a result

of buffer overflow.

9.4.2 I2C/SPI

9.4.2.1 Do you have the correct I2C address for each peripheral?

Use of an incorrect I
2
C address can cause a driver to hang while waiting for a response

from a non-existent peripheral on the bus. Many NXP sensors can be pin programmed

for multiple addresses. Check your schematic and sensor datasheet to ensure you have

the right value.

9.4.2.2 Can you read the whoAmI register?

Well written sensor drivers should check the value of the sensor’s whoAmI register

during initialization. Check the status returned from the initialization function to ensure it

found the expected sensor.

9.4.3 Issues specific to wired interfaces

Wired communications over USB make use of the virtual serial port capabilities of the

OpenSDA interface used to program Kinetis devices. You must have the correct

Windows driver for whichever version of OpenSDA bootloader you have installed on your

board. nxp.com/opensda details options for all NXP Freedom Development Platforms.

Note: One of the authors has a PC which consistently refuses to connect using the

MBED CMSIS-DAP bootloader. Reprogramming the board bootloader to use the Segger

version of OpenSDA fixes the problem.

9.4.4 Issues specific to wireless interfaces

The FRDM-FXS-MULT2-B boards provide the option of wireless communication via

standard Bluetooth. Make sure that the BT Power Jumper shown in Fig 2 is in place.

9.4.4.1 Bluetooth Pairing

Regardless of whether you are using the Windows or Android version of the Sensor

Fusion Toolbox, you will need to pair your board to your device before doing anything

else. Each board has a unique Bluetooth ID of the form BlueRadiosxxxxxx, where

xxxxxx are the last 6 hex digits on the 2
nd

 line of the Bluetooth module label (“B“ in Fig

21).

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 84 of 114

9.4.4.2 Android Sensor Fusion Toolbox Topics

Make sure you enable Bluetooth communications in Android application by following the

procedure outlined in steps 10 through 12 of Section 3.5. You will not be able to

communicate with your board until you complete these steps.

9.4.4.3 GUI latency

Conceptually, the sensor fusion library computes 1 orientation per iteration of each filter.

This can be represented as a quaternion in fixed point format using only 8 bytes. The

UART serial port interface used by the GUI runs at 115,200 baud. You might think that

bandwidth would not be an issue. But the library transmits a lot of information to assist in

the debug effort. The GUI update rate is throttled to 40Hz or less to accommodate these

needs. So even if you run fusion at 200Hz, you will still see GUI updates at only 40X per

second.

Some diagnostics, notably magnetic calibration, require a lot of data to be transmitted to

the GUI. These are transmitted at a lower data rate, which can cause apparent delays in

the display. For instance, if you wave a magnet over the magnetic sensor, it may take

several seconds to see the magnetic constellations update accordingly. This is normal.

The delay is only in the transmission. Algorithms running on the MCU itself do respond

in a timely manner.

9.5 Do drivers return reasonable values?

This is where the having the Sensor Fusion Toolbox for Windows and a working

reference design (see section 9.1.1) really come in handy.

9.5.1 Accelerometers

Checking accelerometer readings is easy. Connect your system to the Sensor Fusion

Toolbox and click on the “Sensors” tab. For any of the standard 6 orientations, two axes

should have approximately zero values and the other will be +/-1g. Fig 40 shows the

case where we’ve rotated a board through all six orientations.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 85 of 114

Fig 40. The Sensors tab in the Sensor Fusion Toolbox for Windows

Fig 41 provides a pictorial reference for an Android build on a K64F/Mult2-B board

stackup. Remember that these values change a function of the frame of reference

(Table 13).

Fig 41. Accelerometer readings for 5 of the 6 Standard Orientations for an Android build

9.5.2 Magnetometers

Recall the discussions in Section 5.4.3, and the “Magnetics” tab of the Sensor Fusion

Toolbox as shown in Fig 36. As you rotate your board, the Calibrated Display should

show circular X-Y, Y-Z and Z-X projections. +/-30 to +/-60 µT is the expected range for

the sample distributions.

If the calibrated displays are elliptical, this indicates an extreme case of soft iron

magnetic interference. This results from the presence of some highly ferrous material

very close to the sensor. The NXP magnetic calibration routines can usually correct for

all but extreme cases of magnetic interference fixed spatially with respect to the sensor.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 86 of 114

It is common to see errors in the absolute values of the geomagnetic field intensity and

inclination angle. These are “secondary variables” falling out of the magnetic calibration

routines and (at least indoors) are rough estimates at best.

9.5.3 Gyroscopes

Gyros are a bit harder to evaluate, as they are rate sensors. If your board is stationary,

the gyro should read near zero on all channels. There are two tests you can quickly run.

For both, you want to select the “Rotation” algorithm selection on the Sensor Fusion

Toolbox main tab.

9.5.3.1 Dynamic Range

Here you want to hold the board in your hand and make quick twists of the wrist to

induce a signal in each of the 3 axes. Looking for transitions in the expected directions,

as shown in the Gyroscope Sensor Frame below. Try to turn the board as fast as you

can to see if you can reach the maximum rate supported by the gyroscope.

 This method can be somewhat hazardous to your wrist. If you have a record player, a

better way is to simply put the board on top and let it spin continuously. Lazy Susan’s

and bicycle wheels work also.

Fig 42. Manual Gyroscope Test

9.5.3.2 Integrated Orientation

Changes in displayed board rotation should track changes in the actual board location

when using the “Rotation” algorithm selection. To make it easier, set your board on a

table top and reset the display using the Perspective->Correct for Display Orientation

function to realign the display as shown in Fig 43.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 87 of 114

Fig 43. Starting gyro orientation test

Now quickly rotate the board 90 degrees. The display should now look something like

Error! Reference source not found.. The implication is that the board has rotated the

expected 90 degrees. Errors in gyro range selection or fusion time interval manifest as

errors in rotation here.

Fig 44. Gyro orientation test after 90 degrees board rotation

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 88 of 114

For instance, if the board displays at 45 degrees instead of 90, it indicates that either the

gyro is set at twice the expected range, or the fusion time interval is half the expected

value.

9.5.4 Version compatibility issues?

Each version of the Sensor Fusion Library is typically released concurrent with an

updated version of the Sensor Fusion Toolbox for Windows. The version 5.00 library

and matching Toolbox are available at nxp.com/sensorfusion. Version 7.00 of the sensor

fusion library will be released as part of the KSDK builds created by the Kinetis Expert

tool. The matching Toolbox will be available (and clearly labeled as for use with V7.00)

at nxp.com/sensorfusion. The format of the magnetic packet changed with the V6.00

library. So some features on the magnetics tab will not work if you attempt to mix and

match.

The Android version of the Sensor Fusion Toolbox does not support line plots, Kalman

analysis or magnetic calibration features. It is backward compatible with Version 5.00 of

the sensor fusion library.

9.6 Have you tried different compiler optimization levels?

MCUs with limited clock rates and/or memory may have trouble running the some

algorithms. Make sure you try the high optimization settings of your compiler before

concluding you actually have a problem.

9.7 Symptoms associated with RTOS stack problems

Most problems encountered with FreeRTOS relate to the configuration of stack and heap

sizes in FreeRTOSConfig.h. If properly configured, the call to vTaskStartScheduler() in

main() should never return.

9.8 Magnetic Interference

We’ve discussed magnetic interference numerous times in this text, but it bears

repeating: You should assume that indoor magnetic environments vary significantly over

even short distances. If your development board is near a laptop computer or telephone,

it will encounter distorted fields. This is not a sensor problem, it is an environmental

problem. Sensor fusion can help to alleviate, but not cure, this issue.

10. Theory: Orientation Representations

Sections 10.1 and 10.2 are variations of two postings (Orientation Representations, Part

1 & Part 2) which initially appeared on the Freescale (now NXP) Embedded Beat blog

site in 2012. To have a “happy experience” integrating sensor fusion into an application,

you need to understand the underlying theory presented here.

10.1 Part 1: Euler Angles and Rotation Matrices

10.1.1 Rotation Matrices

If you look at the software source code at the heart of these AR & VR apps, you’ll

discover a common component: a mathematical model relating the position and

orientation of your portable device within an earth frame of reference. Perhaps the

three most common are Euler angles, rotation matrices and quaternions. This section

focuss on the Euler angles and rotation matrices. Quaternions will be covered in the next

section.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 89 of 114

Fig 45. Local earth versus the body frame

Let’s arbitrarily choose the phone screen X,Y coordinate system as our rotating frame of

reference for this discussion. You can intuitively see that any X,Y point (Z assumed

zero) on the phone screen will map to some X, Y, Z point in the earth frame of reference.

It is also clear that the Cartesian axes in the phone (or body) frame of reference will only

rarely align themselves with the local earth frame axes. Since the position offset, R,

doesn’t affect orientation, we can collapse the figure down to that shown in the figure

below.

Fig 46. Using a common origin for both earth and body frames

Now let’s remove the phone from the picture and focus just on points in the X-Y plane.

The figure below shows the earth frame rotated into the body frame by an angle Psi (ψ).

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 90 of 114

Fig 47. The X-Y plane illustrates rotation from earth into body frame about the Z axis

You probably first saw a figure like this in your high school geometry or trig course. It

allows us to map any point “A” in any standard X,Y Cartesian system to any other X,Y

Cartesian system, which is rotated from it by some angle Psi (ψ), with a simple linear

transformation. To see how, let’s deconstruct that figure using a number of right

triangles.

Fig 48. Physical justification for terms in the rotation matrix

If you study the figure above, you can see that the rotation angle, ψ, is present in each of

the 4 right triangles we added. Additionally, the hypotenuse of each triangle is either xb

or yb. Given that information, we can see how to compute xe and ye from xb and yb:

xe = xb cos(Y) - yb sin(Y) (Eqn. 1)

ye = xb sin(Y) + yb cos(Y) (Eqn. 2)

In matrix form:

Aearth = C(-ψ) Abody (Eqn. 3)

The inverse of which is:

Abody = C(ψ) Aearth (Eqn. 4)

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 91 of 114

where Aearth and Abody are of the form [x y]
T
 and:

 (Eqn. 5)

 (Eqn. 6)

All other relationships included in this discussion can be similarly mapped to a diagram of

the rotation. The analysis also extends naturally to three dimensions. If Aearth and Abody

are of the form [x y z]
T
, then:

 (Eqn. 7)

 (Eqn. 8)

We will use the three dimensional form in the remainder of this discussion. In both two

and three dimensional cases, C(ψ) and C(-ψ) are known as rotation matrices.

Notice that C(ψ) is the transpose of C(-ψ), and vice-versa: C(ψ)
T
 = C(-ψ). This is a

special property of all rotation matrices. You can reverse the sense of rotation simply by

taking the transpose of the original matrix.

C(ψ) C(-ψ) = I3x3

Where I3x3 is simply the identity matrix:

This also implies that the inverse of a rotation matrix is simply its own transpose:

C(ψ)
-1

 = C(ψ)
T

Similar relationships hold for rotations in the X-Z (about the Y axis) plane:

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 92 of 114

Fig 49. The X-Z plane illustrates rotation about the Y axis

xe = xb cos(θ) + zb sin(θ)

(Eqn. 12)

ze = - xb sin(θ) + zb cos(θ) (Eqn. 13)

Aearth = C(-θ) Abody

(Eqn. 14)

Abody = C(θ) Aearth

(Eqn. 15)

 (Eqn. 16)

 (Eqn. 17)

and for rotations in the Z-Y (about the X axis) plane:

Fig 50. The Y-Z plane illustrates rotation about the X axis

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 93 of 114

ye = yb cos(Φ) - zb sin(Φ)

(Eqn. 18)

ze = yb sin(Φ) + zb cos(Φ)

(Eqn. 19)

Aearth = C(-Φ) Abody

(Eqn. 20)

Abody = C(Φ) Aearth (Eqn. 21)

 (Eqn. 22)

 (Eqn. 23)

Phi, Theta and Psi (Φ, θ and ψ) rotations in sequence can map a point in any
right-hand-rule (RHR) 3-dimensional space into any other RHR 3-dimensional
space.

A rotation from earth by body frame about Z, then Y then X axes (the
“aerospace” sequence) is represented by:

 (Eqn 24)

The composite rotation matrix is computed simply by multiplying the three
individual matrices in the specified order. Consistent with the discussion above,
the inverse of this expression is:

 (Eqn. 25)

10.1.2 Euler Angles

Collectively, Φ, θ and ψ are known as Euler angles. You may also see Φ, θ and ψ

referred to as “roll”, “pitch” and “yaw” respectively. The subscript “RPN” in the

expression above refers to roll-pitch-yaw and “YPR” refers to yaw-pitch-roll.

Euler angles are sometimes sub-divided into “Tait-Bryan” angles (in which rotations

occur about all three axes) and “proper” Euler angles (in which the first and third axes of

rotation are the same). Regardless of which type you use, it is important to specify the

order of the rotations – which IS significant. In the table below, the right-most rotation is

performed first, consistent with the matrix operations that will be required to implement

the rotation. Possible variants are:

Alpha Angles Comments

YRP ψ-Φ-θ Tait-Bryan All of these

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 94 of 114

YPR ψ-θ-Φ
angles

(AKA

Nautical or

Cardan

angles)

are

sometimes

referred to

simply as

“Euler

Angles”

PYR θ-ψ-Φ

PRY θ-Φ-ψ

RYP Φ-ψ-θ

RPY Φ-θ-ψ

RYR Φ-ψ-Φ Proper

Euler

Angles RPR Φ-θ-Φ

PYP θ-ψ-θ

PRP θ-Φ-θ

YRY ψ-Φ-ψ

YPY ψ-θ-ψ

A full discussion of Euler angles is beyond the scope of this article. But some key points

you need to take away are:

• Again, order of rotation matters!

• There almost as many notations for Euler angles as the references in which they

appear. Be specific in your notation.

• There may be multiple Euler angle combinations which map to the same physical

rotation. They are not unique.

• There are typically limits on the range of Euler rotation for each axis (+/- π or +/-

π/2). These affect how the total rotation is spread across the three angles. They

also tend to introduce discontinuities when Euler angles are computed over time.

• Each Euler triad will map to 3x3 rotation matrix (which IS unique) in a manner

similar to that shown in Equations 24 and 25 above.

If you define a “reference orientation” for any object, then you can define its current

orientation as some rotation relative to that reference. Tracking orientation over time is

then equivalent to tracking rotation from that reference over time. Because Euler angles

are relatively easy to visualize, they enjoyed early popularity in a number of fields. But

because of the shortcomings listed above, anyone who has used them extensively

invariably learns to despise them.

Rotation matrices don’t require a master’s degree to be able to use them. Anyone with a

college freshman geometry class under their belt can figure them out. They don’t have

the ambiguities associated with Euler angles, and can be found at the heart of many

algorithms. But you need 9 numbers for each rotation in this form. That can chew up a

lot of storage. A better representation is the “quaternion”, which we will explore in the

next section.

10.1.3 References:

[1] Quaternions and Rotation Sequences, Jack B. Kuipers, Princeton University Press,

1999

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 95 of 114

[2] Euler Angles from the Wolfram Demonstrations Project by Frederick W.

Strauch

[3] Diversified Redundancy in the Measurement of Euler Angles Using Accelerometers

and Magnetometers, Chirag Jagadish and Bor-Chin Chang, Proceedings of the 46
th

IEEE Conference on Decision and Control, Dec. 2007

[4] “Euler Angles” at Wikipedia

10.2 Part 2: Quaternions

10.2.1 Discussion

In the previous section, we explored the use of rotation matrices and Euler angles. At the

end of that discussion, We alluded to the fact that there might be more efficient ways of

describing rotations. Let’s start with the rotation of a simple rigid body (in this case a

cylinder) as shown in the figure below. Here, the cylinder is rotated such that a point on

its surface originally at “A” is rotated to point “B” in space

Fig 51. Rotation of a rigid body such that a reference point moves from “A” to “B”

For this simple case, we’ve kept the axis of rotation along the vertical axis of the cylinder

as shown in the figure below. But that is not a requirement for the underlying

mathematics to work. So long as we have a rigid body, we can always describe the

rotation in the manner that follows.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 96 of 114

Fig 52. Overlay of Cartesian Coordinates onto System of Figure 1

Fig 53 deals with the same rotation, but focuses on the fact that we have a rotation plane

that is perpendicular with the axis of rotation. The movement of the cylinder is a rotation

equal of angle α, about the axis of rotation, where the point of interest is constrained to

lie within the rotation plane.

Fig 53. Looking at Just the Rotation Plane and Axis of Rotation

The rotation is fully described by the three components of the normalized rotation axis

and the rotation angle α, which may be in radians or degrees, depending upon the

system in use. As an example, consider OpenGL ES graphics programming. This system

is very popular on portable devices. We used it to program the Device screen in the

Sensor Fusion Toolbox for Android. In OpenGL ES, you build up 3 dimensional objects

as a collection of triangles, which can then be offset and/or rotated to change

perspective. As an example, our cylinder might be crudely drawn as shown in Figure 4.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 97 of 114

Fig 54. OpenGL ES Drawing of a Cylinder

In this case, We’ve modeled the top and bottom of the cylinder with 6 triangles each, and

the other side is modeled using a total of 16 triangles arranged in a strip. OpenGL ES is

optimized to draw such structures efficiently, and it is possible to then “render” textures

onto the drawn surfaces. What’s really neat is that once drawn, we get a reasonable

approximation of the cylinder of on the left of Fig 54 simply by doing a -30 degrees

rotation about the Z axis (presumed to be out of the page) using a single OpenGL ES

instruction:

gl.glRotatef(-30.0f, 0.0f, 0.0f, 1.0f);

At this point, you’re probably thinking: “Yeah, that makes sense, but how does it work at

the math level?” This is the where we need to introduce the concept of a quaternion.

Conceptually, a quaternion encodes the same axis and angle as above. But for

mathematical reasons it deals with 1/2 of the rotation angle as shown below.

Fig 55. System of Figure 4 in Terms of Quaternion Components

Before overwhelming you with the underlying math, you should know that unless you are

planning to implement your own quaternion utility library, you only need to know a few

key points:

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 98 of 114

1. It takes four numbers to fully describe a quaternion (commonly q0 through q3).

2. Not all quaternions are rotation quaternions. Rotation quaternions have unit

length (q0
2
 + q1

2
 + q2

2
 + q3

2
= 1). The discussion below will be restricted to

rotation quaternions.

3. These same rotations can be described using Euler angles, rotation matrices,

etc. as discussed in the previous section. It is possible (and common) to

translate between formats and use multiple formats. Rotation matrices have the

advantage of always being unique. Euler angles are subject to gimbal lock and

should not be used for internal calculations (only input/output of results).

4. You can rotate a vector V using a quaternion q using the equation: W = qVq*

(quaternion products and complex conjugates are defined later)

5. A sequence of rotations represented by quaternions q1 followed by q2 can be

collapsed into a single rotation simply by computing the quaternion product

q=q2*q1 and then appling the rotation operator as above.

We will be presenting the mathematical definition first and without proof. If you really,

REALLY want to know the underlying theory, let us suggest that you pick up a copy of

Jack Kuiper’s excellent text: Quaternions and Rotation Sequences. This appears to be

(by far) the most extensive treatment on the topic, even while remaining very readable.

Notice that rotation quaternions deal with α/2, not α. We can define a rotation quaternion

“q” in one of several equivalent fashions.

q = (q0, q1, q2, q3) (Eqn.1)

q = q0 + q, where q = iq1 + jq2 + kq3 (Eqn. 2)

q = cos(α/2) + u sin(α/2), where u is the vector axis of rotation (Eqn. 3)

We use the quaternion form where q0 = cos(α/2). Some texts will reorder the quaternion

components so that the vector portion q is contained in q0-2 and q3 = cos(α/2). Be sure

you understand which form your text/software library supports.

Quaternions are a form of hyper-complex number where instead of a single real and

single imaginary component, we have one real and THREE imaginary components (i, j &

k). Rules for these imaginary components are:

i
2
 = j

2
 = k

2
 = ijk = -1 (Eqn. 4)

ij = k = -ji (Eqn. 5)

jk = i = -kj (Eqn. 6)

ki = j = -ik (Eqn. 7)

Two quaternions, p and q, are equal to one another only if the individual components are

equal. You add two quaternions by adding the individual components. If

p = p0 + ip1 + jp2 + kp3; and (Eqn. 8)

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 99 of 114

q = q0 + iq1 + jq2 + kq3 (Eqn. 9)

Then

p + q = (p0 + q0) + i(p1+q1) + j(p2+q2) + k(p3+q3) (Eqn. 10)

The addition operation commutes. That is p+q = q+p. Multiplication of a quaternion by a

scalar real number is trivial, just multiply each of the four components by the scalar.

Multiplication of two quaternions is NOT so trivial:

pq = p0q0 – p.q + p0q + q0p + p x q (Eqn. 11)

Multiplying one quaternion by another quaternion results in a third quaternion. Notice that

the 1st two components (p0q0 – p.q) makes up the scalar portion of the result, and the

last three (p0q + q0p + p x q) comprise the vector portion. The quaternion product

operation is not commutative pq≠qp. Order matters. Multiplication of two quaternions

includes scalar, cross product and dot product terms. Unless you are writing your own

quaternion library, you are likely never to use the expression above. Instead, you will use

a function that does the quaternion multiplication for you.

The complex conjugate of

q = q0 + iq1 + jq2 + kq3 is q* = q0 – iq1 – jq2 – kq3 (Eqn. 12)

Related to this, we have

(pq)* = q*p* (Eqn. 13)

q+q* = 2q0 (Eqn. 14)

q-1 = q* for any unit quaternion (Eqn. 15)

Eqn. 15 is interesting. If you think of a quaternion as a rotation operator, it says you can

reverse the sense of rotation by inverting the axis of rotation. Given our usual standard of

using the Right Hand Rule to describe the polarity of rotations, this makes perfect sense.

Reversing the direction of the axis is equivalent to reversing the direction of rotation.

Another interesting take on the above is that rotation quaternions are not unique:

q = -q (Eqn. 16)

Any rotation quaternion can be multiplied by -1 and still result in the same rotation! That’s

because we reversed both the angle AND the axis of rotation (which then cancel each

other). It is conventional therefore to remove the ambiguity by negating a rotation

quaternion if its scalar component is negative.

At this point, you are surely wondering why in the world you might, or might not, choose

to use quaternions instead of rotation matrices. Here’s a brief summary of the pros and

cons.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 100 of 114

Table 26. Pros & Cons of the Different Orientation Representations

Topic Quaternion Rotation Matrix

Storage Requires 16 bytes of storage in single

precision floating point (4 elements at 4

bytes each)

Requires 36 bytes of storage (9 elements

at 4 bytes each)

Computation (for 2

sequential rotations)

4 elements each requiring 4 multiplies and

3 additions = 28 operations

9 elements, each requiring 3 multiplies and

2 additions = 45 operations

Vector rotation Rotating a vector by pre- and post-

multiplication of quaternion requires 52

operations

Rotating a vector via rotation matrix

requires 15 operations (3 elements each

requiring 3 multiplies and 2 additions)

Discontinuities Generally, we force the scalar part of the

quaternion to be positive, which can cause

a discontinuity in the rotation axis (it flips).

None

Ease of

Understanding

Generally takes a lot of study to understand

the details

Easily understood by most engineers

Conversion
From rotation matrix =

m11 m12 m13

m21 m22 m23

m31 m32 m33

We have

q0 = 0.5 sqrt(m11 + m22 + m33 + 1)

q1 = (m32 – m23) / (4q0)

q2 = (m13 – m31) / (4q0)

q3 = (m21 – m12) / (4q0) (Eqn. 17)

RM =

2q02 – 1 +

2q12

2q1q2 –

2q0q3

2q1q3

+2q0q2

2q1q2 +

2q0q3

2q02 – 1 +

2q22

2q2q3 –

2q0q1

2q1q3 –

2q0q2

2q2q3 +

2q0q1

2q02 -1 +

2q32

(Eqn. 18)

Equations 17 and 18 are consistent with regards to direction of rotation. If instead of

rotating a vector in a fixed frame of reference, you rotate the frame of reference itself,

you will need to use the transpose of Eqn. 18 and invert q1, q2 and q3 in Eqn. 17.

Returning to the quaternion rotation operator W = qVq* , note that V needs to be

expressed as a quaternion of the form [0, vx, vy, vz], and the multiplications are

quaternion multiplies as defined in Eqn. 11. q* is the complex conjugate defined in Eqn.

12.

If you do a lot of graphics or sensor fusion work, you will probably find yourself constantly

switching between the various representations we’ve considered. You’ll find it useful to

remember a couple of identities from your high school geometry course:

10.2.1.1 The Dot Product

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 101 of 114

u. v = | u | | v | cos α (Eqn. 19)

If both u and v are unit vectors, then:

u. v = cos α (Eqn. 20)

10.2.1.2 The Cross Product

u x v = | u | | v | sin α n (Eqn. 21)

where n is a unit vector perpendicular to

the plane containing u and v (the polarity

of n follows the right hand rule).

If both u and v are unit vectors, then:

n = u x v / (sin α) (Eqn. 22)

If you’ve been paying attention, you will see that α is the rotation of u into v about the axis

of rotation defined by u x v. See! It’s simple! Axis and angle!

10.2.2 References

[1] Quaternions and Rotation Sequences, Jack B. Kuipers, Princeton University Press,

1999

[2] Euler Angles from the Wolfram Demonstrations Project by Frederick W. Strauch

[3] Diversified Redundancy in the Measurement of Euler Angles Using Accelerometers

and Magnetometers, Chirag Jagadish and Bor-Chin Chang, Proceedings of the

46th IEEE Conference on Decision and Control, Dec. 2007

[4] “Euler Angles” at Wikipedia

11. Theory: Hard & Soft Iron Magnetic Compensation

This section is a variation on a posting (Hard & Soft Iron Magnetic Compensation

Explained) which initially appeared on the Freescale (now NXP) Embedded Beat blog

site in 2011.

This section explores issues that you may encounter when using any magnetic sensor in

consumer applications. To keep things simple, let us consider the case where you’re

integrating a magnetic sensor into a smart phone. Nominally, you would like to use your

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 102 of 114

magnetic sensor to implement compass and navigations features. In a pristine

environment, free from interference, we could take measurements taken directly from our

sensor. The real world is not that simple.

11.1 Distortion of the magnetic field due to the presence of soft iron.

Fig 56. Soft Iron Distortion in a Uniform Field

Soft iron, you say? What’s that? Think steel. Think EMI shields, screws and battery

contacts. To illustrate the point, we performed a finite elements simulation of a U-shaped

piece of steel sitting in a uniform magnetic field. Fig 56A shows how the magnetic field

(which would otherwise be shown as vertical lines) is distorted by the presence of our “U-

bar”. Steel provides a “lower resistance” path to the magnetic field than does the

surrounding air. So it’s natural for the field to be diverted.

Figure Fig 56B takes that same U-bar and rotates it exactly 180 degrees in the same

ambient field. You can see similarities in the field distortion. We can see just how similar

Fig 56A and Fig 56B are by taking Fig 56B and flipping it, first about one axis and then

the other, to obtain Fig 56C, which is identical in form to Fig 56A.

This makes a lot of sense when you realize that from the steel’s perspective, Fig 56A and

Fig 56B are identical except for the polarity of the ambient magnetic field. We should get

symmetrical results.

More importantly, we’re going to be able to use this simple observation to remove the

distortion caused by soft iron from our measurement of the ambient magnetic field.

To see how, let’s take this same U-bar and rotate it in 20 degree increments in the same

field. At the same time, let’s measure and plot the magnetic field at the “dot” you see

nestled near the base of the “U”. It’s important to note that this point is fixed relative to

the disturbing metal. They rotate together.

The symmetry seen above continues to hold as we rotate our soft iron. The field

distortion at each angle of rotation matches (after the “flips” noted above) the distortion

seen at that angle + 180 degrees. More importantly, the field magnitude measured at

each angle matches the field magnitude measured at that angle + 180 degrees.

If we plot the x/y sensor readings for all of our points, we will get an ellipse (Fig 57).

This is a function of the basic physics and always holds true, regardless of the sensor

type used to make the measurement.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 103 of 114

Fig 57. Soft Iron Flixed Relative to Measurement Point

Both are rotated together in the ambient field.

If there were no soft iron present and we simply rotated our sensor, the ellipse would

collapse into a simple circle. Since the field remains the same regardless of the angle of

measurement, this must be the case. So we see that the effect of soft iron is to distort a

circle whose radius is equal to the magnitude of the ambient magnetic field into an

ellipse.

This result can be extended to 3 dimensions. Measurements taken while rotating a

sensor in free space undisturbed by hard or soft iron can be visualized as a sphere with

fixed radius equal to the magnitude of the ambient magnetic field. Adding soft iron to the

mix will distort that sphere into a 3D ellipsoid (Error! Reference source not found.).

The equation for a 3D sphere is:

x
2
 + y

2
 + z

2
 = r

2
.

In matrix form, if we have X = [x y z], then

XX
T
 = r

2
.

For an ellipsoid, it is:

x
2
/a + y

2
/b + z

2
/c = 1.

In matrix form this is

XAX
T
 = 1, where

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 104 of 114

Fig 58. Distorted (left) and ideal (right) magnetic fields

You can see that the equation of the sphere can be linearly derived from that of the

ellipsoid and vice versa. If we take a representative set of samples on the surface of

our ellipsoid, we can, through a variety of methods, determine the reverse mapping from

distorted to undistorted magnetic field readings. Essentially, we’re curve fitting in 3

dimensions. Now on to…

11.2 Distortion of the magnetic field due to the presence of hard iron

“Hard iron” is just a physicist’s way of saying “permanent magnet”. “Why,” you might ask,

“am I worried about permanent magnets?” Well, that smart phone we mentioned must

have a speaker. And speakers have magnets. And a lot of phone holsters have

magnets to secure the device. So it turns out that yes, we DO have to deal with them.

The good news is that (compared to soft iron effects), compensating for hard iron offsets

is relatively simple. If a magnet is fixed in location and orientation with respect to our

sensor, then there is an additional constant field value added to the value that would

otherwise be measured. If only soft iron effects are present, the ellipsoid mentioned

above should be centered at [x,y,z] = [0,0,0]. A permanent magnet fixed relative to the

measurement point simply adds an offset to the origin of the ellipsoid. If we have a large

enough data set, we can determine that offset as

hard iron offset = [xmax+xmin, ymax+ymin, zmax+zmin]/2

This technique will NOT work for magnets that move with respect to the sensor. The

magnet on the phone holster flap can’t be permanently canceled out. But that’s good

news! A sudden shift in offset/magnitude of our calculated field probably implies that the

phone has been inserted or removed from its holster. That can be a useful thing to

know.

11.2.1 Implications

The techniques discussed generally employ some form of curve fitting, which raises

subtle issues that don’t get discussed much: How many data points do we need in our

constellation of sample points? How often does that constellation need to be updated?

How do we decide to add or drop points to/from the constellation? What should we do

when a sudden change in ambient field magnitude is detected? What numerical

method(s) should be used to calculate the trim parameters? How do you deal with

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 105 of 114

uncorrelated magnetic disturbances that occur around us every day? How do you deal

with field variations with temperature? The answers to these questions make up much

of the “secret sauce” used by various vendors in their calibration algorithms.

Earth ambient magnetic field as a function of zip code can be obtained from the online

National Geophysical Data Center magnetic field calculator. But for some applications,

you may not even care what the local value is. The important point to take from the

discussion above is that we are leveraging the symmetry of the data set to drive a

solution. Compass orientation is determined by ratios of the 3 dimensions calculated. If

those values are off from the expected values by a multiplicative constant, the ratios still

hold.

See Application Note AN5019, Magnetic Calibration Algorithms”, to learn about the

specific magnetic calibration algorithms used within the NXP Sensor Fusion Library.

We’ve also listed a few papers in the references Section 12. Although often intense,

don’t let the math scare you. Almost all have the basic assumptions discussed above at

the heart of their approach. Some solve the problem only in the X/Y plane, others

address all three dimensions. Tradeoffs include program and variable memory space,

CPU cycles required and ease of implementation.

A basic requirement of these approaches is that the sensor output data vary linearly with

magnetic field. If your sensor is non-linear, correction factors must be applied prior to

applying the techniques discussed.

12. References

[1] C. Verplaetse, “Inertial proprioceptive devices: Self-motion-sensing toys and tools”,

IBM Systems Journal, 1996, Vol. 35, pp. 639-650

[2] Magnetometer Autocalibration Leveraging Measurement Locus Constraints, Demoz

Gebre-Egziabher, Journal of Aircraft, Vol. 44, No. 4, July-August 2007

[3] National Geophysical Data Center magnetic field calculator at

http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp.

[4] A Geometric Approach to Strapdown Magnetometer Calibration in Sensor Frame,

Vasconcelos, Elkaim, Oliveira & Cardeira

[5] A Non-Linear, Two-Step Estimation Algorithm for Calibrating Solid-State Strapdown

Magnetometer, Gebre-Egziabher, Elkaim, Power & Parkinson.

[6] Iterative calibration method for inertial and magnetic sensors, Dec. 2009, Dorveaux,

Vissiere, Martin & Petit

[7] A Research of an Improved Ellipse Method in Magnetoresistive Sensors Error

Compensation, Aug. 2009, Lian-yan, Qing & Wen-yuan

[8] Finite Element Method Magnetics, FEMM 4.2.

[9] Characterization of Various IMU Error Sources and the Effect on Navigation

performance, Flenniken, Wall and Bevly, 2005, 18
th
 International Technical

Meeting, Institute of Navigation

[10] U.S. Standard Atmosphere, 1976, available at

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539.pdf

Legal information

12.1 Definitions
Draft — The document is a draft version only. The content is still under

internal review and subject to formal approval, which may result in

modifications or additions. NXP Semiconductors does not give any

representations or warranties as to the accuracy or completeness of

information included herein and shall have no liability for the consequences

of use of such information.

12.2 Disclaimers
Limited warranty and liability — Information in this document is believed to

be accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the

consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal

or replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of

contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability

towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior

to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of

NXP Semiconductors products in such equipment or applications and

therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications

and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the

customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks

associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP

Semiconductors products in order to avoid a default of the applications and

the products or of the application or use by customer’s third party

customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may

be subject to export control regulations. Export might require a prior

authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all

faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates

and their suppliers expressly disclaim all warranties, whether express,

implied or statutory, including but not limited to the implied warranties of non-

infringement, merchantability and fitness for a particular purpose. The entire

risk as to the quality, or arising out of the use or performance, of this product

remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be

liable to customer for any special, indirect, consequential, punitive or

incidental damages (including without limitation damages for loss of

business, business interruption, loss of use, loss of data or information, and

the like) arising out the use of or inability to use the product, whether or not

based on tort (including negligence), strict liability, breach of contract, breach

of warranty or any other theory, even if advised of the possibility of such

damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and

all direct or general damages), the entire liability of NXP Semiconductors, its

affiliates and their suppliers and customer’s exclusive remedy for all of the

foregoing shall be limited to actual damages incurred by customer based on

reasonable reliance up to the greater of the amount actually paid by

customer for the product or five dollars (US$5.00). The foregoing limitations,

exclusions and disclaimers shall apply to the maximum extent permitted by

applicable law, even if any remedy fails of its essential purpose.

12.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

12.4 Patents
Notice is herewith given that the subject device uses one or more of the

following patents and that each of these patents may have corresponding

patents in other jurisdictions.

<Patent ID> — owned by <Company name>

12.5 Trademarks
Notice: All referenced brands, product names, service names and

trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 107 of 114

13. Index

<
<sensor>_Idle .. 40, 44, 55

1
1g sphere ... 63, 64

A
ACCEL_FIFO_SIZE ... 59
ACCEL_ODR_HZ .. 59
addToFifo() ... 31
Aerospace .. 5, 58, 61
altimeter ... 1, 13, 31, 33, 52, 53
Android .. 4, 5, 8, 11, 12, 24, 25, 26, 27, 28, 58, 61, 71, 72, 74, 75, 76, 78,
83, 84, 85, 88, 96
angular velocity .. 35, 38, 39, 58
ApplyAccelHAL() ... 62
ApplyGyroHAL() ... 62
ApplyMagHAL() .. 62
applyPerturbation() .. 46, 48

B
bandwidth .. 40, 44, 45, 74, 77, 84
Bare Metal ... 49
Bluetooth .. 5, 7, 8, 10, 11, 12, 13, 24, 25, 26, 27, 83, 84
BSD open source license ... 3
build.h .. 7, 16, 30, 31, 33, 40, 41, 54, 58, 59

C
Cartesian axes ... 89
CHX ... 30, 31, 32, 33, 34, 43, 61
CHY ... 31, 32, 33, 34, 43, 61
CHZ ... 31, 32, 33, 34, 43, 61
CMSIS ... 22, 28, 83
CodeWarrior .. 11
compass heading ... 17, 35, 58, 76
compiler optimization ... 82, 88
conditionSensorReadings .. 47
conditionSensorReadings() .. 47
constellation ... 12, 66, 67, 77, 104
control subsystem ... 11, 28, 38, 39, 47, 60, 71
control.c ... 39
control.h ... 39, 49, 52
Cross Product .. 101

D
dead reckoning .. 18
DecodeCommandBytes.c .. 39
Degrees of Freedom .. 14
Dot Product .. 100
driver_MMA8652.c ... 31

E
eCompass .. 4, 17, 34, 35, 37, 45, 59, 69, 70
Eigenvalues ... 5
embedded debuggers .. 82
ENU ... 61, 62
Euler angles ... 61, 88, 93, 94, 95, 98
Euler Angles .. 5, 72, 76, 88, 93, 94, 95, 101

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 108 of 114

Euler_Angles ... 5

F
F_1DOF_P_BASIC .. 7, 33, 58
F_3DOF_B_BASIC .. 7, 33, 58
F_3DOF_G_BASIC.. 7, 16, 33, 58
F_6DOF_GB_BASIC ... 7, 34, 59
F_6DOF_GY_KALMAN ... 7, 34, 59
F_9DOF_GBY_KALMAN ... 7, 34, 59
F_USING_ACCEL ... 31, 59
F_USING_GYRO ... 31, 59
F_USING_MAG ... 31, 59
F_USING_PRESSURE .. 31, 59
F_USING_TEMPERATURE .. 31, 59
FAST_LOOP_HZ ... 60
FIFOs ... 31, 43, 44, 45, 47, 82
Flash Memory .. 68
Flash NVM ... 6
FLPFSECS_1DOF_P_BASIC .. 69
FLPFSECS_3DOF_B_BASIC .. 69
FLPFSECS_3DOF_G_BASIC ... 69
FLPFSECS_6DOF_GB_BASIC ... 70
FMAX_6DOF_GY_BPL ... 70
FMAX_9DOF_GBY_BPL ... 70
FMIN_6DOF_GY_BPL... 70
FMIN_9DOF_GBY_BPL .. 70
FQVB_9DOF_GBY_KALMAN ... 70
FQVG_6DOF_GY_KALMAN ... 70
FQVG_9DOF_GBY_KALMAN ... 70
FQVY_6DOF_GY_KALMAN .. 70
FQVY_9DOF_GBY_KALMAN ... 70
FQWB_6DOF_GY_KALMAN ... 70
FQWB_9DOF_GBY_KALMAN .. 70
frame of reference ... 14, 17, 47, 58, 62, 85, 88, 89, 100
FRDM_K20D50M .. 6
FRDM_K22F .. 6
FRDM_K64F .. 6
FRDM_KEAZ128 ... 6
FRDM_KL25Z .. 6
FRDM_KL26Z .. 6
FRDM_KL46Z .. 6
FRDM_KV31F ... 6
FRDM-FXS-9-AXIS .. 7, 8
FRDM-FXS-MULTB-2 .. 11, 12, 13, 20
FRDM-FXS-MULTI .. 7, 8, 9, 24, 25, 73
FRDM-K64F ... 6, 20, 22, 73
FRDM-STBC-AGM01 .. 8, 9, 10, 73
FreeRTOS ... 11, 21, 51, 52, 53, 54, 55, 59, 88
Fusion Standby Mode .. 55
fusion.h .. 69
FUSION_HZ .. 60, 74
fusion_task ... 52, 54, 55, 56, 113
FXAS21000 ... 7
FXOS8700CQ .. 7, 8

G
geomagnetic sphere .. 63
GPIO .. 60, 71, 83
gravity .. 14, 15, 17, 18, 63, 66, 81
gyro offset .. 3, 23, 36, 37, 63, 79
gyro offsets .. 23, 47, 67, 69, 70
GYRO_FIFO_SIZE .. 59

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 109 of 114

GYRO_ODR_HZ ... 59

H
HAL .. 29, 49, 52, 60, 62, 80
Hard & Soft Iron Magnetic Compensation.......................... 101
hard iron ... 67, 104
Hardware Abstraction Layer .. 49, 52, 62

I
I
2
C .. 6, 7, 10, 11, 28, 40, 42, 43, 46, 49, 50, 52, 53, 61, 71, 82, 83

inertial navigation ... 18, 67, 78
Inertial Navigation .. 18
initializeFusionEngine() ... 29, 46, 47
initSensorFusionGlobals() .. 38, 39, 45, 46
InitSensorFusionGlobals() ... 46
INS ... 13, 19, 78
installSensor() .. 45, 46, 50
ISSDK .. 4, 10, 11, 28

K
Kalman filter ... 23, 33, 37, 67, 69, 80
KDS ... 21
Kinetis Design Studio ... 5, 11, 21
Kinetis SDK .. 10, 11, 28
KSDK ... 3, 20, 28, 29, 46, 49, 51, 68, 88

L
LED .. 11, 28, 38

M
MAG_FIFO_SIZE .. 59
MAG_ODR_HZ .. 41, 59
magnetic calibration ... 4, 12, 47, 66, 67, 78, 79, 84, 85, 86, 88, 105
Magnetic Calibration .. 5, 24, 66, 68, 105
magnetic compensation ... 63
magnetic field ... 15, 17, 39, 63, 66, 81, 102, 103, 104, 105
magnetic inclination ... 35
motionCheck .. 55, 56

N
Nautical or Cardan angles ... 93
NED ... 4, 58, 61, 72

O
OpenSDA ... 5, 10, 11, 20, 83
orientation matrix ... 35, 58
output_stream.c ... 39

P
periodic interval timer ... 29, 49
PIT ... 10, 29, 49, 50, 51, 53
pitch ... 35, 38, 58, 71, 76, 93

Q
quaternion .. 34, 35, 37, 38, 47, 58, 71, 72, 78, 80, 84, 94, 97, 98, 99, 100
Quaternion ... 5, 34, 35, 97, 100
Quaternions ... 5, 88, 94, 95, 98, 101

R
RAM ... 6, 46
random walk .. 70
readCommon() ... 34
readSensors() ... 29, 45, 46, 47, 50, 54, 82
registerwritelist_t .. 40, 41

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 110 of 114

RHR ... 60, 61, 93
Right Hand Rule .. 60, 99
roll .. 35, 38, 58, 71, 76, 93
rotation vector .. 35, 58
RTOS ... 3, 5, 10, 20, 28, 29, 44, 48, 52, 53, 55, 82, 88
runFusion() ... 29, 46, 47

S
Sensor Calibration ... 63
Sensor drivers .. 39
Sensor Fusion Toolbox for Windows 7, 11, 12, 13, 19, 22, 33, 39, 48, 64, 66, 68, 70, 76, 77, 78, 80, 84,
85, 88
sensor variances .. 69
sensor_fusion.c .. 37, 38, 82
sensor_fusion.h ... 37, 49, 52, 57
Sensor_I2C_Initialize() ... 40, 42
Sensor_I2C_Read() .. 40
Sensor_I2C_Write() .. 40
Sensor_SPI_Initialize() .. 40
Sensor_SPI_Read() .. 40
Sensor_SPI_Write().. 40
SensorFusionGlobals .. 30, 31, 32, 33, 39, 41, 42, 43, 46, 47, 49, 52, 68
sfg ... 30, 31, 32, 33, 34, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53,
54, 55, 68
soft iron .. 4, 15, 66, 85, 102, 103, 104
SPI ... 7, 10, 28, 40, 46, 71, 83
State Vector structures .. 33
status subsystem ... 28, 37, 38, 48, 71
status.c .. 37, 38
status.h .. 37, 38, 49, 52
SV_1DOF_P_BASIC ... 33, 77
SV_3DOF_B_BASIC ... 33, 34, 37
SV_3DOF_G_BASIC ... 33, 34, 37
SV_3DOF_Y_BASIC ... 33, 34
SV_6DOF_GB_BASIC... 34, 37
SV_6DOF_GY_KALMAN ... 34
SV_9DOF_GBY_KALMAN .. 34
SV_COMMON ... 34, 35, 76
SV_ptr ... 34, 74
systick .. 34, 35, 47, 51, 58, 60, 71, 74

T
Tait-Bryan angles ... 93
temperature ... 13, 19, 33, 76, 77, 105
the installSensor() .. 29, 41, 46
tilt angle ... 35, 58
Timer.. 10, 11
Tri-Color LED ... 10

U
UART ... 5, 6, 10, 11, 28, 38, 60, 71, 83, 84

W
Windows 8 ... 4, 5, 58, 61

Y
yaw .. 35, 58, 61, 93

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 111 of 114

14. List of figures

Fig 1. K64F Freedom Development Platform 6

Fig 2. FRDM-Mult2-B with key components 8

Fig 3. FRDM-FXS-MULTI-B mated to FRDM-KL25Z .. 9

Fig 4. FRDM-STBC-AGM01 Freedom Development
Platform... 10

Fig 5. The Sensor Fusion Toolbox for Android 12

Fig 6. Sensor Fusion Toolbox for Windows 13

Fig 7. Degrees of Freedom Explained 14

Fig 8. 3-Axis Accelerometer 14

Fig 9. 3-Axis Gyroscope returns the rotation rates
about each of X, Y & Z axes 15

Fig 10. 3-Axis Magnetometer will allow you to align
yourself with the earth’s magnetic field 15

Fig 11. Pressure can be our 10th axis. 16

Fig 12. Equivalent Tilt Cases 16

Fig 13. XY displacement over a 5 second interval (10
runs) for an uncallibrated accelerometer 18

Fig 14. XY displacement over a 5 second interval (10
runs) for a calibrated accelerometer 19

Fig 15. Sensor Fusion Toolbox For Windows at Startup
 .. 22

Fig 16. Get ready to calibrate your gyroscope 23

Fig 17. Sensor Fusion Toolbox For Windows at Startup
 .. 23

Fig 18. Sensor Fusion Toolbox For Windows after
Magnetic Calibration 24

Fig 19. Searching for the App in Google’s Play Store . 25

Fig 20. Sensor Fusion Toolbox For Android Options .. 25

Fig 21. Key Features on the FRDM-FXS-MULT2-B 26

Fig 22. Startup screen when no paired device is found
 .. 26

Fig 23. Sensor Fusion Toolbox for Android Options
Menu ... 27

Fig 24. Key Features on the FRDM-FXS-MULT2-B 27

Fig 25. Key Features on the FRDM-FXS-MULT2-B 27

Fig 26. High Level Architecture 29

Fig 27. Sensor Fusion High Level Data Structures 30

Fig 28. Step function test features in the Sensor Fusion
Toolbox for Windows 48

Fig 29. Problem: One of these sensors does not follow
the RHR rule ... 61

Fig 30. The Fix: Inverting the MAG3110 Z-axis in the
driver ... 61

Fig 31. Problem: MMA8451 Rotated 90 Degrees 62

Fig 32. Draw a picture of actual versus desired
reference frame ... 62

Fig 33. Problem: MMA8451 Rotated 90 Degrees 64

Fig 34. Precise control of measurement angles is only
required once: flat ... 65

Fig 35. Accelerometer calibration has been completed
 .. 65

Fig 36. The magnetic calibration tab 67

Fig 37. Debug packet information displayed on the main
form ... 75

Fig 38. Angular Velocity Display on the Sensor Fusion
Toolbox for Windows 76

Fig 39. The Altimeter tab in the Sensor Fusion Toolbox
for Windows .. 77

Fig 40. The Sensors tab in the Sensor Fusion Toolbox
for Windows .. 85

Fig 41. Accelerometer readings for 5 of the 6 Standard
Orientations for an Android build 85

Fig 42. Manual Gyroscope Test 86

Fig 43. Starting gyro orientation test 87

Fig 44. Gyro orientation test after 90 degrees board
rotation .. 87

Fig 45. Local earth versus the body frame 89

Fig 46. Using a common origin for both earth and body
frames ... 89

Fig 47. The X-Y plane illustrates rotation from earth into
body frame about the Z axis 90

Fig 48. Physical justification for terms in the rotation
matrix .. 90

Fig 49. The X-Z plane illustrates rotation about the Y
axis .. 92

Fig 50. The Y-Z plane illustrates rotation about the X
axis .. 92

Fig 51. Rotation of a rigid body such that a reference
point moves from “A” to “B” 95

Fig 52. Overlay of Cartesian Coordinates onto System
of Figure 1 ... 96

Fig 53. Looking at Just the Rotation Plane and Axis of
Rotation ... 96

Fig 54. OpenGL ES Drawing of a Cylinder 97

Fig 55. System of Figure 4 in Terms of Quaternion
Components .. 97

Fig 56. Soft Iron Distortion in a Uniform Field 102

Fig 57. Soft Iron Flixed Relative to Measurement Point
 .. 103

Fig 58. Distorted (left) and ideal (right) magnetic fields
 .. 104

NXP Semiconductors NXP Sensor Fusion

NSFK_Prod_UG All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

User manual Rev. <2.0> — 26 April 2016 112 of 114

15. List of tables

Table 1. Sensor Types Required as Function of
Algorithm ... 7

Table 2. Sensors by Freedom Development Platform 7

Table 3. Primary Subsystems and Associated
Peripherals .. 10

Table 4. FRDM-K64F & FRDM-FXS-MULT2-B /
Peripheral Assignments 11

Table 5. State Vector Substructures within
SensorFusionGlobals 33

Table 6. Location of individual variables within the global
structures .. 35

Table 7. Legal Status States ... 38

Table 8. Functional interface for the status subsystem . 38

Table 9. Controls maintained by the control subsystem 38

Table 10. Functional interface for the control subsystem 39

Table 11. Algorithm selection fields in build.h 58

Table 12. Sensor selection fields in build.h 59

Table 13. Coordinate system comparison 61

Table 14. Tradeoffs between V5.00 and V7.00 sensor
fusion .. 66

Table 15. Pressure Tuning Constants............................. 69

Table 16. Tilt Tuning Constants 69

Table 17. 2D Automotive eCompass Tuning Constants . 69

Table 18. eCompass Tuning Constants 70

Table 19. 6-Axis Kalman Filter Tuning Constants 70

Table 20. 9-Axis Kalman Filter Tuning Constants 70

Table 21. Packet Type 1: Orientation and Sensor Data .. 72

Table 22. Packet 1 Sources .. 73

Table 23. Packet type ... 74

Table 24. Packet Type 3: Angular Rate Information 75

Table 25. Sensor Strengths & Weaknesses 81

Table 26. Pros & Cons of the Different Orientation
Representations .. 100

NXP Semiconductors NXP Sensor Fusion

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2016. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 April 2016

Document identifier: NSFK_Prod_UG

16. Contents

1. Introduction ... 3
1.1 Software Licensing ... 3
1.2 Software Features .. 4
1.3 Supporting Documentation 5
1.3.1 Included in the Kit ... 5
1.3.2 Found Elsewhere ... 5
1.4 Requirements ... 5
1.4.1 MCU ... 5
1.4.2 Sensors .. 7
1.4.3 MCU Peripherals .. 10
1.4.4 IDE Independence ... 11
1.4.5 Enablement Tools .. 11
1.4.5.1 Sensor Fusion Toolbox for Android 12
1.4.5.2 Sensor Fusion Toolbox for Windows 12

2. Sensor Fusion Topics & Options 13
2.1 Vocabulary ... 13
2.2 3-Axis Tilt ... 16
2.3 2D Automotive eCompass................................ 17
2.4 3-Axis Rotation ... 17
2.5 6-Axis Tilt-Compensated eCompass 17
2.6 6-Axis Gaming .. 17
2.7 9-Axis ... 17
2.8 Inertial Navigation – Truth or Fiction? 18

3. Quick Start Guides .. 20
3.1 Getting Hardware ... 20
3.2 Getting the KSDK ... 20
3.3 Compiling Binaries ... 21
3.4 Microsoft Windows ... 22
3.5 Android ... 24
3.5.1 iOS ... 28

4. Architecture ... 28

4.1 High Level Overview .. 28
4.2 Data Structures .. 29
4.2.1 High Level View ... 30
4.2.2 Sensor Data Structures 31
4.2.3 Reading Sensor Values 31
4.2.3.1 Accelerometer .. 31
4.2.3.2 Magnetometer .. 32
4.2.3.3 Gyroscope .. 32
4.2.3.4 Pressure Sensor / Altimeter 33
4.2.4 State Vector structures for fusion algorithms.... 33
4.2.5 Secret Decoder Ring for Variable Names 37
4.3 Status Subsystem .. 37
4.4 Control Subsystem ... 38
4.5 Sensor drivers .. 39

4.5.1 Driver philosophy .. 39
4.5.2 Foundation functions .. 40
4.5.3 <sensor>_Init (required) 41
4.5.4 <sensor>_Read (Required) 43
4.5.5 <sensor>_Idle (Optional) 44
4.5.6 Scheduling sensor read operations 44
4.6 Core Functions ... 45
4.6.1 InitSensorFusionGlobals 46
4.6.2 InstallSensor ... 46
4.6.3 initializeFusionEngine 47
4.6.4 readSensors ... 47
4.6.5 conditionSensorReadings................................. 47
4.6.6 runFusion ... 47
4.6.7 applyPerturbation (optional) 48
4.7 RTOS or Not? ... 48
4.7.1 Bare Metal main ... 49
4.7.1.1 Required #includes ... 49
4.7.1.2 Global storage .. 49
4.7.1.3 bare metal main() ... 49
4.7.2 FreeRTOS main.c .. 51
4.7.2.1 Required #includes ... 51
4.7.2.2 Global storage .. 52
4.7.2.3 FreeRTOS specifics ... 52
4.7.2.4 A simpler main() ... 52
4.7.2.5 read_task .. 54
4.7.2.6 fusion_task ... 55
4.7.3 Key takeaway ... 55
4.8 Fusion Standby Mode 55
4.8.1 motionCheck .. 55
4.8.2 Sample Implementation 56
4.9 Reading Results from Global Structures 57

5. Customizing Your Build 58

5.1 Selecting which algorithms to build 58
5.2 Sample and Fusion Rate Topics 59
5.2.1 Using the SysTick Counter to Measure Compute

Times.. 60
5.2.1.1 The technique ... 60
5.2.1.2 Limitations .. 60
5.3 Frames of Reference and the HAL 60
5.4 Sensor Calibration Topics 63
5.4.1 Some Background .. 63
5.4.2 Accelerometer .. 63
5.4.3 Magnetometer .. 66
5.4.4 Gyroscope .. 67
5.4.5 Storing / Retrieving Parameters from Flash

Memory .. 68

NXP Semiconductors NXP Sensor Fusion

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2016. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 April 2016

Document identifier: NSFK_Prod_UG

5.5 Tinkering with Kalman filter parameters in
fusion.h .. 69

5.5.1 1DOF P Basic Constants (Pressure) 69
5.5.2 3DOF G Basic Constants (Tilt) 69
5.5.3 3DOF B Basic Constants (2D Automotive

eCompass) ... 69
5.5.4 6DOF GB Basics (eCompass) 70
5.5.5 6DOF GY Kalman Constants (Gaming) 70
5.5.6 9DOF GBY Kalman Constants (9-Axis) 70

6. Additional Porting Topics 70
6.1 Adding New Sensor Drivers 70
6.2 Moving to different MCUs 71

7. Serial Packet Structure 71
7.1 Development Board to Fusion Toolbox 71
7.1.1 Packet Type 1: Orientation and Sensor Data ... 72
7.1.2 Packet Type 2: Debug 74
7.1.3 Packet Type 3: Angular Rate 75
7.1.4 Packet Type 4: Euler Angles 76
7.1.5 Packet Type 5: Altitude and Temperature 76
7.1.6 Reserved Packet Types 77
7.1.6.1 Packet Type 6: Magnetic 77
7.1.6.2 Packet Type 7: Kalman Parameters 78
7.1.6.3 Packet Type 8: Accelerometer Calibration 78
7.1.6.4 Packet Types 9, 10 & 11 78
7.2 Toolbox to Freedom Development Board 78

8. Odds & Ends .. 79

8.1 ANSI C ... 79
8.2 Floating Point Libraries 79
8.3 Numerical Accuracy ... 79
8.4 Error Handling .. 80

9. Debugging.. 80
9.1 Basic Approach .. 80
9.1.1 Start with a working solution............................. 80
9.1.2 Take a structured approach to debug 80
9.1.3 Community support .. 80
9.1.4 Are your performance expectation levels

reasonable? ... 81
9.2 Problems to expect with embedded debuggers 82
9.3 Are drivers called as scheduled? 82
9.4 Are serial communications working properly? .. 83
9.4.1 UART ... 83
9.4.2 I2C/SPI ... 83
9.4.2.1 Do you have the correct I2C address for each

peripheral? ... 83
9.4.2.2 Can you read the whoAmI register? 83
9.4.3 Issues specific to wired interfaces 83
9.4.4 Issues specific to wireless interfaces 83
9.4.4.1 Bluetooth Pairing .. 83
9.4.4.2 Android Sensor Fusion Toolbox Topics 84

9.4.4.3 GUI latency ... 84
9.5 Do drivers return reasonable values? 84
9.5.1 Accelerometers .. 84
9.5.2 Magnetometers .. 85
9.5.3 Gyroscopes .. 86
9.5.3.1 Dynamic Range .. 86
9.5.3.2 Integrated Orientation 86
9.5.4 Version compatibility issues? 88
9.6 Have you tried different compiler optimization

levels? .. 88
9.7 Symptoms associated with RTOS stack

problems ... 88
9.8 Magnetic Interference 88

10. Theory: Orientation Representations 88

10.1 Part 1: Euler Angles and Rotation Matrices 88
10.1.1 Rotation Matrices ... 88
10.1.2 Euler Angles ... 93
10.1.3 References: .. 94
10.2 Part 2: Quaternions .. 95
10.2.1 Discussion .. 95
10.2.1.1 The Dot Product ... 100
10.2.1.2 The Cross Product ... 101
10.2.2 References ... 101

11. Theory: Hard & Soft Iron Magnetic

Compensation .. 101
11.1 Distortion of the magnetic field due to the

presence of soft iron. 102
11.2 Distortion of the magnetic field due to the

presence of hard iron 104
11.2.1 Implications .. 104

12. References ... 105

Legal information .. 106

12.1 Definitions ... 106
12.2 Disclaimers ... 106
12.3 Licenses ... 106
12.4 Patents ... 106
12.5 Trademarks .. 106

13. Index ... 107

14. List of figures ... 111

15. List of tables .. 112

16. Contents ... 113

