
©2015, 2018 P&E Microcmputer Systems, Inc. NXP is a registered trademark of NXP Semiconductors, Inc.

P&E GDB Server Plug-In for E200 Devices
Debug Configuration User Guide, v.1.03

1 Introduction
This user guide describes the basic process for setting up your debug connection
within the P&E GDB Server Plug-In for NXP® E200 devices under your Eclipse-based
IDE. A quick start guide is followed by a section that describes the various settings
that can be used to configure your setup. The P&E GDB Server and Eclipse plug-in
are fully tested and supported on the following operating systems:

• Windows 7

• Windows 8

• Windows 10

• Debian 8.2

• Ubuntu 14.04

• CentOS 7

2 P&E GDB Server For E200 Devices- Quick Start Guide Using
P&E Hardware Interfaces

Use the following steps to get started setting up your debug connection within the
P&E GDB Server For E200 Devices.

1. After creating and building your project, navigate to Run -> Debug Configura-
tions from the menu bar.

2. Select “GDB PEMicro Interface Debugging” from the left panel. Click on the
New Launch Configuration button to create a debug configuration.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 2

Figure 2-1: New Launch Configuration Button

3. Click on the “Debugger” tab. A new panel will appear allowing the user to
specify P&E hardware and settings. The user is required to specify the Inter-
face, Port, Device Name, and Core. For most setups, the remaining settings
may be left as default. Refer to Section 3 - Changing P&E Connection Set-
tings for more details about each option.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 3

Figure 2-2: Specify Interface, Port, Device Name, and Core

4. Click Apply and Debug.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 4

3 Changing P&E Connection Settings
Connection settings for P&E hardware interfaces are configured in the Debug
Configurations dialog box.

Figure 3-1: P&E E200 Launch Configuration Dialog Box

Table 1.1 describes the options for this view.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 5

Table 1.1 Connection Parameter Options

Option Description

[1] Interface Use this option to select the interface type.
Select a supported interface from the list
box. The options are:

• USB Multilink, USB Multilink FX,
Embedded OSBDM/OSJTAG - USB Port

• Cyclone - Serial Port

• Cyclone - USB Port

• Cyclone - Ethernet Port

NOTE: Click on the “Compatible
Hardware” link to help you determine
which P&E hardware is most suitable for
your project.

[2] Port This option selects the port over which
debug communications is conducted.

Select an available port from the list box.

[3] Refresh Click this button to have the workstation
scan for a valid interface and port. Valid
interfaces and ports appear in the
Interface and Port list boxes.

[4 Device Name Selects the E200 processor being
debugged..

[5] Core Use this option to specify which core to
debug. For multicore debugging, create a
separate debug configuration for each
core.

[6] Specify IP (Cyclone Ethernet only) Use this option to specify the IP address
of a hardware interface outside of the local
network. Click on the checkbox to enable
the textbox. This will also overridethe port
dropdown box. Currently supports IPv4
only.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 6

[7] Specify Network Card IP (Cyclone
Ethernet only)

Use this option to specify the local
network card IP address if there are
multiple cards on your computer.

[8] Advanced Options Opens a menu option to configure the
Flash algorithm or to preserve non-volatile
memory. Please see Section 4 -
Advanced Debug & Programming
Options.

[9] Provide power to target (USB
Multilink Universal FX and Cyclone
Universal [FX] only)

Check this option to have the Cyclone
Universal [FX] or USB Multilink Universal
FX (circuitry) supply power to the
hardware target.

Uncheck this option to not provide power.

Note: For USB Multilink Universal FX, use
the jumper settings located at JP10
to provide either 3.3V or 5V.

[10] Power off target upon software
exit (USB Multilink Universal FX and
Cyclone Universal [FX] only)

Check this option to turn off the power
when the program terminates.

Uncheck this option to leave the hardware
target powered continuously.

[11] Regulator Output Voltage
(Cyclone Universal [FX] only)

This option adjusts the output voltage that
powers the hardware target.

Select a voltage value from this option’s
list box.

CAUTION An improper voltage setting
can damage the board.

[12] Power down delay (USB Multilink
Universal FX and Cyclone Universal
[FX] only)

This option specifies amount of time for
which the target will be turned off during a
RESET power cycling sequence.

Enter the delay interval (in milliseconds) in
this option’s text box.

Option Description

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 7

[13] Power up delay (USB Multilink
Universal FX and Cyclone Universal
[FX] only)

This option specifies amount of time for
which the target will remain powered prior
to a RESET power cycling sequence.

Enter the delay interval (in milliseconds) in
this option’s text box.

[14] Debug Shift Freq. Specifies the debug shift frequency (in
KHz) of P&E’s hardware debug interfaces.
Faster shift frequencies result in faster
debug operations such as memory reads
and flash programming. However, this
frequency cannot exceed 1/6 of the target
processor’s bus frequency.

[15] Delay After Reset Specifies a delay after the programmer
resets the target that we check to see if
the part has properly gone into
background debug mode. This is useful if
the target has a reset driver which hold the
MCU in reset after the programmer
releases the reset line. The n value is a
delay in milliseconds.

[16] Launch Server Locally Automatically starts and stops the P&E
GDB Server locally for each debug
session. Otherwise, the P&E GDB Server
needs to be started manually. In this case,
the GDB Server must be running before
launching a debug session.

[17] GDB IP Address Specifies the IP Address of the P&E GDB
Server. This parameter is not used if the
server is launched locally.

[18] GDB Server Parameters Specifies additional command-line
parameters when the P&E GDB Server is
launched locally.

Option Description

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 8

4 Advanced Debug & Programming Options
P&E’s E200 Eclipse GDB Server Plug-In supports a collection of advanced debug and
FLASH programming features. The Advanced Options dialog can be opened from the
Launch Configuration Dialog of any P&E GDB Server Plug-In For E200 Devices-
based debug configuration.

[19 Executable Specifies the path to the GDB client
executable.

[20] Other Options Specifies additional command-line
parameters to the GDB client.

[21] Commands Specifies additional commands to be
executed by the GDB client at startup.

[22] Force Thread List Update On
Command

Specifies whether CDT should ask the
GDB client for updated thread information
each time the target processor is
suspended.

Option Description

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 9

Figure 4-1: Advanced Options Button

Advanced options include: Preserving Memory Ranges and Alternative Algorithm
Selection.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 10

Figure 4-2: Advanced Options Dialog

4.1 Preserve Range

You have the option of preserving up to three independent ranges of non-volatile
memory.

Ranges that are designated as "preserved" are read before an erase and re-
programmed immediately afterwards, thereby preserving the data in these ranges.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 11

Any attempt to program data into a preserved range is ignored. When entering an
address into the preserved range field (hexadecimal input is expected) the values are
masked according to the row size of the device. This ensures that the re-programming
of preserved data does not cause any conditions that disturb programming.

4.2 Alternative Algorithm

Once you create a project for a specific E200 microprocessor, the debugger specifies
a default algorithm to use during all Flash programming operations. The debugger
uses this algorithm for nearly all programming requirements. The default algorithm
can be found in <Eclipse_IDE_Installation_Folder>/eclipse/plugins/
com.pemicro.debug.gdbjtag.pne_xxx/win32/gdi/P&E/. However, you can override the
default algorithm via the Alternative Algorithm function. This feature can be used to
select a custom programming algorithm, or to select another one of P&E's many
programming algorithms for use with a specific project.

Alternative algorithms can be useful when one is trying to program internal or external
FLASH memories with custom FLASH configurations.

Warning: Selecting the incorrect programming algorithm may damage your device, lead to
under/over programming situations, or result in failure to program portions of the
project file. Therefore it is recommended to use the default algorithm unless there is a
compelling reason to do otherwise.

4.3 Initialization Script Selection

Initialization Script Selection functionality allows the user to specify a custom
initialization script to run at the beginning of a debug session. This functionality can be
helpful in initializing onboard resources such as external memory or a watchdog timer
outside of an actual debug project. In order to enable the Initialization Script Selection
feature, the user needs to check the Enable Initialization Script checkbox and point to
an initialization macro file with the .mac extension. Commands in the following format
should further be used to initialize desired registers with specific initialization values:

meminit.l $register_location $new_register_value

execute_opcode $command_value

spr spr_register_numberT $new_register_value

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 12

Example:

REM This script is compatible with MPC567xK devices in VLE.

REM Setup MMU for entire 4GB address space

REM Base address = $0000_0000

REM TLB0, 4 GByte Memory Space, Not Guarded, Cacheable, All Access

spr 624t $10000000 ; MAS0

spr 625t $C0000B00 ; MAS1

spr 626t $00000020 ; MAS2

spr 627t $0000003F ; MAS3

execute_opcode $7C0007A4 ; tlbwe

REM Initialize all of the Main SRAM - 512KB

meminit.l $40000000 $4007FFFF

5 Troubleshooting PEmicro Debug Connection

5.1 Target Communication Speed

PEmicro’s debug configuration allows the user to modify the JTAG communication
shift frequency between the debug interface and the target. By default, this frequency
is set to a maximum value of 5000KHz, to take advantage of the fastest run control
and FLASH programming experience:

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 13

Figure 5-1: JTAG Communication Shift Frequency

At the same time, not every PowerPC processor might be able to support the highest
debug shift frequencies with all PEmicro debug interfaces. For example, the debug
frequency for MPC5634M board used in conjunction with the Multilink Universal FX
Rev C. needs to be lowered to 4000Khz in order to succeed. Hence, if the debug
session fails to successfully start up or fails on FLASH programming, lowering the
debug shift frequency by a factor of 2 or 4 is the first troubleshooting recommendation.

To get to PEmicro’s debug configuration window, one should select “Debug
Configuration” from the menu next to the debug icon, and switch over to the Debug
tab, within the “Debug Configuration” menu pop- up:

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 14

Figure 5-2: Navigate to PEmicro’s Debug Configuration Window

6 Attach Debug Session
P&E's Eclipse plugin supports the "attach" type of debug session. During an "attach"
the GDB client is launched in a way that does not disturb the state of a target device,
i.e. it skips the FLASH programming and reset steps which are a part of a standard
P&E debug session.

Below is a detailed description of how detach/kill buttons within the Eclipse IDE are
implemented:

Detach/Disconnect - Debug session exits with the device in running state

Kill/Terminate - Debug session exits with the device in the debug (not
running) state

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 15

Attach - Connection does not disturb the device. If it is running,
P&E leaves it running and shows it to the user as such. If it
is stopped, P&E shows it as stopped.

Attach Debug Session is enabled from within the Startup tab in P&E's debug
configuration dialog (see Figure 5-2).

Figure 6-1: Enable Attach Debug Session

7 Multi-Core Project Debug Configuration Settings
The project wizard will generate multiple projects, one for each core, when a multi-

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 16

core project is created. To be able to debug multiple cores, the main core’s debug
session needs to flash program the ELF files for all cores. The P&E plug-in
aggregates all binary information for programming, however the debug session will
only display debug information for the specific core being debugged. Then an “attach
debug session” is used to debug the other cores, otherwise starting multiple debug
sessions on different device cores without attaching will reprogram the flash.

Note: Ensure the main core’s project sets the reset vector and turns on the secondary cores.
Otherwise the debug session for the other cores will not work. Within the reference
manual of the chip, check for the MC_ME chapter.

To properly debug all of the cores, follow these steps in order:

7.1 Main Core

1. Set up the debug configuration for the main core, if not already done by the
project wizard. The main core is responsible for programming the binary files
for all device cores. In the Main tab, the settings for the main core must spec-
ify all of the ELF files to flash program. Use the Generate ELF Fields button
to populate multiple lines and Browse to specify the ELF files for the other
core. The main core’s ELF file is already being loaded as the C/C++ Applica-
tion setting which allows the debugger to load debug information, in addition
to binary files for source-level run control debugging.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 17

Figure 7-1: Main Tab of Main Core Debug Configurations

2. Setup the P&E hardware interface on the main core. Within the Debugger
tab, select the P&E hardware interface and ensure that correct Device Name
is selected and that the main core is selected under the Core option. Please
read CHAPTER 2 - P&E GDB Server For E200 Devices- Quick Start Guide
Using P&E Hardware Interfaces to learn about all of the settings.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 18

Figure 7-2: Debugger Tab of Main Core Debug Configurations

3. Check the Startup tab. For the main core, the checkbox for Attach to Run-
ning Target should not be checked.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 19

Figure 7-3: Startup Tab of Main Core Debug Configurations

4. Click on the Debug button to start the main core’s debug session. The P&E
plug-in will erase and flash program all of the ELF files. The debug session
will then load the object information from an ELF file for the main core. Run or
step past the initialization of the other cores so that they are enabled.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 20

7.2 Secondary/Other Cores

5. Set up the debug configuration for the other cores. Each core needs to load
its own debugging information. Check the Main tab and check that the C/C++
Application setting is set to the correct ELF file.

Figure 7-4: Main Tab of Secondary Core Debug Configurations

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 21

6. Setup the Debugger Tab for the other cores. If a flash programming and
debug session has already been launched on the main core, the other cores
can be attached to the same P&E hardware interface for a multi-core user
experience. Ensure that the Device Name and Core settings are properly set
up for the correct core for each debug session.

Note: Multiple core debug sessions can be launced as both local or remote sessions. Our
recommendation is for the user to launch both debug sessions locally on the same IP
address.

Figure 7-5: Debugger Tab of Secondary Core Debug Configurations

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 22

7. Set up the Startup tab for the other cores. The checkbox for Attach to Run-
ning Target needs to be checked, otherwise the debug session will erase
and program the flash again, thereby disrupting an ongoing debug session
running on the main core.

Figure 7-6: Startup Tab of Secondary Core Debug Configurations

8. Click on the Debug button to start the other core’s debug session. The attach

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 23

session will only load the debug information. If the other cores are set up to
already be running when enabled, then the attach session will start up as run-
ning.

Note: Disconnecting, terminating, or resetting any of the debug sessions of the main core or
secondary cores will affect all of the debug session running on the same P&E
hardware interface. Running, stepping, setting breakpoints, and inspecting registers
and variables will not affect the other cores and will only execute on the core in the
currently selected project perspective.

8 Viewing and Changing the Special Purpose Registers (SPR)
S32 Power IDE v1.2 and higher added a special SPR register window to allow users
to easily view and modify the values of SPR registers.

To open and view the SPR register dialog, please navigate to Window -> Show View
-> Other -> Debug -> SPR Registers

Figure 8-1: SPR Register Dialog

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 24

The user can also modify SPR registers in command line fashion with direct access
via powerpc_eabivle_gdb console. During a debug session, the P&E GDB server
console (pegdbserver_power_console) can display the Special Purpose Registers
(SPR) by typing commands into the GNU GDB client console (powerpc_eabivle_gdb).

To view the SPR value, follow these steps:

1. Open the console window and select the powerpc_eabivle_gdb console.

Figure 8-2: Select Console View

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 25

2. Type into the console the command “monitor spr x”, where ‘x’ is the register
number. Decimal values should be specified with the letter ‘t’, and hex values
with the letter ‘h’. For example, use “monitor spr 8t” to view the value of SPR
8.

Figure 8-3: Monitor Command Typed into GNU GDB Client Console

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 26

3. Hit the Enter key and the console will switch over to the pegdbserver_pow-
er_console. The console will display the value in hexadecimal.

Figure 8-4: SPR Value Displayed in P&E GDB Server Console

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 27

4. To modify the SPR value, switch back to the powerpc_eabivle_gdb console.
The command to modify the value is “monitor spr x n” where’ x’ is the register
number and ‘n’ is the new value. Again, use the letter ‘t’ to specify decimal
and letter ‘h’ for hexadecimal. For example, “monitor spr 8t 500h”.

Figure 8-5: Input SPR value

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 28

5. To confirm that the value has changed, call the monitor command again to
view it in the pegdbserver_power_console.

Figure 8-6: Display new value of SPR

9 Configuration Macro Scripts
To address a need to configure devices at the beginning of a debug session, P&E
added support for a user to add a custom Macro file within Advanced Options Dialog.

To manually add a configuration Macro(.mac) file to an S32 E200 project, please
navigate to P&E Debug Configuration -> Debug Tab -> Advanced Options and browse
to an initialization script after checking Enable initialization script check box.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 29

Figure 9-1: Browse To Initialization Script In Advanced Options Dialog

To add a custom initialization file via a Project Wizard when a project for a specific
device is being created, please add the following information to P&E’s launch
configuration file:

<stringAttribute key="com.pemicro.debug.gdbjtag.ppc.macScript"
value="C:\Path_to_Macro_File\Name_of_Init.mac"/>

<booleanAttribute key="com.pemicro.debug.gdbjtag.ppc.macScriptEnable"
value="true"/>

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 30

Below is a list of macro script commands that can be used to initialize specific device
peripherals at the beginning of a debug session:

9.1 BLOCK FILL or BF Command:

The BF or FILL command fills a block of memory with a specified byte, word or long.
The optional variant specifies whether to fill the block in bytes (.B, the default), in
words (.W) or in longs (.L). Word and long must have even addresses.

Syntax:

BF[.B | .W | .L] <startrange> <endrange> <n>

FILL[.B | .W | .L] <startrange> <endrange> <n>

Where:

<startrange> Beginning address of the memory block (range).

<endrange> Ending address of the memory block (range).

<n> Byte or word value to be stored in the specified block.

The variant can either be .B, .W, .L, where:

.B Each byte of the block receives the value.

.W Each word of the block receives the value.

.L Each word of the block receives the value.

Examples:

BF C0 CF FF Store hex value FF in bytes at addresses C0-CF.

FILL C0 CF FF Store hex value FF in bytes at addresses C0-CF

BF.B CO CF AA Store hex value AA in bytes at addresses C0-CF.

FILL.B CO CF AA Store hex value AA in bytes at addresses C0-CF.

BF.W 400 41F 4143 Store word hex value 4143 at addresses 400-41F.

FILL.W 400 41F 4143 Store word hex value 4143 at addresses 400-41F.

BF.L 1000 2000 8F86D143 Store long hex value 8F86D143 at address 1000-
2000

FILL.L 1000 2000 8F86D143 Store long hex value 8F86D143 at address 1000-

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 31

2000

9.2 BR Command

Sets or clears a breakpoint at the indicated address. Break happens if an attempt is
made to execute code from the given address. There are at most 7 breakpoints. They
cannot be set at a misaligned address. Typing BR by itself will show all the
breakpoints that are set and the current values for n.

Syntax:

BR [add] [n]

Where:

add Address at which a break point will be set.

n If [n] is specified, the break will not occur unless that location has been
executed n times. After the break occurs, n will be reset to its initial value. The
default for n is 1.

Examples:

BR 100 ; Set break point at hex address 100.

9.3 CR Command

The CR command sets the condition register (CR) to the specified hexadecimal value.

Syntax:

CR <n>

Where:

<n> The new hexadecimal value for the CR.

Example:

CR $C4 Assign the value C4 to the CR.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 32

9.4 CTR Counter Register Command

The CTR command sets the counter register (CTR) to the specified hexadecimal
value.

Note:

The counter register is used by the CPU for looping purposes. This register is also a
special purpose register.

Syntax:

CTR <n>

Where:

<n> The new hexadecimal value for the CTR.

Example:

CTR $100 Assign the value $100 to the CTR.

9.5 EXECUTE_OPCODE Command

Treats a numeric parameter as an opcode and executes it.

Syntax:

EXECUTE_OPCODE <n>

Where:

<n> Numeric opcode.

Examples:

EXECUTE_OPCODE $7C0007A4 ; tlbwe

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 33

9.6 MM Memory Modify Command

The MM command directly modifies the contents of memory beginning at the
specified address. The optional variant specifies whether to fill the block in bytes (.B,
the default), in words (.W), or in longs (.L).

If the MM command includes optional data value(s), the software assigns the value(s)
to the specified address(es) (sequentially), then the command ends. No window will
appear in this case.

Syntax:

MM [.B|.W|.L] <address>[<n> ...]

Where:

<address> The address of the first memory location to be modified.

<n> The value(s) to be stored (optional).

Examples:

MM 400 00 Assign value 00 to hex address 400.

MM.L 200 123456 Place long hex value 123456 at hex address 200.

9.7 MSR Command

The MSR command sets the machine status register (MSR) to the specified
hexadecimal value.

Syntax:

MSR <n>

Where:

<n> The new hexadecimal value for the MSR.

Example:

MSR $C4 Assign the value C4 to the MSR.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 34

9.8 NOBR Command

Clears all break points. Please note that issued NOBR commands will clear all
breakpoints on run control layer, which might not properly be reflected by breakpoint
viewer within Eclipse CDT layer.

Syntax:

NOBR

Example:

NOBR Clears all break points.

9.9 PC Program Counter Command

The PC command assigns the specified value to the 32-bit program counter (PC). As
the PC always points to the address of the next instruction to be executed, assigning
a new PC value changes the flow of code execution.

If source code is showing in a code window, an alternative way for setting the
Program Counter is to position the cursor on a line of code, then press the right
mouse button and select the Set PC at Cursor menu item. This assigns the address of
that line to the PC.

Syntax:

PC <address>

Where:

<address> The new PC value.

Example:

PC $0500 Sets the PC value to 0500

9.10 R(x) Generate Purpose Register Command

The R(x) command sets the value of the 32-bit General Purpose Register R(x), where
(x) is a value from 0 to 31. For targets that support the 64-bit SPE registers, use the H

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 35

and L suffixes.

Syntax:

R(x)[H | L] [n]

Where:

(x) Value from 0 to 31, corresponding to which register the user intends to
write.

[H | L] Indicates register with most significant bits H or least significant bits L.
Default is L.

[n] Value to be written to register.

Example:

R3 $CF03D4AA Writes value of $CF03D4AA to General Purpose Register R3.

R3H $CF03D4AA Writes value of $CF03D4AA to General Purpose Register R3H.

9.11 REM Command

The REM command allows a user to display comments in a macro file. When the
macro file is executing, the comment appears in the status window. The text
parameter does not need to be enclosed in quotes.

Syntax:

REM <text>

Where:

<text> A comment to be displayed when a macro file is executing.

Example:

REM Program executing Display message "Program executing" during macro file

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 36

execution.

9.12 SPR Command

The SPR Command displays the value of the Special Purpose Register (x). The user
can then enter a new value for the register or a simple carriage return to keep the
same value. The addresses used are the same as for the MTSPR or MFSPR
instructions. This is used to setup the LR, CTR, IMMR, and other special purpose
registers.

Syntax:

SPR (x) [n]

Where:

(x) Value from 0 to 1023 corresponding to which register the user intends to
write.

Note: The default debugger base is hexadecimal, so to force the register
number to be base 10, add the character T as a suffix.

[n] Optional Value to be written to register.

Example:

SPR 638T $1234Write $1234 to the IMMR special purpose register.

9.13 XER Command

The XER command sets the integer exception register (XER) to the specified
hexadecimal value.

Syntax:

XER <n>

Where:

<n> The new hexadecimal value for the XER.

PEmicro GDB Server Plug-In For E200 Devices - Debug Configuration User Guide 37

Example:

XER $C4 Assign the value C4 to the XER.

	1 Introduction
	2 P&E GDB Server For E200 Devices- Quick Start Guide Using P&E Hardware Interfaces
	3 Changing P&E Connection Settings
	4 Advanced Debug & Programming Options
	4.1 Preserve Range
	4.2 Alternative Algorithm
	4.3 Initialization Script Selection

	5 Troubleshooting PEmicro Debug Connection
	5.1 Target Communication Speed

	6 Attach Debug Session
	7 Multi-Core Project Debug Configuration Settings
	7.1 Main Core
	7.2 Secondary/Other Cores

	8 Viewing and Changing the Special Purpose Registers (SPR)
	9 Configuration Macro Scripts
	9.1 BLOCK FILL or BF Command:
	9.2 BR Command
	9.3 CR Command
	9.4 CTR Counter Register Command
	9.5 EXECUTE_OPCODE Command
	9.6 MM Memory Modify Command
	9.7 MSR Command
	9.8 NOBR Command
	9.9 PC Program Counter Command
	9.10 R(x) Generate Purpose Register Command
	9.11 REM Command
	9.12 SPR Command
	9.13 XER Command

