FREESCALE
TECHNOLOGY
FORUM 2014

FTF

Using the Design Checklist for
Board Bring-Up
FTF-NET-F0137

Satoshi lida | Application Engineering Manager

APR.2014

“freescale

External Use

Franscals, w Freescak fogo, AkiVee, C.5, CoosTEDT, Coosamior, ColaFis, Cobafims, C\Wore, i mmnmmm , PEQ, CC,
Capuet, Qexi) mmuwn@mmu CL T e, Fog LS Pt & Fre, OFF Alrtast, Dty

r
4\
Agenda NN B

- Introduction and Assumptions
- Pre-prototype board arrival phase
- Initial board power on / validation

<.

: - freescale . External Use 1

A 4
4\

Introduction and Assumptions

- The purpose of this presentation is to help hardware and software
engineers developing systems using QorlQ T4 series products

- We will cover debug procedures to successfully validate HW design
to a point where it is reasonable to begin SW development

= Pre-board arrival activities
= Initial board power up and validation of basic operation
= Boot loader installation and initialization

- System assumptions
- Boot loader is U-Boot and is located in NOR flash at power up
- U-boot is configured to run initially from NOR flash but transfer to DDR at run
time
- U-Boot run on Core O
- CodeWarrior is the the HW debugger used
- No secure boot implementation

£

: - freescale . External Use 2

N

Pre-Prototype Board Arrival
Phase

This section provides hardware and firmware developer steps to
prepare for new target arrival to the lab

Z“freescale -

A 4
4\

Collecting Technical Information

- Please ensure you are familiar with the following Freescale
collateral:

- T4240 QorlQ Advanced Multicore Processor Data Sheet (T4240EC) /
T4160 QorlQ Advanced Multicore Processor Data Sheet (T4160EC)
/T4080 QorlQ Advanced Multicore Processor Data Sheet (T4080EC)

- T4240 QorlQ Advanced Multiprocessing Processor Reference Manual
(T4240RM)

- T4240, T4160 and T4080 Chip Errata (T4240CE)
- T4240 QorlQ Integrated Processor Design Checklist (AN4559)

- Hardware and Layout Design Considerations for DDR3 SDRAM Memory
Interfaces (AN3940)

- Difference Between T4240 Rev 1 and T4240 Rev 2 (AN4713)

£

: - freescale . External Use | 4

) 4

Board Design Considerations

- Several collateral pieces are available to
assist with schematic and board layout

’ ‘ . Listed here are sections that are critical to

successful board bring-up

L

Z “freescale ... s

V¥ ¢
i

Board Design Considerations (continued)

- Booting the T4240
- Select your boot method
= NOR
= NAND

= SPI
- Socket the flash for initial board bring-up

= PCl Ex/ SRIO
- Booting from these requires special consideration that is outside of scope of this session

Note: Rev 1 T4240 have an erratum (A-005878) preventing PBL/RCW loading from NOR
and NAND. RCW load must select different source or use 12C boot sequencer to work
around the erratum. Rev 2 do have this fixed and no longer an issue.

£

: - freescale . External Use 6

V¥ ¢
i

Board Design Considerations (continued)

- Booting T4240

- Connect the power on reset configuration pins appropriately

= See “Power — On Reset Configuration” section of RM
- Personality pins
- Personality and test pins include SCAN_MODE_B and TEST_SEL B
- Engineering use pins (such as ASLEEP) must not inadvertently be pulled down externally during POR

- Look at the pin-out table in the data sheet (T4240EC or T4160EC) for pins marked with a warning against
being pulled down during power-on reset

= Reset request

- The T4240 has a RESET_REQ_B pin which would normally request a reset of the device via
the PORESET_B or HRESET_B pins

- In production, connecting the reset request output to PORESET or HRESET input is desirable,
indicating a significant and often unrecoverable error has occurred in the system

- During system prototyping, it is recommended to temporarily sever this connection, as
unintended reset loops can occur and tying RESET_REQ_B back to PORESET B or
HRESET B can make it more difficult to determine the cause

£

: - freescale . External Use 7

V¥ ¢
i

Board Design Considerations (continued)

- Connect the power on reset configuration pins appropriately

- Make the ASLEEP signal accessible to a scope probe
= The state of this pin can offer important information about the reset status of the
device
- Using FPGA or CPLD to connect reset signal or drive configuration
piNs?
= Ensure a basic programming image is available that connects debugger and
reset signals correctly

= If RESET_REQ_B is connected to the FPGA, it shouldn’t reset the T4240 during
initial debugging

£

: - freescale . External Use 8

V¥ ¢
i

Board Design Considerations (continued)

- Clock sources

- Ensure all required clock sources are driven, and their oscillators and
drivers meet the data sheet specifications for voltage, rise/fall time, and
jitter
=« SYSCLK and DDRCLK must always be driven
=ECn_GTX CLK125 must be driven if RGMII mode is used on the respective

ECn port
- Single-ended clocking requirements are provided in the “Input clocks” section of the data
sheet
= SerDes reference clocks (SDn_REF _CLKn and SDn_REF_CLKn_B) must be
driven if the corresponding SerDes bank is enabled in the RCW

- SerDes reference clock requirements are provided in the data sheet
= Optional input clock sources include RTC, USBCLK, and TSEC 1588 CLK IN

£

: - freescale . External Use 9

A 4
4\

Board Design Considerations (continued)

- Voltage ID (VID) Controllable supply

- To guarantee performance and power specifications, a specific method of
selecting the optimum voltage-level must be implemented when the chip is used.
As part of the chip’s boot process, software must read the VID efuse values
stored in the Fuse Status register (FUSESR) and then configure the external
voltage regulator based on this information. This method requires a point of load
voltage regulator for each chip

- During the power-on reset process, the fuse values are read and stored in the
FUSESR. It is expected that the chip's boot code reads the FUSESR value very
early in the boot sequence and updates the regulator accordingly.

- The default voltage regulator setting that is safe for the system to boot is the
recommended operating VDD at initial start-up of 1.05V. It is highly
recommended to select a regulator with a Vout range of at least 0.9V to 1.1V,
with a resolution of 12.5mV or better, when implementing a VID solution.

£

: - freescale . External Use 10

A 4
4\

Board Design Considerations (continued)

- Reset Configuration Word (RCW)
- Study the RCW to ensure all PLL ratios and I/O connections are selected
appropriately
= |[f you plan to support multiple speed grades of device or memory

 Pre-select SYSCLK and DDRCLK frequencies and PLL multipliers to ensure desired CPU core
and platform frequency options are achievable

- If some SerDes lanes are unused on your custom board, disable those lanes
in the RCW

= Disable all the lanes of each unused bank and do not provide a SerDes reference
clock for any unused bank

- QCS should be used as a tool to help you select an appropriate RCW
= |t generates CRC checksums to produce your Pre Boot Loader (PBL) output file

- Consider using an RCW source that allows you additional space to include
pre-boot initialization(PBI)

= This allows you to implement errata workarounds and other custom internal register
programming prior to boot

£

: - freescale . External Use 11

A 4
4\

Board Design Considerations (continued)

- DDR3 connections
- Compare layout with recommendations in AN3940

- Ensure Vtt and MVREF are driven by appropriate sources. The T4240
has strict voltage requirements on MVREF, which must closely track
GVDD/2. Use of DDR3 integrated device which generates Vit and VREF
IS highly recommended

Link for QorlQ Configuration Suite

£

: - freescale . External Use 12

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PE_QORIQ_SUITE

) 4

Installing and Leveraging Freescale Development Tools

- This section lists suggested steps one can
' take to prepare / learn about tools available

‘ prior to T4240 based board arrival

N\

L

Z “freescale ... -

V¥ ¢
i

Install the QCS Tool Suite: Focus on PBL and DDR/DDRv

- The QorlQ Configuration Suite (QCS) helps you configure the
T4240

- QCS is well-documented and will allow you to focus on the PBL, DDR
and DDRv modules in QCS

- Please follow the QorlQ Configuration Suite Installation Guide

£

: - freescale . External Use 14

A 4
4\

PBL Tool

- See the Freescale website to download the QCS tools

- Using the QCS Quick Start guide, install and use QCS to come up
with RCW settings and double-check the custom changes with your
local Freescale technical representative

- It's important for proper pre-boot initialization of the device to have
a valid RCW for your selected clocking values and SerDes
configuration.

- Any custom configurations you develop should be in compliance
with both the T4240 Reference Manual RCW options and what the
RCW sub-tool under QCS allows

£

: < freescale . External Use 15

=18ix

SR SO W=l - . 4117 Processor Be,.. (1] GProcessarE ¥
— L Prade Paos S = O]/ Q) component upectr 1 Bosc [adiurcos Gpat [~ = 0| Q) Cotipraxn Regaens i =0)—
PR T — S oarad | o y
o Fropertes * lnport | o - | =
. nank Narve. | vahe | Detass - [i
i — - Reg noww I, vehe]
F 2 Mark_sanche Cooponent name =) S Pericherd regiters
DR o0 Devdce PEL PEL & ROWSR]
&4 iy best = Reset Configuration Weed (RCW) B ROWSRZ
¥ FOW S LIC FOM (NAND Flash) 5 RCWSRS
< PLL Configuration 5 ACWERS
~ SerDes PLL and Protocol Configurstion & ACWERS
= SerDes Reforemcn Clocks = ROWERE
SO REF CLr: [vee) 100.0 100 Me 5 RCWSRT
&> Sorces %L-Jli-:_-:u.'(l“r‘.'] 1..-, 0 x.f_m, v RCWSRS
=1 Q) Froowsurtopert o ib_r-E.:_-:u)[m-.'] xio lf?ﬂf % RCWSRO
415 Contigurations . DL AN] 1250 T L S AOWRRTS
(> Operating System SROS_PRTOL [$23-133) Qe+ Bonk £ R-0: FOIS (512.56) £ PCIe2 (515 5 ACWER]L
b 5 p. _:(' ¥ SRDS_EN_S1 [178) (60 - SerDes dsablad 5 ROWSR1Z
et + SROS_EN_S52 [179) 10 - SexCes dzsthed B RCWIG)
H: AR Conc 0ol 3 Misc. PLL-Relsted Confiquration odnd redes
P reuLa 4 Doot Configaration
4 Ulgcking Confagur aton
41 Memory and Hgh-Speed 10 Configurati !
41 Genweral Purpose Information
P Mulb iplesing Conliguration
¢ Growg A Pin Conligurstion
i Growp B Pin Configur aton :J
T y »f o | 3
2 Froserrs 25 [console | T s n)
0 hwre ;]
| Descriptim « | Bescurss | uats I Lugtun 1 Tyee |

- sange_T0 s
Bston| S EWM D i is - O™ * o swnkmaEgbew -] @ hpsiimetrossci || @ Processor Expert (. @ Codawaen Do, | £7 Secunerts oo, |« BER JO VO F arm

- After generation of your proposed RCW settings, it's important to
review these with your Freescale technical representative

- Work with importing existing RCW files as a good starting point

<.

: - freescale . External Use | 16

|
y

'
A

Use QCS to Come Up with DDR Settings

Another key part of getting a smooth bring-up is to at least
have working DDR controller parameters

- Signal Integrity engineers should simulate DDR connection traces and
confer with FSL technical representative
- If using compatible DIMMSs on future prototypes, try these in FSL target.

= Before your custom target arrives, it can be useful to place your DIMMSs into the
Freescale target to see what controller parameters are
- Board-specific parameters: Please note your custom target will require a
different set of parameters than those used by the Freescale
development system
= Some parameters are affected by the layout of the board.

= These parameters include DDRx_DDR_SDRAM_ CLK CNTL[CLK_ADJUST]
and DDRx_DDR_WRLVL _CNTL[WRLVL_START]

£

: - freescale . External Use 17

D &
Use QCS to Come Up with DDR Settings (continued)

(A A] W Q= [RS e e e e 2118y proceceie .. Ry sceene ™
| promet e 1L ST, S adiads) 2] | B

= b Gy PRIR00S tet
¥ {0 Coourwrtsten
W Gersewtad Code

= Sources
S Ry gy 1300 Mo [0® b Sl £BO IO
T Fegaeed (I
& Foi0s ot 05 bes
& & ooty Syseem 4 SDAAM Contral Conliguration
= 1o Procemmrs 4! SDRAM Tarng
0 4 soc#2200 Hpo oo I seleet sddraisny rer
= W Eabeddnd Conponents = O Select 9 Eratis]
e = Memery Besnds
(LS E St Adten w
= b pRdTes ROW ESY 1@
Bl Odouertoton '
2 Garersbed _Code A Prachar o Mwaps v
L8 Sarcer ! N of bard 33 2 logied Bk bt
- Manber of row bits 24 rowbis
@ —CMI v'.ﬂ, s = Panber o coburn s 20 b bes
°~ i LIR3 COF e wriles configurstin Zarent COT iy g wates 1o C3n
QOT Pocveads confiQurston Abves st CO7 Pox rovads
Wl‘“‘ Avtart | rocessers | Partisl vy <o rotineh ey
A:-u'\ﬁi“ﬂ‘a’yﬁhw (i Sabect 1 Tedaed
(T o O Seect 2 Tudbed
4 Dot Auceeshin 4 Tvincnos LPAK) conbipy on [combanart T4 0 U Sehect ¥ Discbied
1P 00k vordnpamten [oomporent DO
W Dvics Tree)

Pre-Boot lades (FELL wags asion i sodficson [oegorent 7]

B

_—

foon_Coctrites 'l

FETRT=
= Perphersl regiters

0OR1_TW0_NDE oo0E
W otR_CS1 Mo
W 00R)_CS2 IS
® 00R)_CS3_M0S
F COR)_CO0_CONPYE
* OOR1_CS1_CONPYa Connnnn
wooon) O Cos O 0OTIX =

oy I

Lol SWONO - BEBENG
| 3 Wi gk =] 5 ok | T | 0 et v, | vt | L o | et bovgs v |3 Precmasor tapm

§

£

Z“freescale

A 4
4\

Practice Using DDRv on T42400DS

- After getting a range of working values for the DDR controller settings for the
T4240, your next step is to use the DDRYv tool that is part of QCS

- If your target has met the minimal requirement for the DDRvV optimization tool, you

can use it on your target to show a range of values

- In this range is a “centered” value that is recommended as “best for your target”

281 %)
Q- - M Arocersr Ts... [oot ™
e e R Lachvarced Bgme fly © < ®
Progentins IOt St | Vo
D) e Pend Resds Lhocss pedds
[Pempmd |] =
‘ | 0 bocks | 108 chocks [104 dhocks | 0 chncka | 12 etneha | &4 stoacks | 104 coctos [70 coeks | | oot
TP ed sy [m m 1) 1 ' L m w1
S dddey [0 ot [Wi o
L thock ey {01
d ' 1 ok detwr {1y o ! ;
| LIS ok gy {oy T W S 3
| Tt s TR TS I == I
! (303 docc delay [0y a1)1 AT 1
Q' | 70 dock ey [iy) ' - F 1
1 ook ayy |0y T i =
U = dhbatson made RS chack oy | (v A
[custon _.l dhocc by |01
17 Continise to et ood gter 1 2] foked tests o 1110 ok Aol | 1y a1 |70 o) o | T R\ | =}
I Covrumtosst comen s & 2 falel 1oy Yrewy Lo | Sost
ok ed o\ ation registars ¢ |
tona o |
wWRLS ONN FEERI
I St Vahdeten I |
Corvacton wttnge
[ovpere oy bt o :] @ perp—y
eoer Ben -
Warhaay csetrps exom I i |
L)} OW IS O™ * ruremst o] Brauwst | Boduy tote |[3 omeeer tx. @ iesosryt. | @ sivarinise | «ABEBEF 0O R Lum

£

: - freescale . External Use 19

Before discovering all
the features of this tool
on your custom target, it
Is highly advised that you
run this DDRYv tool
successfully on the
Freescale T4240QDS
target.

Also note availability of
application note
specifically targeting
DDR register setting
such as AN4039.

A 4
4\

CodeWarrior Debugger

- If you are new to the CodeWarrior debug environment, now is a
great time to install and start using the basics in debugging with
your Freescale T4240QDS target

- You can use the debugger or rather the sub-tool communications
shell CCS, to run boot utilities if your RCW does not bring your SoC
out of reset

- You can use the debugger for basic U-Boot debug and just
accessing memory

- Once installed you can see a lot of good documents found under
C:\Freescale\CW_PA _ v10.x.x\PA

£

: - freescale . External Use 20

A 4
4\

Verify Installation of All Necessary Tools

- CodeWarrior

- JTAG boundary scan tools
- |2C EEPROM burner

- CPLD tools

£

: - freescale . External Use 21

V¥ ¢
i

Verity Installation of All Necessary Tools (continued)

- Install CW PA10 and make sure you can connect to the FSL
T4240 target

- Confirm that you can do RCW over-ride on the FSL target and
confirm the different RCW results by reading the RCW registers in
the device

- If using SPI boot, confirm the method on FSL target and then

confirm the debugger connection
- COP delay needed for longer boot time due to RCW + Bl + u-boot.bin load

£

: - freescale . External Use 22

A 4
4\

Verify JTAG Connection in Schematics

- For example: Independent TRESET# and PORESET#
- Look out for FPGAs passing signals between the COP/JTAG

£

: - freescale . External Use 23

V¥ ¢
i

.., -0 Modify U-Boot for the Memory-Map and Try Running
on the FSL T4240QDS Target

. Install U-Boot sources and cross tool chain

- Confirm environment variables and confirm builds for the FSL T4240 and
test if the newly built image works

- Start to develop your custom U-Boot configurations
- For example: u-boot/include/configs/<custom_name>T4240.config

- Build your modified U-Boot for the FSL target and flash it using the
CW debugger

- This is important, as you'll be practicing for the prototype flashing

- Confirm that the flash device you are using is supported in the CW
debugger

£

: - freescale . External Use 24

A 4
4\

Socket the Flash Device

- Where the RCW, PBI and U-Boot code is located

- This is helpful if the debugger does not work on the new prototype
boards

= This way you can flash externally

= Make sure your lab-based flash programmer is working with the prototype
board’s flash device

- Application note on how to add new flash device can be found at.

C:\Freescale\CW_PA v10.3.3\PA\PA Tools\FlashToolKit\Document
ation

£

: - freescale . External Use 25

N

Initial Board Power On/Validation

Z “freescale’

r
4\

Confirm Reset Sequence

g™

»

<.

Z " freescale’

=
N\

\

External Use

- When prototype boards are received they may or

may not have the requisite personalization
information programmed

- The hardware design must ensure this board-

specific data, including the RCW and PBL
information, is programmed into the appropriate
memory parts on the board

- Programming of board-specific elements that are not

directly related to T4240 operation are beyond the
scope of this presentation.

- CPLD, power sequencers

- If these non-T4240 elements are required to get the

T4240 into an operative state then the HW designer
must either program these without the use of T4240
debug resource or ensure these mechanisms may
be temporarily bypassed such that the T4240 can
operate without them

27

V¥ ¢
i

T4240 Reset Sequence

i o e N
PDHESH—BE\ \r\/\\ b o

Ty RN

| S
RESET REQ B | (high impedance)
- - :—f{ 1 ' 1 1

ASLEEP ! {high impedance). N :\«

PO congs ST G T R B D O

- The successful completion of the reset sequence is indicated by the
ASLEEP signal being driven low as shown in the timing diagram

. If this does not occur, then there is an issue with the reset
sequence — usually with some basic hardware function — and it

must be debugged using low-level hardware debug tools and
techniques (logic analyzer and oscilloscopes)

£

: - freescale . External Use 28

V¥ ¢
i

T4240 Reset Sequence (continued)

- Things to check if the reset hardware reset sequence does not complete include:

- Voltage Rails: Ensure the all the required voltage levels are provided and meet the
specified levels and tolerances
= Ensure that the recommended power rail sequence is followed

- SYSCLK. Ensure it is present and meets the voltage level, slew rate, frequency, duty cycle,
and jitter requirements specified

- Reset Signals: Ensure PORESET is driven for a minimum of 1 ms and that it is driven
before the core and platform voltages are powered up

= [f HRESET is driven externally, ensure it is released as expected; if driven just by the T4240, confirm
it is released after PORESET desertion

- Confirm the RCW device is being read after ASLEEP is driven high
= |[f not, check that the cfg_rcw_src signals are driven as expected when the PORESET signal is released

- Confirm RCW contents are as expected. The specifics of the RCW must match the system
configuration

NOTE: If the RCW device is blank, a tool such as CodeWarrior must be used to program this. Instructions
for doing this are provided in later in this presentaion. However, it is recommended to confirm the hardware
operation as much as possible before connecting this tool. Confirming that the T4240 at least attempts to
read the RCW device is a good checkpoint.

£

: - freescale . External Use 29

A 4
4\

T4240 Reset Sequence (continued)

- Confirm that the PBL information is read. Note that this occurs
after the RCW is read, even if the PBL and RCW device are the
same. The PBL reads start but the ASLEEP never is driven low, the
likely failure is that some PBL action is attempting to configure the
part in an undefined or unexpected way

- Confirm the PBL actions are as defined for the system. If the
desired PBL action is involved, it is recommended to start with the
simplest possible PBL contents (to address erratum) and confirm
that the reset sequence completes

- Then add other PBL configurations in a staged manner

£

: - freescale . External Use 30

r
4\

Connect Debug Tools

-

=
N\

<.

: - freescale . External Use

- At this point, we are ready to connect to the

target via a debugger. For the purposes of
this presentation, we focus on Freescale’s
CodeWarrior 10.x debugger. An evaluation
version of the CodeWarrior development
tool can be obtained from Freescale

- Debugger documentation can be found

within the product install directory. This
would typically be located at:

C:\Program Files\Freescale\CW PA
v10.xx\PA\Help\PDF

- Follow the Targeting PA_ Processors.pdf

document for more information on how to get
started with CodeWarrior

31

)

Tap Connection

- TAP is now needed to physically connect to
the hardware

- This could be a USB TAP, Ethernet TAP, or
newer CodeWarrior TAP

- The TAP should be connected to a standard
16-pin COP header on the board such that
pin 1 of the header is aligned with the red
stripe down the TAP ribbon cable.

<.

: - freescale . External Use | 32

|
y

'
A

Confirm Processor with CCS

- IDE as well as CodeWarrior Connection Server (CCS)
- To verify connectivity, first launch the CodeWarrior Connection Server
- This iIs a command converter that converts Debugger actions into

actionable commands for the TAP

- CCS starts minimized in the PC system tray 1058AM |

- Double click the CCS icon in the PC system tray to launch the full screen

window

- CCS supports TCL scripting, and it comes with some TCL scripts which

may be useful in initial board bring-up

- The JTAG connection script scans the JTAG bus and reports to the

IDCODE of anything found

- To run this script, within CCS type in: source IDcode.tcl

£

: - freescale . External Use 33

r
4\

CodeWarrior Connection Server

onnecton Se; :

File Edit Interp Prefs History Help

-~

(bin) 2 % source IDcode.tcl

Scanning for available TAPs connected via USB.....

B T

+
+ Available Remcote Connecticns

+

+ 1 - USBTIAP - 10460259

+ 2 - CodeWarriorTAP - <Specifiy IP Address>
+ 3 - EthernetTAP - <Specify IP Address>

+ 4 - GigabitTAP - <«Specify IP Address>

+

- X - Exit Script withcout Changes

+

| s

Specify connection:
2

Specify IP Address

10.81.52.75

- The script prompts you for a connection type.

<.

: - freescale . External Use | 34

A 4
4\

CodeWarrior Connection Server (continued)

 CodeWarrior Connection o=
File Edit Interp Prefs History Help
Configuring TAP Interface.... _:J

”Ccn:'igured Connection: cwtap : 10.81.52.75

FEFFFFFFIIFFEFFFIIFFEF A IS A AR AR EE
configTAP - Redefine TAP interface

#
#
#
#
scanboard - Scans the target system
and returns the JTAG IDCode
;
#
#

leoopback # - Simple Leopback Routine

FRFFAFIIFAIHAF IR IA AR AR AR AR AR AR AR A

(bin) 2 %

| ' : . _ x4
- CCS presents you with three commands
« The command scanboard scans the JTAG chain

- After running the scanboard command, you are presented with the JTAG
chain of the board

<

: - freescale . External Use 35

r
4\

CodeWarrior Connection Server (continued)

- Here shows a connection to a single T4240 device

- This verifies connectivity between a developer’s host PC, through
the TAP to the board and processor

CodeWarrior Connection =k e
File Edit Interp Prefs History Help

| =]
IDI —==—-
.
FEFFFFFEFFFFIFFIFIIFFAAAA ISR A AR
configTAP - Redefine TAP interface P
scanbecard - Scans the target system '

=

#

=

#

and returns the JTAG IDCcde

#

loopback # - Simple Loopback Routine
#
#

FRFFEATAI ARSI RARAAR AR RA AR A ARAR AR SIS RAR S

(bin) 2 ¥ scanboard
TDO —==—-
|
* Device 0 IDCODE: 00220010 Device: FSL T4240 rev l.x
|
IDI -———-
L"v;binjl 3t o
S . - —

<

: - freescale . External Use 36

V¥ ¢
i

Connecting CodeWarrior to Target Board

- At this point, we have verified that the processor powers up and responds
to JTAG commands, as well as connectivity from the host PC to the
processor

- The next step is to connect to the target with the debugger interface

- Upon launching CodeWarrior, the first dialog box asks you to specify a
workspace

- A workspace is a folder intended to contain all work, including

configuration settings of tool, debug connections, and even data to be
compiled and or downloaded--

<
¥ Workspace Launcher &J

Select a workspace

CodeWarrior Development Studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session,

Workspace: (3¢ rkspace - Browse...

|| Use this as the default and do not ask again

0K | ‘ Cancel

£

: - freescale . External Use 37

)

Building a New Project

P UmmEEE . CodeWarrior is Eclipse-based, and consists of
two perspectives:
R SRTS - C/C++ coding

e - editing

5 - Tabs within Eclipse are called Views, and may be
changed depending on user preference

- We start in the C/C++ perspective and initially
use a “Stationary” or default project to set up our
environment to connect to the target

| - Select File -> New -> CodeWarrior Bareboard Project
K | Wizard

= This opens the New Project Wizard
- Name your project
= Select Next

<.

: - freescale . External Use | 38

Selecting Processor

¥ CodeWarrior Bareboa

Processor

Choose the processor for this project

Processor

type filter text

82
830
85
C29x
Qonverge
QorlQ_P1
QorlQ_P2
QorlQ_P3
QorlQ_P4
P4040
P4080
QorIQ_P5
QorlQ_T1
QorlQ_T4
T4160
T4240

Project Output
@ Application
(7) Static Library

Z“freescale -

Debug Target Setting

¥ CodeWarrior Bareboard P Wizard

Debug Target Settings
Target Settings

Debugger Connection Types:
@ Hardware
Simulator

() Emulator

Launch Connection

Download

[V Connect

[Attach

[7] Cache Download ’l&; D

[7]ROM Attach | & Defautt

Connection Type | CodeWarrior Ethernet TAP v

TAP address 127004

Z“freescale

Build settings

Z " freescale’

External Use | 41

¥3 CodeWarrior Bareboard Project Wizard

Build Settings
Choose the build settings for the project

Language
@C

@) C++

Build Tools Architecture
@ 32 bit
() 64 bit

Note:

If the toolchain you want to use is disabled, please install the corresponding package for
adding the build tools support.

Toolchain
@ GCC AEABI 6500

Configuration

5 CodeWarrior Bareboa

Configurations

Choose the configurations you want to create

Processing Model

) SMP

AMP (One project per core)

AMP (One build configuration per core)

Core index

Z“freescale

N

Trace Configuration

| ¥ CodeWarrior Bareboard Project Wizard

Trace Configuration

You can start a trace session automatically on debug launch:
Start a trace session on debug launch

Z“freescale i

g

——— =
x CodeWanior Development Studic

Source Refactor Navigate Search Project Run Window Help

@ New Project Wizard \f What's New Product Release Notes

@ Project Importer @ Web Resources Service Packs, Updates, Patches

m

ef" Example Projects I—ﬂ Tutorials

| % Go to Workbench <—

&,

>~ freescale
, CodeWarrior

< n |
: 0% ‘

r
4\

Building project

- Build project (even though you are not building any code)
- Right click on project or hammer

ﬁ C/C++ - CodeWarrior Development Studio

File Edit Source Refactor MNavigate Search Project Run Window Help

I~ | B-R - Q F-ri-R-8 6
F) CodeWarrior Projects. E& =g
| l:: laz‘ = \‘.';}é) File Name N
| File Name Size Type

S e

<

: - freescale . External Use | 45

r
4\

CFG File

HlE| CodeWarrior Projects 52

k| BB oneee ., The project just created consists of some

File Mame

25 Myfirstproject-cored0 : RAM example code that can be compiled via
e CodeWarrior and downloaded to the target.
o Tsarseenmen . Additionally, it consists of configuration files,
TS coeel which are essentially TCL scripts, to be
L1 Haapsmer downloaded to the target prior to code
e executing. The intent of the CFG files is to
& ROM enable configuration of the processor, such
P oo Y as the DDR or flash controllers, prior to
#a Commander I3 . programming flash or executing code

developed within CodeWarrior

- In some sense, the CFG file does the job of
a bootloader, such as U-Boot

<

: - freescale . External Use | 46

V¥ ¢
i

Accessing Debug Configuration

- Connections to the target are known as “Debug Configurations”

- To access the debug configuration for a project, right click on the
small downward pointing arrow next to the bug icon on the toolbar
and select Debug Configurations

- Note that this can also be opened through the menu under Run —>
Debug Configurations

.

£

: - freescale . External Use | 47

A 4
4\

Connecting to Target (continued)

- For an initial connection to the target, we want to attempt to
connect without any CFG file
- To de-select the CFG file from our default project:

- Select your project from under the “CodeWarrior” section on the left
hand column & oebug configurations

Create, manage, and run configurations

Debug or run an application te a target.

TR X|B 3
type filter text
[€] CodeWarrior
[c | Myfirstproject-core00_RAM_T4240_Connect

@ Launch Group
‘E Target Communication Framework

£

: - freescale . External Use | 48

) 4

Connecting to

Target (continued)

- Edit the Connection Type

$% Debug Configurations

Debug or run an application to a target.

Create, manage, and run configurations

MCEICES

Name: Myfirstproject-cored0_RAM_T4240_Connect

‘ type filter text ‘
CodeWarrior
[€] Myfirstproject-core00_RAM_
@ Launch Group
m Target Communication Framew

() e—— r

Filter matched 4 of 4 items

’. Main . 9= Arguments| %5 Debugger| = Trace and Profile| & Source | i Environment | = Common|

Debug session type

Choose a predefined debug session type or custom type for maximum flexibility
() Download @ Connect

() Attach ©) Custom

v C/C++ application

Project: Myfirstproject-core00 Browse...

[] Application: \7&M/Mdirstprojed-coreOE].elf | igéarch Project... | iiﬁgowse.., ‘ ‘7'v‘7a;aibjlre£... 1
» Build (if required) before launching

~ Target settings

Connection: | & Myfirstproject-cored0_RAM_ et [New. |

[7] Execute reset sequence

[7] Execute initialization script(s)
The connection is for a multicore target. Please select a core, or multiple cores in the case of SMP:

Target

a V] T4240
€6500-0
[e6500-1

Filter by Project:

[€6500-2
€6500-3

1= Myfirstproject-core00

[] e6500-4

[l _~EEOO_K.

Hardware or Simulator Connection

Paent profile TXGZ-B421-03

Z " freescale’

Name Myfirstproject-core00_RAM _T4240_Connect
Descrption:

Ternpl None

Toeget # Myfustproject-coredd_RAM T4240_Connect Target

>

External Use | 49 Connection type: | CodeWamior TAP

r
4\

Connecting to Target (continued)

- Edit the Target core

Targettype: | T4240

W]nMemory Eivanced-l

rﬁ Properties for Myfirstproject-core00_RAM_T4240_Connect Target | &
Hardware or Simulator Targt| - Hardware or Simulator Target Yo v
-
Name: Myfirstproject-core00_RAM_T4240_Connect Target ==
Description:
Template: None ¥ | | Apply Defaults

'

Target Core reset

4 T4240 Fl
€6500-0
€6500-1
€6500-2
€6500-3
€6500-4
€6500-5
€6500-6

|

iOOEE

il

@

[¥] Execute target reset (applies to initial launch only)

=E]

EOEEE

]

‘“_
1]

.

N

Run out of reset Initialize target

™

&
[

|
&
&

a

Initialize target script

m

|

0K

J [Cancel

)

» Deselect any checkboxes under the “initialize target” column

<.

: - freescale . External Use | 50

A 4
4\

Connecting to Target (continued)

- Edit the Target memory

-
¥2 Properties for Myfirstproject-core00_RAM_T4240_Connect Target =g

Hardware or Simulator Targ¢| Hardware or Simulator Target - v v
Target Me configuration Memory configuration file £

4 T4240 [
€6500-0
€6500-1
€6500-2
€6500-3
€6500-4
€6500-5
€6500-6
€6500-7
€6500-8
€6500-9
€6500-10
€6500-11
€6500-12
€6500-13
€6500-14
€6500-15
€6500-16
€6500-17
€6500-18
€6500-19

[

C

]

|}

1

1

l’::)) l OK I [Cancel
_ e

Deselect any checkboxes under the “initialize target” column

Click OK twice

, to get back to Debug Configurations

Click Debug to connect to the target with the debugger

<

Z " freescale’

External Use 51

A\ 4
4\

Using CodeWarrior to Provide the RCW

- An RCW can be loaded from various sources, including interfaces
such as 12C or flash

- If JTAG boundary scan is not able to program the RCW, it is possible to
force an RCW into the processor via the CodeWarrior debugger

- To do this, first create a file that creates information on the JTAG
scan chain and intended RCW

- There are examples of such a file in the CodeWarrior install:

C:\Program Files\Freescale\CW PA
v10.x.Xx\PA\PA_ Support\initialization_Files\jtag_chains

£

: < freescale . External Use 52

A 4
4\

Example JTAG Configuration File

Example file to allow overriding the whole RCW or only parts of it
#
Syntax:
T4240 (2 RCW_option) (RCWn value) ...
#
where:
RCW_option = 0 [RCW Override disabled]
1 [RCW Override enabled]
2 [Reset previous RCW Override parts]
0x80000001 [RCW Override + PLL Override]
NOTE: Enabling PLL Override could lead to hanging the chip

#
#
#
#
RCWn =21000+n (n=1 .. 16; index of RCW value)
#

#

value = 32bhit value

T4240 (2 1) (210001 0x14180019) (210002 0x0c10190c) (210003 0x00000000) (210004 0x00000000) (210005 0x70023060)
(210006 0x0055bc00) (210007 0x1c020000) (210008 0x09000000) (210009 0x00000000) (210011 0Xee0000ee) (210012
0x00000000) (210013 0x000187fc) (210014 0x00000000) (210015 0x00000000) (210016 0x00000008)

First two words are ignored and not used to replace the RCW in the active system. As we are using 2, 1
If option of 0x80000001 is used PLL will be override

£

: - freescale . External Use 53

A 4
4\

Instructing CW to Use JTAG Configuration File

To instruct CodeWarrior to use the JTAG configuration file, first bring up the
Debug Configuration intended

Select the debug configuration to be used, and select the “Edit” Button next to
connection type

Select Edit, for System
Select Edit once more, for System Type

T Properties for Myfirstproject-core00_RAM_T4240_Connect Target |

Hardware or Simulator Targ¢| Hardware or Simulator Target v v v

Parent profile: TX32-B2421-03

Name: Myfirstproject-core00_RAM_T4240_Connect Target

Description:

Template: None ¥ | | Apply Defaults
Targettype: | T4240 ¥ Edit...

Initialization {Memory "Advancedi

[¥] Execute target reset (applies to initial launch only)
Target Core reset Run out of reset Initialize target Initialize target script
T4240 d 0]
€6500-0] [O
€6500-1]] O 7
€6500-2] & &

<

: - freescale . External Use 54

A 4
4\

Instructing CW to Use JTAG Configuration File (continued)

Select Import, and import the previously created JTAG file
| 15 Target Types ——— e

Add and remove target types (builtin types not shown):

4 T4240QDS_RCW_1666_666_1600.txt - C:\Freescale\CW_PA_v10.3.3\PA\PA_Support\Initialization_Files\jtag_chains\T4240C
4 T4240
€6500-0 Remove
€6500-1
e6500-2 [Remove All
e6500-3
e6500-4
€6500-5
€6500-6
€6500-7
e6500-8
€6500-9
€6500-10
€6500-11
€6500-12 -

| |
[Removea |

m

|\'5: I OK l I Cancel l

* Upon connecting to the target, the RCW defined in the JTAG configuration file is forced into the
processor
- Needed for cases where flash or EEPROM is blank
- In such a case, a developer may force an RCW with CodeWarrior, program the flash manually, and then
revert back to the fetched RCW

<

: - freescale . External Use 55

V¥ ¢
i

Running the CodeWarrior HW Debugger

When the debugger launches, the Eclipse perspective changes to the debug
perspective

Upon successfully connecting to the processor, the Debug view should change,
highlighting the thread executing

The start / stop / pause / step icons should also be highlighted
As we see here, the processor code is halted at the reset vector, OxXFFFFFFFC

r}‘-’) Debug - Source not found. - CodeWarrior Development Studio I

l File Edit Navigate Search Project Run Window Help

|: i~ % & Q F-E-BR H-0-Q-Q-
I %5 Debug 52 & D e] Slzagc|lpz| S

€] Myfirstproject-core00_RAM_T4240_Connect [CodeWarrior]
EPPC, core0 (Suspended)
4 Thread [ID: 0x0] (Suspended: Signal 'Halt' received. Description: User halted thread.)
= 2 0x00000000FFFFFFFC (0x00000000FFFFFFFC)() 0:00000000fffffffc
= 1 0x0000000000000000 (0x0000000000000000)() 0x0000000000000000
sl (3/13/14 6:37 PM)

- We now can verify some basic settings
— This can be done in either view: the GUI or a Debugger Command Shell
— To add the command shell to the debug perspective go to Window -> Show
View - > Command Shell

£

: - freescale . External Use 56

A 4
4\

Verify POR Settings

- The registers tab contains all registers within the processor

- Upon clicking on a register, the bit fields of that register should
be expanded

¥ Debug - CodeWarrior Development Studio l = ‘ =
File Edit Navigate Search Project Run Window Help
i | &g $ Q@ F-ii- R 5 (35 Debug | F@ C/C+
t; v 0 v QE v % v ,') v & v v 7 (=L 2 v- 7
()= Variables | ®o Breakpoints | (J Cache | il Registers $3 =4 Modules =&
[' : ; — & &
A B[@l
Name Value Location o o=
o-
| 4§} e6500 Special Purpose Registers m 1
388 MSR 0x00000000 SMSR \
a8 MSRP 0x00000000 SMSRP =)
w8 EPCR 0x00000000 SEPCR VZ|
988 BUCSR 0x00000000 SBUCSR a
stet HIDO 0x00000000 SHIDO |
1010 N Ccon N ~0 ~0NnnNN crnrcon &
Bit Fields o (I
2 =
[o]ooJoJoJoJo]ooooooofofoJoJofoJoJo]JofoJo]ooJo]JoJofo]o]o] -1 o

Field | CE[14:14] = D 0
Actions

Revert [Wn'te] [Reset] { Summary | Format =

¥ o

4 | m 3

<

: - freescale . External Use 57

V¥ ¢
i

Verifying RCW

- At this point, one could verify the RCW read in by the processor, as well as some
basic configuration that the RCW sets up

- Through the command shell, it's easy to verify reads and writes to memory-
mapped registers within the processor

- For example, you could verify a read to CCSRBAR returns a pointer to the
CCSRBAR

[£% Debugger Shell 2

CodelWarrior Debugger Shell v1.@
¥rdisplay @xfefpooes 4

fep@eeae $eE0P20008 TFEQOEREE TEER22208 TOBR22220
4 I

%3

£

: - freescale . External Use 58

|
y

'
A

CodeWarrior Initialization Files

- Upon successfully connecting to a target, and verifying reads / writes to internal

memory, it is now possible to start initializing interfaces such as memory
- CodeWarrior initialization files are intended for this purpose

- Sample configuration files are part of the CodeWarrior install:

C:\Program Files\Freescale\CW PA v10.x.x\PA\PA_Support\initialization_Files

- They should also be part of the default CodeWarrior stationary project for a given

processor. The initialization file is essentially a script that executes within CodeWarrior
to pre-load registers on the processor prior to code execution

- Typical functions include setting up TLB’s, LAW’s, DDR, and flash interface

- Internal to the processor, a portion of CPC cache may be converted into private SRAM

- Initially, we use a CFG file to set up the cache as private SRAM and set up the flash
interface so that we can program flash

- Within the Initialization Files directory of the install, you should find

T4240QDS _init_sram.tcl configuration file that can be used as a starting point for such
a purpose
- Make a copy of the original, and modify it for your flash configuration.

£

: < freescale . External Use 59

A 4
4\

Sample Initialization File

- Below is a sample section from such a file, where the CPC is set up
to behave as SRAM

- Please note that a LAW and TLB entry is needed for the SRAM

O O O O A T A L T Ly LA L T L Ty T T T o
TrATTTTTTTTTTTTATATTATTATATATTTAATAAATATATATAAAAATAATAATAATAAAAAAAAAAAAATATATAAAAATOTTTTT
configure internal CPC as SRAM at 0x00000000

CPC1 - 0x01_0000

#CPCCSRO

$0 0 00 0000 0D 1 O 0000 0000 1 1 00 0000 0000

#0DIS5 ECCdis FI FL LFC

£ . . q

21 1 1 0

#flush

mem [CCSR_ADDR O0x010000] = C0x00200C00

#enable

mem [CCSE_ADDE Cx010000] = CxB80200800

#CPCEWCRO - disable stashing

mem [CCSE_ADDE Cx010010] = Cx00000000

#CPCSRCR1 - SRBARU=0

mem [CCSR_ADDR O0x010100] = C0xC00000000

#CPCSRCRO - SEBARL=0, INTLVEN=0, SRAMSZ=4 (léways), SRAMEN=1
mem [CCSR_ADDR Cx010104] = C0x00000009

#CPCERRDIS

mem [CCSR_ADDR 0Ox0D10E44] = 0OxD00D0D0B0

£

: - freescale . External Use 60

A 4
4\

Sample Initialization File (continued)

- Here is an example where NOR flash is set up starting at address
OxE8000000

- Note that a LAW and TLB entry needs to be established for this
to work

NOR Flash, addr 0xE8000000, 128MB size, 16-bit NOR

CSER_EXT

men [CCSR_ADDR [expr 0x12400C + SHOR_CS * Ox0OC]] = Cx00000000
% C3ER

mem [CCSR_ADDR [expr 0x124010 + SNOR C3 * 0x0C]] = OxE8000101
RMRSKE

mem [CCSR_ADDR [expr Ox1240A0 + SNOR C5 * 0x0C]] = OxF8000000
CSOR

mem [CCSR_ADDR [expr Ox124130 + SHNOR C5 * 0x0C]] = 0x00008000
IFC_FTIMO

mem [CCSR_ADDR [expr Ox1241C0 + SNOR C5 # Ox30]] = Cx10010020
IFC_FTIM1

mem [CCSR_ADDR [expr Ox1241C4 + SNOR C5 * 0x30]] = Ox35001R13
IFC_FTIM2

mem [CCSR_ADDR [expr Ox1241C8 + SNOR C5 * 0x30]] = 0x0138381C
IFC FTIM3

mem [CCSR_ADDR [expr (x1241CC + SHOR C5 * 0x30]] = 0x00000000

£

: - freescale . External Use 61

A 4
4\

Reloading Initialization File

- With both the SRAM and flash configured, we may instruct
CodeWarrior to once again read an initialization file

- Re-open the Debug Connection type that you are intending to use
- Edit the Connection Type

B Properties for Myfestoromect-corel0_RAM_T4240_Connect

Hardware or Simalator Cont Hardware or Simulator Connection

Parent peofile T)G2-82421-03

4240_Conrect Target -l Ede. Neyy..

£

oK Cancel
_E =————

Z “freescale

External Use 62

V¥ ¢
i

Reloading Initialization File (continued)

Edit the Target

Hardware or Simulator Target

¥ | LATLULE LAY EL | EXEL L

Target Core reset Run out of reset Initialize target Initialize target script
4 T4240 v

e6500-0 v %{ProjDirPath}/CFG/T424...

e6500-1
e6500-2
e6500-3
e6500-4
e6500-5
e6500-6
e6500-7
e6500-8
e6500-9
e6500-10

~EEAN 14

£

: - freescale . External Use 63

Select the checkbox next to
“initialize target” and select
the initialization script
modified in the previous
steps

This should only be needed
for Core 0, as typically when
bringing up a new board
Core 0 Is exercised initially.
Click OK twice, to get back to
Debug Configurations

Click Debug to connect to the
target with the debugger

PR
4
Testing SRAM

- Once connected to the target, verify that you can read and write SRAM
- Within a debugger shell read from address 0x0

-

(33 Debugger Shell 23 “EEN
Codellarrior Debugger Shell vl.@
¥rdisplay exfeopoees 4
fepooeRe $EREERE00 TFEEREREE TOODEEE08 TeRBROE2E
Xxdisplay exe 28
@ ©xDEADBEEF exDEADBEEF @xDEADBEEF @xDEADBEEF
18 @xDEADBEEF @xDEADBEEF exDEADBEEF @xDEADBEEF
28 @xDEADBEEF @xDEADBEEF @xDEADBEEF @xDEADBEEF
38 @xDEADBEEF @xDEADBEEF @xDEADBEEF @xDEADBEEF
48 @xDEADBEEF @xDEADBEEF @xDEADBEEF @xDEADEEEF
%
* Next, attempt to modify the contents of SRAM
7 N
[£5 Debugger Shell &3 mEETT
18 @xDEADBEEF @xDEADBEEF @xDEADBEEF @xDEADBEEF -
28 @xDEADBEEF @xDEADBEEF @xDEADBEEF e@xDEADBEEF
38 @xDEADBEEF @xDEADBEEF @xDEADBEEF @xDEADBEEF
48 @xDEADBEEF @xDEADBEEF @xDEADBEEF @xDEADBEEF L
Hrchange Bx@ 28 Bxaaaa555s
Xxdisplay exe 20
8 BexAAAAS555 BxAALASSSS BxAAAASSSS BwAAARASSSS UL Luu Lo L ud =
18 @xAARASS55 BWAAAASS5SS BALAASSSS BHAARASSSES JuoLLug L Lug LU
28 BxwAAAASS55 BWAAAAS55S BALAASS5D BHAAAASSSES LU oLLuu LU L ud
38 8wAAAASE5D BWAAAASSED BALAASSSD BMAAAASSES LU LLuu L Lue LUy 4
48 @xwAAAASSSS BHAAAASSES @xAAMASESS BwAARASSESS JuoLLug L Lug LU 57
%3
<
> .
: freescale External Use | 64

A 4
4\

Reading Flash

- Let us verify we can read flash correctly
- Flash was set to address OXE800000O0 in the initialization file above

[%¥ Debugger Shell i3 XK= -

e r

e

o

e

W

¥rdisplay @xe3000000 20
edBeaees BxAASSAASLS Gx@leceled exBCSoboed axbbooobboa 1 T
coBeaele exlcl2esss oxeobeade @xd449rFeCal ewdiBazess 0.1, .. . |
edBeae2e BxFESE2EEE Gxdleboasd exboopooes owbooaBzBoa L 3
edBeaase exobboaaBe Bxleaveasd @xbeapoeas ewBEeaRREd ..., L... sees saa

| coBeaeds BxopoooE08 GxoopBeaed @wxBdliceds @wCD4D9BDF sees wan @ .M.. 5
Y

 In this example, you see the RCW stored in flash
« If flash was blank, you should see all OXFFFFFFFF

£

: - freescale . External Use 65

A 4
4\

Programming Flash/RCW

- CodeWarrior includes a flash programmer to aid in programming an RCW
or U-Boot into flash

- Within the CodeWarrior debug perspective, locate the Target Tasks tab
- Click on the plus icon to add a new target task

8 - >
¥3 New Target Task I—J&

Create a Target Task

@) Please provide a name for this task.

Task Name |
Task Group Root
Run Configuration | Active Debug Context -

Task Type Flash Programmer for Power Architecture -

'C?\ Ol Cancel ‘

£

: - freescale . External Use 66

A 4
4\

Programming Flash/RCW (continued)

- Give the task a name (such as “program flash on T4240 board”)
- “Run configuration” defines how to connect to the target

- In our case we’'ll use the Active Debug Context, which assumes we are
already connected to the target via the debugger

- Task Type offers two options: Flash Programmer or Hardware diagnostics.
We select Flash Programmer

- Within the Flash Programmer Task we now need to configure our flash
and actions

- Target RAM is memory available to the processor to use for the flash
algorithm. We specify the private SRAM we configured previously, which
resides at address 0x0

Target RAM
Address: i 00000000

Size: Ox 20000|
Verify Target Mermory Writes

£

: - freescale . External Use 67

A 4
4\

Programming Flash/RCW (continued)

- We may need to add a device
- Select your device from the list

- If using a different organization, click on the organization column and pick
the correct organization

- Base address of the flash should be set to whatever was set in the
Initialization file previously

Flash Devices

Device Mame Base Address
IM28FB00C3B (512Kx16x1) 0xE8000000

- Add action to program and verify

[c | 0x00000000FFFFFEFC (0x00000000FFFFFFFC)() ;’,? *program flash on T4240 board &3 = 0O

| -

|Add Device| ‘ Remove Device|

Flash Programmer Actions

Enabled Operation | Description Add Action -

£

: - freescale . External Use 68

A 4
4\

Programming Flash/RCW (continued)

- You may now add a programming action
- Select Program / Verify from the list

] Add Program / Verify Action Iéj1
Flash Devices [7] Use File from Launch Cenfiguration
Device Mame Base Address .
IN2BFE00C3E (512K:A6:1) (0xEZ000000
File Type: IWorkspar_e...J IFiIe System...l I‘u‘ariables...]
[l
[Erase sectors before program [Verify after program

[7] Restrict to Addresses in this Range Apply Address Offset
E&000000 Address: Ox EZ000000
ES0FFFFF

IAdd Program Action‘ IAdd ‘u‘erifyhction‘ IDc-neI

» Select the file to be programmed
— Note that elf and srec files contain addresses within the files, while a binary file does
not
- Binaries are offset from address 0x0. So, to program a binary file to the beginning of
flash, one would need to apply an address offset, as in the above figure
* Please note, this is an offset from 0x0, or effectively the address to program to

£

: - freescale . External Use 69

V¥ ¢
i

Programming Flash/RCW (continued)

- When done, save the flash programmer task

- If connected, you may then run the intended task, by selecting the task and then
clicking on the “play” arrow icon

- This should launch the flash programmer

E Console | ¥ Tasks D Memo ﬂﬁﬂemntes =| Target Tas &4 %1 Problems i:ﬁ' Executabl B8
Iy Y g

Arrange By:Task Groups = + [Tasks

= Root Mame Task Type Run Cenfiguration

i”@pmgramﬂash ... Flash Programm... Myfirstproject-c... |

— If the flash programmer is not successful, it could be possible that the flash
device is not writable, protected, or the chip select, MMU or law are set

up incorrectly.
— Fortunately, it should be possible to poke the flash directly through the

debugger shell

£

: - freescale . External Use 70

A 4
4\

Programming Flash/RCW (continued)

- Refer to the flash datasheet for the specific algorithm needed to write flash or read
a status bit

- Note that the command shell is once again scriptable, with TCL, so it’s possible to
write scripts to write flash, erase flash, or unprotect flash

- For example, using an Intel flash algorithm, | could write flash using the TCL
procedure below

Hpreoc Wwrite flash {addr data} {

change $addr it
change Zaddr it Fdata
change Zaddr it Oxff

display Zaddr it
ks

- Erasing flash is as simple as the procedure below

Flproc erase flash {addr} {

change Zaddr it
change Faddr it d0
wait

change faddr it ff
display Faddr it
b

£

: - freescale . External Use 71

V¥ ¢
i

Programming Flash/RCW (continued)

- One could type these in directly to the command shell, or save
scripts such as these within a TCL file

- To load a TCL file into the command shell simple source
fllename_tCI [%5 Debugger Shell &7 . =g Progress B = O

e8000000 $aabbaa S 0 e e e

28000010 £18185218 £0000ccce $40 000 £001=2000 Bl oo

28000020 S£de

28000030 £00 0

8000040 £00000000 $00000000 $09000de0 £00000000
urce ci/scripts/flash.tcl

Frsource c:/scrip
=3

 The TCL procedures then can be called individually

 If flash can not be poked manually in this manner, then one should
start looking at hardware, and examine the physical connections to
flash to ensure that the signals are being driven correctly

 If signals are not being driven, we must re-examine the initialization
file’s configuration of the flash interface

£

: - freescale . External Use 72

A 4
4\

Adding a Flash Device

- If the desired flash is not included in CodeWarrior, it is possible to
manually add a newer flash device

- For instructions, please refer to AN4349, found either on the
Freescale website, or within the CodeWarrior installation:

C:\Freescale\CW PA
v10.1.1\PA\PA_Tools\FlashToolKit\Documentation

£

: < freescale . External Use 73

A 4
4\

DDR Initialization File

- For this, we typically revert back to the standard initialization file for
the project stationary

- In this case, the T4240QDS init_core.tcl file that is in the CFG
folder of the project

- In this file, DDR has already been set up for the QDS board.
Replace the settings in the file with settings previously derived for
the target hardware

£

: < freescale . External Use 74

A 4
4\

DDR Initialization File
(continued)

- Upon saving the file, ensure that
the debug configuration is set up to
use the new initialization file

- When connecting, DDR should
now be located at address 0x0

- Aread from address 0x0 should
yield the DRAM initialization value
set up in DDR_DATA_INIT

- If it does not, verify the DDR
settings once again, using a tool
such as QCS

- Ifissues persist, verify that the
LAW, TLB settings and DDR
settings match

£

: - freescale . External Use 75

LLLLLLLLLLLLLLLLLLLLLLLL
111111111111111111111111

DDR_SDRRM CFG

mem [CCSR_ADDR 0x8110]
C50_ENDS

mem [CCSR_ADDR 0x8000]
C51_BNDS

mem [CCSR_ADDR Ox8008]
CS0_CONFIG

mem [CCSR_ADDR Ox8080]
C51_CONFIG

mem [CCSR_ADDR Ox8084]
CS0_CONFIG 2

mem [CCSR_ADDR 0x80CO0]
TIMING CFG 0

mem [CCSR_ADDR Ox8104]
TIMING CFG 1

mem [CCSR_ADDR 0x28108]
TIMING CFG 2

mem [CCSR_ADDR Ox810C]

reren o~

#mem [CCSR ADDR OxB810C]

TIMING CFG 3

mem [CCSR_ADDR 0x8100]
DDR SDRAM CFG 2

mem [CCSR_ADDR 0x8114]
DDR_SDRAM MODE

mem [CCSR_ADDR Ox8118]
DDR_SDRAM MODE 2
mem [CCSR_ADDR 0x811C]
DDR_SDRAM INTERVAL
mem [CCSR_ADDR Ox8124]
DDR_DATA INIT

mem [CCSR_ADDR 0x8128]
DDR_SDRAM CLE_CNTL
mem [CCSR_ADDR Ox8130]
DDR_INIT ZDDR

mem [CCSR_ADDR Ox8148]
DDR INIT EXT ADDRESS
mem [CCSR_ADDR Ox814C]
TIMING CFG_4

mem [CCSR_ADDR 0x8160]
TIMING CEG 5

mem [CCSR_ADDR Ox8164]
DDR_ZQ_CNTL

mem [CCSR_ADDR 0x8170]

LLLLLLLLLLLLLLLLLLLLLLLLLLL
111111111111111111111111111

¥47040008

x0000007F

x00000000

x80014302

x00000000

x00000000

x00330104

x98511als

x0138b0d4

0x0038a0d4

®¥010c1000

x24000012

x00061650

x00100000

®x144e0513

xDEADBEEF

x02000000

x00000000

x00000000

x00000001

x03401400

x89080600

A 4
4\

Memory Tests

- Once DDR appears to yield the value set up in DDR_DATA INIT and

writes appear sticky, it's possible to use CodeWarrior’s built-in memory
tests to further test DDR

- Memory tests are set up in a similar fashion to a flash programing task
- Under the Target Tasks view, create a new task (plus icon)
- This time, select Hardware Diagnostic as the Task Type

¥ Create New Target Task [5] iz-]

Create a new target task C‘]]E

Task Name T4240 Memor}rTesﬂ
Task Group Root
Run Cenfiguration | Active Debug Context

Task Type Hardware Diagnostic

Finish] | Cancel

£

: - freescale . External Use 76

A 4
4\

Memory Tests (continued)

Within the target task, select Memory Test for Action Type

Target address should be the start of your DDR area

Tests can be directed from the host PC, through JTAG

This is slow, but doesn’t require any additional memory on the system to run

For faster operation, it's possible to set up a 2"d memory (such as an internal
SRAM) for the algorithm to run directly on the target processor

Hardware Diagnostics Action

Action Type

Teut Ares Size: Ox DOOOHTD Number of passes: 1

£

: - freescale . External Use 77

A 4
4\

Memory Tests (continued)

- Save the target task. And then run it as if you were running the
flash programmer
- The memory test runs the tests selected on the target memory
- Note that running this host-based is very slow, and in order to get results
In a reasonable amount of time, only a limited size should be tested

- In order to run the tests directly on the target CPU, we can combine
the two initialization files we previously used to intialize DDR at
address 0x00000000, while also initializing internal SRAM at
address 0xC0000000

£

: - freescale . External Use 78

A 4
4\

Memory Tests (continued)

Example of setting up the internal CPC SRAM at address 0xC0000000

LR E S st e Rt e E SR s s s i e s s s]
configure internal CPC as SRAM at OxcO0000000

CPC1 - 0x01_

CPC2 - 0x01 1

LJ'\PJ'\-J'\ o N

FLEPLLoRY

0 1 0000 0000 1 1 00 0000 0000
#DIS5 ECCdis FI FL LFC

iy .-

#1 1 1

$flush

mem [CCSE _ADDR C0x010000] = C0x00200C00

#enable

mem [CCSE _ADDR COx010000] = COx80200800

#CPCEWCRED - disable stashing

mem [CCSE_ADDR 0=x010010] = Ox00000000

#CPCSRECR1 - SREBLRU=0

mem [CCSE _ADDR C0x010100] = C0x00000000

#CPCSRCRO - SRBARL=0, INTLVEN=0, SRLMSZ=4 (léways), SRAMEN=1
mem [CCSE_ADDR C0x010104] = Oxc0000009

#CPCERRDIS

mem [CCSE_ADDR Cx010E44]

Note that a LAW and TLB entry are still needed for this SRAM, in addition to the
LAW and TLB entry needed for the DDR

x00000080

£

: - freescale . External Use 79

A 4
4\

Memory Tests (continued)

- It is now possible to run the DDR Memory tests directly on the target CPU

- The algorithm runs out of internal SRAM, located at address 0xC0000000,
and test DDR memory at address 0x0

Hardware Diagnostics Action
Action Type
Select the type of action you want to perform

Memory read,write Scope loop @ Memory Test
+ Memory Access

Set the access parameters for memory accesses. These parameters are used for all types of diagnostic actions.
Target Address: 0x 0

Access Type Write Options Access Size
Read 67 1 Byte
Write Verify Memory Writes 2 Bytes

@ 4 Bytes
~ Loop Speed

Set the speed used for the scope loop diagnestic (Value from 0 to 1000 in milliseconds)
900
+ Memory Tests
Select options for memory tests to be run on the target
Test Area Size: Ox 00000

Number of passes: 1
Tests To Run

| Use Target CPU
| Walking 1's Download algerithm to address: Ox - c0000000
| Bus Noise
| Address

£

Z “freescale

External Use 80

A 4
4\

summery

- At this stage you now have a board that can:
- Connected to SW debug tool to read and write internal registers
- Boot from Flash
- Reliably Read/Write DDR

- And are ready for Software team to load boot loader and start
software development

£

: - freescale . External Use 81

Introducing The

QorlQ LS2 Family

Breakthrough, New, high-performance architecture built with ease-of-use in mind
software-defined Groundbreaking, flexible architecture that abstracts hardware complexity and
approach to advance enables customers to focus their resources on innovation at the application level

the world’s new

virtualized networks Optimized for software-defined networking applications

Balanced integration of CPU performance with network I/O and C-programmable
datapath acceleration that is right-sized (power/performance/cost) to deliver
advanced SoC technology for the SDN era

Extending the industry’s broadest portfolio of 64-bit multicore SoCs
Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling
interconnect and peripherals to provide a complete system-on-chip solution

<.

: - freescale . External Use 82

PR¢ .
wuiQ LS2 Famlly

Key Features

SDN/NFV
Switching

Data
Center

Wireless
Access

Unprecedented performance and

ease of use for smarter, more
capable networks

Z “freescale ... =

High performance cores with leading
interconnect and memory bandwidth

- 8X ARM Cortex-A57 cores, 2.0GHz, 4MB L2
cache, w Neon SIMD

- 1MB L3 platform cache w/ECC
« 2x 64b DDR4 up to 2.4GT/s

A high performance datapath designed

with software developers in mind

- New datapath hardware and abstracted
acceleration that is called via standard Linux
objects

+ 40 Gbps Packet processing performance with
20Gbps acceleration (crypto, Pattern
Match/RegEx, Data Compression)

- Management complex provides all
init/setup/teardown tasks

Leading network I/O integration

« 8x1/10GbE + 8x1G, MACSec on up to 4x 1/10GbE

- Integrated L2 switching capability for cost savings

- 4 PCle Gen3 controllers, 1 with SR-IOV support

- 2X SATA 3.0, 2 x USB 3.0 with PHY

PR
See the LS2 Family First in the Tech Lab!

4 new demos built on QorlQ LS2 processors:

Combining Ease of Use with Performance

Tools for Every Step of Your Design

Z“freescale ... =

Z “freescale

www.Freescale.com

© 2014 Freescale Semiconductor, Inc. | External Use

http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

