
External Use

TM

Using the Design Checklist for

Board Bring-Up

FTF-NET-F0137

A P R . 2 0 1 4

Satoshi Iida | Application Engineering Manager

TM

External Use 1

Agenda

• Introduction and Assumptions

• Pre-prototype board arrival phase

• Initial board power on / validation

TM

External Use 2

Introduction and Assumptions

• The purpose of this presentation is to help hardware and software
engineers developing systems using QorIQ T4 series products

− We will cover debug procedures to successfully validate HW design
to a point where it is reasonable to begin SW development

 Pre-board arrival activities

 Initial board power up and validation of basic operation

 Boot loader installation and initialization

• System assumptions

− Boot loader is U-Boot and is located in NOR flash at power up

− U-boot is configured to run initially from NOR flash but transfer to DDR at run
time

− U-Boot run on Core 0

− CodeWarrior is the the HW debugger used

− No secure boot implementation

TM

External Use 3

Pre-Prototype Board Arrival

Phase

This section provides hardware and firmware developer steps to

prepare for new target arrival to the lab

TM

External Use 4

Collecting Technical Information

• Please ensure you are familiar with the following Freescale

collateral:

− T4240 QorIQ Advanced Multicore Processor Data Sheet (T4240EC) /

T4160 QorIQ Advanced Multicore Processor Data Sheet (T4160EC)

/T4080 QorIQ Advanced Multicore Processor Data Sheet (T4080EC)

− T4240 QorIQ Advanced Multiprocessing Processor Reference Manual

(T4240RM)

− T4240, T4160 and T4080 Chip Errata (T4240CE)

− T4240 QorIQ Integrated Processor Design Checklist (AN4559)

− Hardware and Layout Design Considerations for DDR3 SDRAM Memory

Interfaces (AN3940)

− Difference Between T4240 Rev 1 and T4240 Rev 2 (AN4713)

TM

External Use 5

Board Design Considerations

• Several collateral pieces are available to

assist with schematic and board layout

• Listed here are sections that are critical to

successful board bring-up

TM

External Use 6

Board Design Considerations (continued)

• Booting the T4240

− Select your boot method

NOR

NAND

SPI

• Socket the flash for initial board bring-up

PCI Ex / SRIO

• Booting from these requires special consideration that is outside of scope of this session

Note: Rev 1 T4240 have an erratum (A-005878) preventing PBL/RCW loading from NOR

and NAND. RCW load must select different source or use I2C boot sequencer to work

around the erratum. Rev 2 do have this fixed and no longer an issue.

TM

External Use 7

Board Design Considerations (continued)

• Booting T4240

− Connect the power on reset configuration pins appropriately

 See “Power – On Reset Configuration” section of RM

• Personality pins

− Personality and test pins include SCAN_MODE_B and TEST_SEL_B

− Engineering use pins (such as ASLEEP) must not inadvertently be pulled down externally during POR

− Look at the pin-out table in the data sheet (T4240EC or T4160EC) for pins marked with a warning against

being pulled down during power-on reset

 Reset request

• The T4240 has a RESET_REQ_B pin which would normally request a reset of the device via

the PORESET_B or HRESET_B pins

• In production, connecting the reset request output to PORESET or HRESET input is desirable,

indicating a significant and often unrecoverable error has occurred in the system

• During system prototyping, it is recommended to temporarily sever this connection, as

unintended reset loops can occur and tying RESET_REQ_B back to PORESET_B or

HRESET_B can make it more difficult to determine the cause

TM

External Use 8

• Connect the power on reset configuration pins appropriately

• Make the ASLEEP signal accessible to a scope probe

The state of this pin can offer important information about the reset status of the

device

• Using FPGA or CPLD to connect reset signal or drive configuration

pins?

Ensure a basic programming image is available that connects debugger and

reset signals correctly

 If RESET_REQ_B is connected to the FPGA, it shouldn’t reset the T4240 during

initial debugging

Board Design Considerations (continued)

TM

External Use 9

Board Design Considerations (continued)

• Clock sources

− Ensure all required clock sources are driven, and their oscillators and

drivers meet the data sheet specifications for voltage, rise/fall time, and

jitter

SYSCLK and DDRCLK must always be driven

ECn_GTX_CLK125 must be driven if RGMII mode is used on the respective

ECn port

• Single-ended clocking requirements are provided in the “Input clocks” section of the data

sheet

SerDes reference clocks (SDn_REF_CLKn and SDn_REF_CLKn_B) must be

driven if the corresponding SerDes bank is enabled in the RCW

• SerDes reference clock requirements are provided in the data sheet

Optional input clock sources include RTC, USBCLK, and TSEC_1588_CLK_IN

TM

External Use 10

Board Design Considerations (continued)

• Voltage ID (VID) Controllable supply

− To guarantee performance and power specifications, a specific method of

selecting the optimum voltage-level must be implemented when the chip is used.

As part of the chip’s boot process, software must read the VID efuse values

stored in the Fuse Status register (FUSESR) and then configure the external

voltage regulator based on this information. This method requires a point of load

voltage regulator for each chip

− During the power-on reset process, the fuse values are read and stored in the

FUSESR. It is expected that the chip's boot code reads the FUSESR value very

early in the boot sequence and updates the regulator accordingly.

− The default voltage regulator setting that is safe for the system to boot is the

recommended operating VDD at initial start-up of 1.05V. It is highly

recommended to select a regulator with a Vout range of at least 0.9V to 1.1V,

with a resolution of 12.5mV or better, when implementing a VID solution.

TM

External Use 11

Board Design Considerations (continued)

• Reset Configuration Word (RCW)

− Study the RCW to ensure all PLL ratios and I/O connections are selected
appropriately

 If you plan to support multiple speed grades of device or memory

• Pre-select SYSCLK and DDRCLK frequencies and PLL multipliers to ensure desired CPU core
and platform frequency options are achievable

− If some SerDes lanes are unused on your custom board, disable those lanes
in the RCW

 Disable all the lanes of each unused bank and do not provide a SerDes reference
clock for any unused bank

− QCS should be used as a tool to help you select an appropriate RCW

 It generates CRC checksums to produce your Pre Boot Loader (PBL) output file

− Consider using an RCW source that allows you additional space to include
pre-boot initialization(PBI)

 This allows you to implement errata workarounds and other custom internal register
programming prior to boot

TM

External Use 12

Board Design Considerations (continued)

• DDR3 connections

− Compare layout with recommendations in AN3940

− Ensure Vtt and MVREF are driven by appropriate sources. The T4240

has strict voltage requirements on MVREF, which must closely track

GVDD/2. Use of DDR3 integrated device which generates Vtt and VREF

is highly recommended

Link for QorIQ Configuration Suite

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PE_QORIQ_SUITE

TM

External Use 13

Installing and Leveraging Freescale Development Tools

• This section lists suggested steps one can

take to prepare / learn about tools available

prior to T4240 based board arrival

TM

External Use 14

Install the QCS Tool Suite: Focus on PBL and DDR/DDRv

• The QorIQ Configuration Suite (QCS) helps you configure the

T4240

− QCS is well-documented and will allow you to focus on the PBL, DDR

and DDRv modules in QCS

− Please follow the QorIQ Configuration Suite Installation Guide

TM

External Use 15

PBL Tool

• See the Freescale website to download the QCS tools

• Using the QCS Quick Start guide, install and use QCS to come up

with RCW settings and double-check the custom changes with your

local Freescale technical representative

• It’s important for proper pre-boot initialization of the device to have

a valid RCW for your selected clocking values and SerDes

configuration.

• Any custom configurations you develop should be in compliance

with both the T4240 Reference Manual RCW options and what the

RCW sub-tool under QCS allows

TM

External Use 16

QCS

• After generation of your proposed RCW settings, it’s important to

review these with your Freescale technical representative

• Work with importing existing RCW files as a good starting point

TM

External Use 17

Use QCS to Come Up with DDR Settings

• Another key part of getting a smooth bring-up is to at least

have working DDR controller parameters

− Signal Integrity engineers should simulate DDR connection traces and

confer with FSL technical representative

− If using compatible DIMMs on future prototypes, try these in FSL target.

Before your custom target arrives, it can be useful to place your DIMMs into the

Freescale target to see what controller parameters are

− Board-specific parameters: Please note your custom target will require a

different set of parameters than those used by the Freescale

development system

Some parameters are affected by the layout of the board.

These parameters include DDRx_DDR_SDRAM_CLK_CNTL[CLK_ADJUST]

and DDRx_DDR_WRLVL_CNTL[WRLVL_START]

TM

External Use 18

Use QCS to Come Up with DDR Settings (continued)

TM

External Use 19

Practice Using DDRv on T4240QDS

• After getting a range of working values for the DDR controller settings for the

T4240, your next step is to use the DDRv tool that is part of QCS

• If your target has met the minimal requirement for the DDRv optimization tool, you

can use it on your target to show a range of values

• In this range is a “centered” value that is recommended as “best for your target”

Before discovering all

the features of this tool

on your custom target, it

is highly advised that you

run this DDRv tool

successfully on the

Freescale T4240QDS

target.

Also note availability of

application note

specifically targeting

DDR register setting

such as AN4039.

TM

External Use 20

CodeWarrior Debugger

• If you are new to the CodeWarrior debug environment, now is a

great time to install and start using the basics in debugging with

your Freescale T4240QDS target

• You can use the debugger or rather the sub-tool communications

shell CCS, to run boot utilities if your RCW does not bring your SoC

out of reset

• You can use the debugger for basic U-Boot debug and just

accessing memory

• Once installed you can see a lot of good documents found under

C:\Freescale\CW_PA_v10.x.x\PA

TM

External Use 21

Verify Installation of All Necessary Tools

• CodeWarrior

• JTAG boundary scan tools

• I2C EEPROM burner

• CPLD tools

TM

External Use 22

Verify Installation of All Necessary Tools (continued)

• Install CW PA10 and make sure you can connect to the FSL

T4240 target

• Confirm that you can do RCW over-ride on the FSL target and

confirm the different RCW results by reading the RCW registers in

the device

• If using SPI boot, confirm the method on FSL target and then

confirm the debugger connection

− COP delay needed for longer boot time due to RCW + BI + u-boot.bin load

TM

External Use 23

Verify JTAG Connection in Schematics

• For example: Independent TRESET# and PORESET#

− Look out for FPGAs passing signals between the COP/JTAG

TM

External Use 24

Try to Modify U-Boot for the Memory-Map and Try Running

on the FSL T4240QDS Target

• Install U-Boot sources and cross tool chain

− Confirm environment variables and confirm builds for the FSL T4240 and

test if the newly built image works

• Start to develop your custom U-Boot configurations

− For example: u-boot/include/configs/<custom_name>T4240.config

• Build your modified U-Boot for the FSL target and flash it using the

CW debugger

− This is important, as you’ll be practicing for the prototype flashing

• Confirm that the flash device you are using is supported in the CW

debugger

TM

External Use 25

Socket the Flash Device

• Where the RCW, PBI and U-Boot code is located

− This is helpful if the debugger does not work on the new prototype

boards

This way you can flash externally

Make sure your lab-based flash programmer is working with the prototype

board’s flash device

• Application note on how to add new flash device can be found at.

C:\Freescale\CW_PA_v10.3.3\PA\PA_Tools\FlashToolKit\Document

ation

TM

External Use 26

Initial Board Power On/Validation

TM

External Use 27

Confirm Reset Sequence

• When prototype boards are received they may or
may not have the requisite personalization
information programmed

• The hardware design must ensure this board-
specific data, including the RCW and PBL
information, is programmed into the appropriate
memory parts on the board

• Programming of board-specific elements that are not
directly related to T4240 operation are beyond the
scope of this presentation.

− CPLD, power sequencers

• If these non-T4240 elements are required to get the
T4240 into an operative state then the HW designer
must either program these without the use of T4240
debug resource or ensure these mechanisms may
be temporarily bypassed such that the T4240 can
operate without them

TM

External Use 28

T4240 Reset Sequence

• The successful completion of the reset sequence is indicated by the
ASLEEP signal being driven low as shown in the timing diagram

• If this does not occur, then there is an issue with the reset
sequence – usually with some basic hardware function – and it
must be debugged using low-level hardware debug tools and
techniques (logic analyzer and oscilloscopes)

TM

External Use 29

T4240 Reset Sequence (continued)

• Things to check if the reset hardware reset sequence does not complete include:

− Voltage Rails: Ensure the all the required voltage levels are provided and meet the

specified levels and tolerances

 Ensure that the recommended power rail sequence is followed

− SYSCLK. Ensure it is present and meets the voltage level, slew rate, frequency, duty cycle,

and jitter requirements specified

− Reset Signals: Ensure PORESET is driven for a minimum of 1 ms and that it is driven

before the core and platform voltages are powered up

 If HRESET is driven externally, ensure it is released as expected; if driven just by the T4240, confirm

it is released after PORESET desertion

− Confirm the RCW device is being read after ASLEEP is driven high

 If not, check that the cfg_rcw_src signals are driven as expected when the PORESET signal is released

− Confirm RCW contents are as expected. The specifics of the RCW must match the system

configuration

NOTE: If the RCW device is blank, a tool such as CodeWarrior must be used to program this. Instructions

for doing this are provided in later in this presentaion. However, it is recommended to confirm the hardware

operation as much as possible before connecting this tool. Confirming that the T4240 at least attempts to

read the RCW device is a good checkpoint.

TM

External Use 30

T4240 Reset Sequence (continued)

• Confirm that the PBL information is read. Note that this occurs

after the RCW is read, even if the PBL and RCW device are the

same. The PBL reads start but the ASLEEP never is driven low, the

likely failure is that some PBL action is attempting to configure the

part in an undefined or unexpected way

• Confirm the PBL actions are as defined for the system. If the

desired PBL action is involved, it is recommended to start with the

simplest possible PBL contents (to address erratum) and confirm

that the reset sequence completes

• Then add other PBL configurations in a staged manner

TM

External Use 31

Connect Debug Tools

• At this point, we are ready to connect to the
target via a debugger. For the purposes of
this presentation, we focus on Freescale’s
CodeWarrior 10.x debugger. An evaluation
version of the CodeWarrior development
tool can be obtained from Freescale

• Debugger documentation can be found
within the product install directory. This
would typically be located at:

 C:\Program Files\Freescale\CW PA
v10.xx\PA\Help\PDF

• Follow the Targeting _PA_Processors.pdf
document for more information on how to get
started with CodeWarrior

TM

External Use 32

Tap Connection

• TAP is now needed to physically connect to

the hardware

• This could be a USB TAP, Ethernet TAP, or

newer CodeWarrior TAP

• The TAP should be connected to a standard

16-pin COP header on the board such that

pin 1 of the header is aligned with the red

stripe down the TAP ribbon cable.

TM

External Use 33

Confirm Processor with CCS

• IDE as well as CodeWarrior Connection Server (CCS)

• To verify connectivity, first launch the CodeWarrior Connection Server

• This is a command converter that converts Debugger actions into

actionable commands for the TAP

• CCS starts minimized in the PC system tray

• Double click the CCS icon in the PC system tray to launch the full screen

window

• CCS supports TCL scripting, and it comes with some TCL scripts which

may be useful in initial board bring-up

• The JTAG connection script scans the JTAG bus and reports to the

IDCODE of anything found

• To run this script, within CCS type in: source IDcode.tcl

TM

External Use 34

CodeWarrior Connection Server

• The script prompts you for a connection type.

TM

External Use 35

CodeWarrior Connection Server (continued)

• CCS presents you with three commands

• The command scanboard scans the JTAG chain

• After running the scanboard command, you are presented with the JTAG
chain of the board

TM

External Use 36

CodeWarrior Connection Server (continued)

• Here shows a connection to a single T4240 device

• This verifies connectivity between a developer’s host PC, through

the TAP to the board and processor

TM

External Use 37

Connecting CodeWarrior to Target Board

• At this point, we have verified that the processor powers up and responds
to JTAG commands, as well as connectivity from the host PC to the
processor

• The next step is to connect to the target with the debugger interface

• Upon launching CodeWarrior, the first dialog box asks you to specify a
workspace

• A workspace is a folder intended to contain all work, including
configuration settings of tool, debug connections, and even data to be
compiled and or downloaded--

TM

External Use 38

Building a New Project

• CodeWarrior is Eclipse-based, and consists of
two perspectives:

− C/C++ coding

− editing

• Tabs within Eclipse are called Views, and may be
changed depending on user preference

• We start in the C/C++ perspective and initially
use a “Stationary” or default project to set up our
environment to connect to the target

− Select File -> New -> CodeWarrior Bareboard Project
Wizard

 This opens the New Project Wizard

− Name your project

 Select Next

TM

External Use 39

Selecting Processor

TM

External Use 40

Debug Target Setting

TM

External Use 41

Build settings

TM

External Use 42

Configuration

TM

External Use 43

Trace Configuration

TM

External Use 44

TM

External Use 45

Building project

• Build project (even though you are not building any code)

• Right click on project or hammer

TM

External Use 46

CFG File

• The project just created consists of some

example code that can be compiled via

CodeWarrior and downloaded to the target.

Additionally, it consists of configuration files,

which are essentially TCL scripts, to be

downloaded to the target prior to code

executing. The intent of the CFG files is to

enable configuration of the processor, such

as the DDR or flash controllers, prior to

programming flash or executing code

developed within CodeWarrior

• In some sense, the CFG file does the job of

a bootloader, such as U-Boot

TM

External Use 47

Accessing Debug Configuration

• Connections to the target are known as “Debug Configurations”

• To access the debug configuration for a project, right click on the

small downward pointing arrow next to the bug icon on the toolbar

and select Debug Configurations

• Note that this can also be opened through the menu under Run –>

Debug Configurations

TM

External Use 48

Connecting to Target (continued)

• For an initial connection to the target, we want to attempt to

connect without any CFG file

− To de-select the CFG file from our default project:

• Select your project from under the “CodeWarrior” section on the left

hand column

TM

External Use 49

Connecting to Target (continued)

• Edit the Connection Type

TM

External Use 50

Connecting to Target (continued)

• Edit the Target core

• Deselect any checkboxes under the “initialize target” column

TM

External Use 51

Connecting to Target (continued)

• Edit the Target memory

• Deselect any checkboxes under the “initialize target” column

• Click OK twice, to get back to Debug Configurations

• Click Debug to connect to the target with the debugger

TM

External Use 52

Using CodeWarrior to Provide the RCW

• An RCW can be loaded from various sources, including interfaces

such as I2C or flash

− If JTAG boundary scan is not able to program the RCW, it is possible to

force an RCW into the processor via the CodeWarrior debugger

• To do this, first create a file that creates information on the JTAG

scan chain and intended RCW

− There are examples of such a file in the CodeWarrior install:

C:\Program Files\Freescale\CW PA

v10.x.x\PA\PA_Support\Initialization_Files\jtag_chains

TM

External Use 53

Example JTAG Configuration File

Example file to allow overriding the whole RCW or only parts of it

Syntax:

T4240 (2 RCW_option) (RCWn value) ...

where:

RCW_option = 0 [RCW Override disabled]

1 [RCW Override enabled]

2 [Reset previous RCW Override parts]

0x80000001 [RCW Override + PLL Override]

NOTE: Enabling PLL Override could lead to hanging the chip

RCWn = 21000+n (n = 1 .. 16; index of RCW value)

value = 32bit value

T4240 (2 1) (210001 0x14180019) (210002 0x0c10190c) (210003 0x00000000) (210004 0x00000000) (210005 0x70023060)
(210006 0x0055bc00) (210007 0x1c020000) (210008 0x09000000) (210009 0x00000000) (210011 0xee0000ee) (210012
0x00000000) (210013 0x000187fc) (210014 0x00000000) (210015 0x00000000) (210016 0x00000008)

First two words are ignored and not used to replace the RCW in the active system. As we are using 2, 1

If option of 0x80000001 is used PLL will be override

TM

External Use 54

Instructing CW to Use JTAG Configuration File

• To instruct CodeWarrior to use the JTAG configuration file, first bring up the
Debug Configuration intended

• Select the debug configuration to be used, and select the “Edit” Button next to
connection type

• Select Edit, for System

• Select Edit once more, for System Type

TM

External Use 55

Instructing CW to Use JTAG Configuration File (continued)

Select Import, and import the previously created JTAG file

• Upon connecting to the target, the RCW defined in the JTAG configuration file is forced into the

processor

‒ Needed for cases where flash or EEPROM is blank

‒ In such a case, a developer may force an RCW with CodeWarrior, program the flash manually, and then

revert back to the fetched RCW

TM

External Use 56

Running the CodeWarrior HW Debugger

• When the debugger launches, the Eclipse perspective changes to the debug

perspective

• Upon successfully connecting to the processor, the Debug view should change,

highlighting the thread executing

• The start / stop / pause / step icons should also be highlighted

• As we see here, the processor code is halted at the reset vector, 0xFFFFFFFC

• We now can verify some basic settings

‒ This can be done in either view: the GUI or a Debugger Command Shell

‒ To add the command shell to the debug perspective go to Window -> Show

View - > Command Shell

TM

External Use 57

Verify POR Settings

• The registers tab contains all registers within the processor

• Upon clicking on a register, the bit fields of that register should

be expanded

TM

External Use 58

Verifying RCW

• At this point, one could verify the RCW read in by the processor, as well as some

basic configuration that the RCW sets up

• Through the command shell, it’s easy to verify reads and writes to memory-

mapped registers within the processor

• For example, you could verify a read to CCSRBAR returns a pointer to the

CCSRBAR

TM

External Use 59

CodeWarrior Initialization Files

• Upon successfully connecting to a target, and verifying reads / writes to internal
memory, it is now possible to start initializing interfaces such as memory

− CodeWarrior initialization files are intended for this purpose

• Sample configuration files are part of the CodeWarrior install:

C:\Program Files\Freescale\CW PA v10.x.x\PA\PA_Support\Initialization_Files

• They should also be part of the default CodeWarrior stationary project for a given
processor. The initialization file is essentially a script that executes within CodeWarrior
to pre-load registers on the processor prior to code execution

− Typical functions include setting up TLB’s, LAW’s, DDR, and flash interface

• Internal to the processor, a portion of CPC cache may be converted into private SRAM

− Initially, we use a CFG file to set up the cache as private SRAM and set up the flash
interface so that we can program flash

• Within the Initialization Files directory of the install, you should find
T4240QDS_init_sram.tcl configuration file that can be used as a starting point for such
a purpose

− Make a copy of the original, and modify it for your flash configuration.

TM

External Use 60

Sample Initialization File

• Below is a sample section from such a file, where the CPC is set up

to behave as SRAM

− Please note that a LAW and TLB entry is needed for the SRAM

TM

External Use 61

Sample Initialization File (continued)

• Here is an example where NOR flash is set up starting at address

0xE8000000

• Note that a LAW and TLB entry needs to be established for this

to work

TM

External Use 62

Reloading Initialization File

• With both the SRAM and flash configured, we may instruct

CodeWarrior to once again read an initialization file

• Re-open the Debug Connection type that you are intending to use

• Edit the Connection Type

TM

External Use 63

Reloading Initialization File (continued)

Edit the Target

• Select the checkbox next to

“initialize target” and select

the initialization script

modified in the previous

steps

• This should only be needed

for Core 0, as typically when

bringing up a new board

Core 0 is exercised initially.

• Click OK twice, to get back to

Debug Configurations

• Click Debug to connect to the

target with the debugger

TM

External Use 64

Testing SRAM

• Once connected to the target, verify that you can read and write SRAM

• Within a debugger shell read from address 0x0

• Next, attempt to modify the contents of SRAM

TM

External Use 65

Reading Flash

• Let us verify we can read flash correctly

• Flash was set to address 0xE8000000 in the initialization file above

• In this example, you see the RCW stored in flash

• If flash was blank, you should see all 0xFFFFFFFF

TM

External Use 66

Programming Flash/RCW

• CodeWarrior includes a flash programmer to aid in programming an RCW

or U-Boot into flash

− Within the CodeWarrior debug perspective, locate the Target Tasks tab

− Click on the plus icon to add a new target task

TM

External Use 67

Programming Flash/RCW (continued)

• Give the task a name (such as “program flash on T4240 board”)

• “Run configuration” defines how to connect to the target

• In our case we’ll use the Active Debug Context, which assumes we are

already connected to the target via the debugger

• Task Type offers two options: Flash Programmer or Hardware diagnostics.

We select Flash Programmer

• Within the Flash Programmer Task we now need to configure our flash

and actions

• Target RAM is memory available to the processor to use for the flash

algorithm. We specify the private SRAM we configured previously, which

resides at address 0x0

TM

External Use 68

Programming Flash/RCW (continued)

• We may need to add a device

• Select your device from the list

• If using a different organization, click on the organization column and pick

the correct organization

• Base address of the flash should be set to whatever was set in the

initialization file previously

• Add action to program and verify

TM

External Use 69

Programming Flash/RCW (continued)

• You may now add a programming action

• Select Program / Verify from the list

• Select the file to be programmed

‒ Note that elf and srec files contain addresses within the files, while a binary file does

not

‒ Binaries are offset from address 0x0. So, to program a binary file to the beginning of

flash, one would need to apply an address offset, as in the above figure

• Please note, this is an offset from 0x0, or effectively the address to program to

TM

External Use 70

Programming Flash/RCW (continued)

• When done, save the flash programmer task

− If connected, you may then run the intended task, by selecting the task and then

clicking on the “play” arrow icon

− This should launch the flash programmer

− If the flash programmer is not successful, it could be possible that the flash

device is not writable, protected, or the chip select, MMU or law are set

up incorrectly.

− Fortunately, it should be possible to poke the flash directly through the

debugger shell

TM

External Use 71

Programming Flash/RCW (continued)

• Refer to the flash datasheet for the specific algorithm needed to write flash or read

a status bit

• Note that the command shell is once again scriptable, with TCL, so it’s possible to

write scripts to write flash, erase flash, or unprotect flash

• For example, using an Intel flash algorithm, I could write flash using the TCL

procedure below

• Erasing flash is as simple as the procedure below

TM

External Use 72

Programming Flash/RCW (continued)

• One could type these in directly to the command shell, or save

scripts such as these within a TCL file

• To load a TCL file into the command shell simple source

filename.tcl

• The TCL procedures then can be called individually

• If flash can not be poked manually in this manner, then one should

start looking at hardware, and examine the physical connections to

flash to ensure that the signals are being driven correctly

• If signals are not being driven, we must re-examine the initialization

file’s configuration of the flash interface

TM

External Use 73

Adding a Flash Device

• If the desired flash is not included in CodeWarrior, it is possible to

manually add a newer flash device

• For instructions, please refer to AN4349, found either on the

Freescale website, or within the CodeWarrior installation:

C:\Freescale\CW PA

v10.1.1\PA\PA_Tools\FlashToolKit\Documentation

TM

External Use 74

DDR Initialization File

• For this, we typically revert back to the standard initialization file for

the project stationary

• In this case, the T4240QDS_init_core.tcl file that is in the CFG

folder of the project

• In this file, DDR has already been set up for the QDS board.

Replace the settings in the file with settings previously derived for

the target hardware

TM

External Use 75

DDR Initialization File

(continued)

• Upon saving the file, ensure that

the debug configuration is set up to

use the new initialization file

• When connecting, DDR should

now be located at address 0x0

• A read from address 0x0 should

yield the DRAM initialization value

set up in DDR_DATA_INIT

• If it does not, verify the DDR

settings once again, using a tool

such as QCS

• If issues persist, verify that the

LAW, TLB settings and DDR

settings match

TM

External Use 76

Memory Tests

• Once DDR appears to yield the value set up in DDR_DATA_INIT and

writes appear sticky, it’s possible to use CodeWarrior’s built-in memory

tests to further test DDR

• Memory tests are set up in a similar fashion to a flash programing task

• Under the Target Tasks view, create a new task (plus icon)

• This time, select Hardware Diagnostic as the Task Type

TM

External Use 77

Memory Tests (continued)

• Within the target task, select Memory Test for Action Type

• Target address should be the start of your DDR area

• Tests can be directed from the host PC, through JTAG

• This is slow, but doesn’t require any additional memory on the system to run

• For faster operation, it’s possible to set up a 2nd memory (such as an internal

SRAM) for the algorithm to run directly on the target processor

TM

External Use 78

Memory Tests (continued)

• Save the target task. And then run it as if you were running the

flash programmer

− The memory test runs the tests selected on the target memory

− Note that running this host-based is very slow, and in order to get results

in a reasonable amount of time, only a limited size should be tested

• In order to run the tests directly on the target CPU, we can combine

the two initialization files we previously used to intialize DDR at

address 0x00000000, while also initializing internal SRAM at

address 0xC0000000

TM

External Use 79

Memory Tests (continued)

Example of setting up the internal CPC SRAM at address 0xC0000000

Note that a LAW and TLB entry are still needed for this SRAM, in addition to the

LAW and TLB entry needed for the DDR

TM

External Use 80

Memory Tests (continued)

• It is now possible to run the DDR Memory tests directly on the target CPU

• The algorithm runs out of internal SRAM, located at address 0xC0000000,

and test DDR memory at address 0x0

TM

External Use 81

Summery

• At this stage you now have a board that can:

− Connected to SW debug tool to read and write internal registers

− Boot from Flash

− Reliably Read/Write DDR

• And are ready for Software team to load boot loader and start

software development

TM

External Use 82

Introducing The

QorIQ LS2 Family

Breakthrough,

software-defined

approach to advance

the world’s new

virtualized networks

New, high-performance architecture built with ease-of-use in mind
Groundbreaking, flexible architecture that abstracts hardware complexity and

enables customers to focus their resources on innovation at the application level

Optimized for software-defined networking applications
Balanced integration of CPU performance with network I/O and C-programmable

datapath acceleration that is right-sized (power/performance/cost) to deliver

advanced SoC technology for the SDN era

Extending the industry’s broadest portfolio of 64-bit multicore SoCs
Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling

interconnect and peripherals to provide a complete system-on-chip solution

TM

External Use 83

QorIQ LS2 Family
Key Features

Unprecedented performance and

ease of use for smarter, more

capable networks

High performance cores with leading

interconnect and memory bandwidth

• 8x ARM Cortex-A57 cores, 2.0GHz, 4MB L2

cache, w Neon SIMD

• 1MB L3 platform cache w/ECC

• 2x 64b DDR4 up to 2.4GT/s

A high performance datapath designed

with software developers in mind

• New datapath hardware and abstracted

acceleration that is called via standard Linux

objects

• 40 Gbps Packet processing performance with

20Gbps acceleration (crypto, Pattern

Match/RegEx, Data Compression)

• Management complex provides all

init/setup/teardown tasks

Leading network I/O integration

• 8x1/10GbE + 8x1G, MACSec on up to 4x 1/10GbE

• Integrated L2 switching capability for cost savings

• 4 PCIe Gen3 controllers, 1 with SR-IOV support

• 2 x SATA 3.0, 2 x USB 3.0 with PHY

SDN/NFV

Switching

Data

Center

Wireless

Access

TM

External Use 84

See the LS2 Family First in the Tech Lab!

4 new demos built on QorIQ LS2 processors:

 Performance Analysis Made Easy

 Leave the Packet Processing To Us

 Combining Ease of Use with Performance

 Tools for Every Step of Your Design

TM

© 2014 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

