
External Use

TM

Hands-On Workshop: Developing

with the Software Development

Kit for Kinetis MCUs

EUF-IND-T1475

M A Y . 2 0 1 5

Antonio Concio | Field Application Engineer

Lorenzo Daniele | Field Application Engineer

TM

External Use 1

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 2

Kinetis Software Development Kit

(KSDK)

TM

External Use 3

Freescale Kinetis

• Freescale’s ARM® Cortex®-M0+, M4, and M7 microcontroller

family

• Hardware and software compatibly across hundreds of devices

• Exceptional low-power performance and feature integration

TM

External Use 4

What Is an SDK For and Why Is It Needed ?

In general, an SDK is a package of pre-written code that developers can

re-use in order to minimize the amount of unique code that they need to

develop themselves.

It can help to prevent unnecessary duplication of effort in a development

team or community.

It has a common application programming interface (API) for different

platforms or peripherals, what shortens the application developing time.

Thanks to use of abstraction layers it’s more intuitive and concise for

programmers.

TM

External Use 5

Kinetis Software Development Kit (SDK)

The OSI logo trademark is the trademark of Open Source Initiative.

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

Learn more at: www.freescale.com/KSDK

Product Features
• Open source hardware abstraction layer (HAL)

provides APIs for all Kinetis hardware resources

• BSD-licensed set of peripheral drivers with easy-

to-use C-language APIs

• Comprehensive HAL and driver usage examples

and sample applications for RTOS and bare-metal

• GUI configurable projects and peripheral drivers

using Processor Expert

• CMSIS-CORE compatible startup plus CMSIS-DSP

library and examples

• RTOS Abstraction Layer (OSA) with support for

Freescale MQX, FreeRTOS, Micrium uC/OS, and

bare-metal

• Integrates new Freescale unified USB stack, open

source TCP/IP stack (lwIP), open source FAT file

system, encryption math/DSP libraries, and more.

• Support for multiple toolchains: GNU GCC, IAR,

Keil, Atollic, and Kinetis Design Studio

The software framework and
reference for Kinetis MCU
application development

SDK

Hardware abstraction, peripheral
drivers, stacks, RTOS’s, utilities,
and usage examples; delivered in
C source

http://www.freescale.com/KSDK

TM

External Use 6

KSDK Key Components

• Two major components of the KSDK

− Hardware Abstraction layer (HAL)

− Peripheral Drivers

• Supporting Components

− CMSIS-compliant header files

− System services (clock manager, interrupt manager, low power

manager)

− Operating System Abstraction (OSA) layer

− Board Support Packages (BSP)

− Stacks and Middleware

TM

External Use 7

Kinetis SDK Overview

HAL

• Abstracted IP level Basic operations.

• Useable low level drivers.

System Services

• Clock Manager, Interrupt manager, Low power

manager, HW timer…

• Can be used with HAL, PD and Application

FSL Peripheral Drivers

• Use case driven high level drivers.

OS Abstraction Layer (OSA)

• Adapt to different OS (MQX, FreeRTOS and uCos)

through corresponding OSA

BSP & Configuration

• Board Configuration, Pin Muxing, GPIO Configuration

Stacks & Middle Wares

• USB stack, TCP/IP stack, BTLE…

• Audio, Graphics, Boot Loader…

Note: The IP extension header files could be merged

with the SoC header in later on KSDK releases…

TM

External Use 8

HAL and Drivers

• HAL is at a lower level than the KSDK

drivers

− No state awareness

− Mostly macros to provide user-

friendly naming to access MCU

registers

• KSDK Drivers make use of HAL API

to implement their functionality.

Freescale KSDK

Application

SDK Startup code

HAL

Drivers and OSA

TM

External Use 9

HAL Overview

• Create the basic abstraction layer over MCU internal peripherals
− Each individual peripheral has own dedicated HAL

• Full coverage of all peripherals features
− Also implements the function for module initialization (reset)

• Possible configurability
− In compilation time via feature header files

− In run-time by taking user defined configuration data through “init” function call

• Does not implement the interrupt driven logic (ISR)
− It’s implemented by Peripheral Drivers or User Application

− User Application based only on HAL need to define own ISR entries

• HAL Source at C:\Freescale\KSDK_1.1.0\platform\hal

• HAL Library at C:\Freescale\KSDK_1.1.0\lib\ksdk_hal_lib

TM

External Use 10

Example of HAL for SPI

void SPI_HAL_Init (uint32_t baseAddr)

uint32_t SPI_HAL_SetBaud (uint32_t baseAddr, uint32_t bitsPerSec, uint32_t sourceClockInHz)

void SPI_HAL_SetDataFormat(uint32_t baseAddr, spi_clock_polarity_t polarity,

spi_clock_phase_t phase,

spi_shift_direction_t direction)

static inline void SPI_HAL_Enable (uint32_t baseAddr)

static inline void SPI_HAL_Disable(uint32_t baseAddr)

static inline void SPI_HAL_SetMasterSlave(uint32_t baseAddr, spi_master_slave_mode_t mode)

static inline bool SPI_HAL_IsMaster(uint32_t baseAddr)

…

static inline void SPI_HAL_SetMatchIntCmd(uint32_t baseAddr, bool enable)

static inline boolSPI_HAL_IsMatchPending(uint32_t baseAddr)

…

static inline uint8_t SPI_HAL_ReadData(uint32_t baseAddr)

static inline void SPI_HAL_WriteData(uint32_t baseAddr, uint8_t data)

TM

External Use 11

Drivers Overview

• KSDK implements complex high level logic over SoC peripherals

• Are based on one or multiple HAL, other drivers and/or system services

• Support run-time configuration through “init” function call
− Configuration data are passed by pointer to driver’s specific configuration structure

• Defines needed ISR entries for the interrupt driven driver

− All actions needed to be taken in ISR entries cover a public function general for all instances of drivers
xxx_DRV_IRQHandler(uint32_t instance)

− The fsl_xxx_irq.c file inside drivers directory contains the default implementation of handlers used in
vector table

− User can update the ISR entries by adding user actions, the C file with ISR entries will not be built into
the driver library

• Same driver API is used when accessing same function across HAL with similar functionality

• For some of these drivers, MQX brings POSIX compliant API wrappers

• Driver Source at C:\Freescale\KSDK_1.1.0\platform\drivers

• Driver+HAL library at C:\Freescale\KSDK_1.1.0\lib\ksdk_platform_lib

TM

External Use 12

Example of PD for SPI (MASTER)

void SPI_DRV_MasterInit(uint32_t instance, spi_master_state_t * spiState);

void SPI_DRV_MasterConfigureBus(spi_master_state_t * spiState,

const spi_master_user_config_t * device,

uint32_t * calculatedBaudRate);

spi_status_t SPI_DRV_MasterTransferBlocking(spi_master_state_t * spiState,

const spi_master_user_config_t * restrict device,

const uint8_t * restrict sendBuffer, uint8_t * restrict receiveBuffer,

size_t transferByteCount, uint32_t timeout);

spi_status_t SPI_DRV_MasterTransfer(spi_master_state_t * spiState,

const spi_master_user_config_t * restrict device,

const uint8_t * restrict sendBuffer,

uint8_t * restrict receiveBuffer,

size_t transferByteCount);

spi_status_t SPI_DRV_MasterGetTransferStatus(spi_master_state_t * spiState, uint32_t * bytesTransferred);

spi_status_t SPI_DRV_MasterAbortTransfer(spi_master_state_t * spiState);

TM

External Use 13

CMSIS, SoC and IP extensions headers

• Cortex Microcontroller Software Interface Standard (CMSIS)
− Core specific macros and inline functions

− Compliance startup codes

− DSP lib and source files included for GCC (other tool chains such as IAR and KEIL has

CMSIS DSP lib built in)

• SoC header files
− Mapped memory and register’s addresses over SoC (similar to CMSIS headers)

− Are generated by using API factory tool owned by Processor Expert team.

• IP extension header files
− Each IP has own extension header file

− Create easy access to IP registers via bit-field macros (SET, CLR, GET, …).

− Are using BME where possible.

TM

External Use 14

System services

• Common used services
− System Timer (can be running on any of the hw-timers in SoC)

− Centralized Clock Manager (for peripherals driven)

− Centralized Interrupt Manager

− Low Power Manager

• Are built over SoC header files and some HAL components

• Are used by Peripheral Drivers or User Application
− User can just use HAL and System Services to build applications.

− If user would only use Peripheral Drivers, then do not need to use system services.

• Are used by OSA

TM

External Use 15

KSDK Power Manager

TM

External Use 16

What is the SDK Power Manager?

• A high-level API that allows an application to

easily manage and utilize its supported

power modes.

• Provides the ability to execute application-

defined callbacks before and/or after power

mode transitions.

• Enables agreeable or forcible transition

between power modes, allowing peripherals

to hold-off transition requests or the

application to force transition.

TM

External Use 17

Where can you find the Power Manager?

• The Power Manager is part of the Kinetis SDK. Specifically, it is a

component of the platform library’s system services.

TM

External Use 18

Power Manager Overview – Initialization

• The application defines the supported power modes.

− This will typically be a subset of what the specific MCU supports since

it’s application-specific.

− Supported modes are defined as structures and passed into

POWER_SYS_Init().

• Callbacks are defined during device initialization and also passed

into POWER_SYS_Init().

TM

External Use 19

Power Manager Interaction With Other Components

• The Power Manager only touches the SMC, PMC and RCM
registers, which are the main blocks needed to transition into a low
power state.

• It does not configure wake-up sources or adjust clock frequencies.
The application is responsible for enabling and configuring wake-up
and clock adjustments.

• It relies on user-defined callback functions to interact with other
application components.
− For example, if clocks need to be adjusted prior to changing power mode, a “before”

callback should be used.

− Allows for user-defined data to be passed into the callback functions. This data can then
be used by the application to determine state or perform necessary tasks.

TM

External Use 20

Changing Power Modes

• Changing power modes is very easy with the Power Manager.

• Based on the policy of the selected power configuration, the Power

Manager can either force entry or abort if the user callback signals

it is not ready.

power_manager_error_code_t POWER_SYS_SetMode(uint8_t powerModeIndex)

Index of desired user-

defined power mode

// Create list of supported modes to pass in to

// POWER_SYS_Init().

power_manager_user_config_t const *powerConfigs[] =

{

&waitConfig

};

This is what the index refers to

TM

External Use 21

Future Improvements

• The Kinetis SDK is still in its infancy and there are plans to improve

the power manager in future releases.

• Future improvements being discussed:

− Automatic clock adjustment/checking based on a tightly coupled

relationship with the SDK clock manager.

− Power Manager awareness built into SDK reference drivers.

Example application in \demos\power_management_demo

TM

External Use 22

OS Abstraction (OSA)

TM

External Use 23

OS Abstraction Layer Overview

• Enables KSDK to work with different RTOSes

• Support key RTOS services

− Semaphores, Mutex, Memory Management, Events, more…

• Implementation for different RTOSes

− Bare Metal

− MQX™, FreeRTOS, uCOS-II, and uCOS-III

• Does not abstract ISRs

− ISRs must be set up slightly different depending on the RTOS used

− Some RTOS require prologue and epilogue for ISR enter and exit

− Some RTOS require ISR entries be registered with RTOS-specific ISR

registration function

TM

External Use 24

OS Abstraction Layer Example: OSA_TimeDelay()

• For MQX maps to:

• For FreeRTOS maps to:

• For Baremetal maps to:

Translation code found in \platform\osa

TM

External Use 25

OS Abstraction Layer

• The OSA layer allows the same user code to be compatible with

multiple RTOSes

− See I2C_rtos example in KSDK

− Same software works with bare-metal, MQX, FreeRTOS, uCOS

• Still have option of using direct RTOS function calls

− Use either OSA_TimeDelay(500) or _time_delay(500)

TM

External Use 26

Stacks and Other Middleware

• This layer completes the KSDK source and made it easy to use

• Includes
− All Freescale stacks like Host and Device USB stacks, …

− Third party enablement software stacks like lwip, FatFs, …

− RTOS source codes like MQX, FreeRTOS, uCOSII, uCOSIII, …

• All middle wares are run on top of the KSDK drivers
− Freescale USB stack not adhere to this rule, because SDK HAL is not implementing USB

IP now.

TM

External Use 27

Board Configuration and Support

• Pin Muxing
− KSDK driver layer will not handle pin muxing. It is handled in the board configuration part,

where pin muxing functions are generated using “Pin Muxing” tool in KDS via PEx.

• Board Specific configuration
− GPIO configuration

− Hardware Initialization code

− Function to initialize serial console for debug purposes.

• Drivers for common devices included in our evaluation boards.
− ENET PHY

− Accelerometer

− Codec

TM

External Use 28

KSDK 1.1 Supported Devices

• K22F

− FRDM-K22F

− FRDM-K22FK02

− FRDM-K22FK0264

− TWR-K22F120M

− TWR-K22F120MK02

• K24F

− TWR-K24F120M

• K60D

− TWR-K60D100M

• K64F

− TWR-K64F120M

− FRDM-K64F

• KL46

− FRDM-KL46Z

• KV10

− TWR-KV10Z75M

• KV31

− TWR-KV31F120M

− TWR-KV31F120MKV30

TM

External Use 29

KSDK 1.1

• Released December 2014

• Changes Include:

− Reorganized directory structure

− Support for Atollic IDE

− New Devices Supported:

https://community.freescale.com/docs/DOC-103183

TM

External Use 30

KSDK 1.2 – Released on April 28

MCU Support for all v1.1 Mainline and Standalones, plus :
• K10D 100MHz

• K20D 100MHz

• K30D 100MHz

• K40D 100MHz

• K5xD 100MHz

• K60D 100MHz

• K21F Rev. A 120MHz

All Supported Eval Platforms:

Kinetis L:

• FRDM-KL02Z

• FRDM-KL03Z

• FRDM-KL25Z

• FRDM-KL26Z

• FRDM-KL27Z

• FRDM-KL43Z

• FRDM-KL46Z

• TWR-KL43Z48M

Kinetis V:

• TWR-KV10Z32M

• TWR-KV31F120M

• TWR-KV46F150M

New Peripheral Support:
• AOI

• ENC

• FLEXBUS

• FLEXIO

• LMEM

• VREF

• XBAR

• PWM

• K26F 180MHz

• K65F 180MHz

• K66F 180MHz

• KL02Z

• KL14Z

• KL15Z

• KL24Z

• KL25Z

Kinetis K:

• FRDM-K22F

• FRDM-K64F

• TWR-K21D50M

• TWR-K21F120M

• TWR-K22F120M

• TWR-K24F120M

• TWR-K60D100M

• TWR-K64F120M

• TWR-K65F180M

Kinetis W:

• FRDM-KW24D

• TWR-KW24D512

• USB-KW24D512

• MRB-KW019032xx

Kinetis SDK 1.2 Improvements:

• Organizes SDK examples by board rather than demo

• Adds functionality to clock manager

• Adds functionality to power mode manager

• Simplifies the clock configuration

• Optimizes demo pin mux configurations for low-power

NEW

TM

External Use 31

KSDK Tools

TM

External Use 32

Kinetis SDK IDE Options

Keil Microcontroller Development Kit

• Specifically designed for microcontroller applications,

easy to learn and use, yet powerful enough for the most

demanding embedded applications

• ARM C/C++ build toolchain and Execution Profiler and

Performance Analyzer enable highly optimized programs

• Complete Code Coverage information about your

program's execution

IAR Embedded Workbench

• A powerful and reliable IDE designed for ease of use with

outstanding compiler optimizations for size and speed

• The broadest Freescale ARM/Cortex MCU offering with

dedicated versions available with functional safety

certification

• Support for multi-core, low power debugging, trace, ...

Kinetis Design Studio

• Complimentary basic capability integrated development

environment (IDE) for Kinetis MCUs

• Eclipse and GCC-based IDE for C/C++ editing, compiling

and debugging

Atollic TrueSTUDIO

• Professional ECLIPSE/GNU based IDE with a MISRA-C

checker, code complexity analysis and source code

review features.

• Advanced RTOS-aware debugger with

ETM/ETB/SWV/ITM tracing, live variable watch view and

fault analyzer. Dual-core and multi-processor debugging.

• Strong support for software engineering, workflow

management, team collaboration and improved software

quality.

GNU ARM GCC

• Open Source GNU GCC compiler for ARM devices

• ARM C/C++ build toolchain

Additional Ecosystem Partners:

http://www.keil.com/freescale/
http://www.iar.com/kinetis/
http://www.freescale.com/kds
http://www.atollic.com/index.php/partnerfreescale

TM

External Use 33

Kinetis Design Studio (KDS)

TM

External Use 34

Kinetis Design Studio

Product Features

• A free of charge and unlimited IDE for Kinetis MCUs

• A basic IDE that offers robust editing, compiling and
debugging

• Based on Eclipse, GCC, GDB and other open-
source technologies

• Includes Processor Expert (PEx) with Kinetis SDK
integration

• Supports all existing Kinetis devices via
Processor Expert and new project wizard

• All new Kinetis devices will also feature the
Kinetis SDK with Processor Expert
configurability

• Host operating systems:

• Windows® 7/8 (32 and 64-bit)

• Linux™ (Ubuntu, Redhat, Centos) (64bit)

• Mac® OS X (with v3.0) and Segger

• Support for SEGGER, P&E and Open SDA/CMSIS-
DAP debugger targets

• Support for Eclipse plug-ins including RTOS-
awareness (i.e. MQX, FreeRTOS)

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

No-cost integrated
development environment
(IDE) for Kinetis MCUs

$

Eclipse and GCC-based IDE
for C/C++ editing, compiling
and debugging

Learn more at: www.freescale.com/KDS

Community: https://community.freescale.com/community/kinetis-design-studio

http://www.freescale.com/KDS
https://community.freescale.com/community/kinetis-design-studio

TM

External Use 35

Kinetis Design Studio – Block Diagram

Kinetis Design Studio

P
a
rt

n
e
r

P
lu

g
in

s

Mac OS XLinux

E
c
lip

s
e

F
ra

m
e
w

o
rk CDT (C/C++)

GNU ARM

Eclipse

GDB

GNU ARM
newlib-nano,

newlib

Processor

Expert

NPW

P&E

GDB Server

Segger

GDB Server

OpenOCD

CSMIS-

DAP

(Commercial Support)/Packages

Windows 7/8

E
c
lip

s
e

P
lu

g
in

s

Console

G
D

B

S
e

rv
e

r
C

o
n

n
e

c
ti

o
n

C
L

D
e
b
u
g

C
L

D
e

b
u

g
C

L

D
e
b
u
g

Proprietary Open Source Freescale

K
in

e
ti
s

S
D

K
M

Q
X

TM

External Use 36

KDS V3.0.0

• NEW Release: Launched 30-Apr-2015

• Hosts

− Windows 7/8 (32bit and 64bit)

− Linux 64bit (Ubuntu 14.04, RedHat/Centos 7) (32bit host libs for Launchpad)

− Mac OS X ("Yosemite") and Segger Run Control

• Eclipse Luna 4.4 Framework

− Welcome view, Split view, Black Theme, …

• Processor Expert for Kinetis V3.0

− Simpler and Easier SDK usage (NPW)

− Component Repositories

− Keil and IAR external IDE/build support

• Launchpad GNU Tools for ARM Embedded (4.8)

− Newlib nano for devices <2 KByte RAM

• Improved Debugging support

− Updated Segger and P&E (same OpenOCD as in v2.0.0)

− JTAG Daisy Chaining, Memory Range Protection, Attach to running target

− Register Details Viewer

NEW

TM

External Use 37

Mac OS X

• Yosemite, 10.10

• Segger J-Link

TM

External Use 38

Eclipse, Welcome View

• Eclipse Luna 4.4

− Same look and feel as Kepler 4.3 (easy migration)

− Overall performance improvements

• Freescale Welcome view pointing to online resources and help

TM

External Use 39

Eclipse Luna (4.4): Split Editor Views

TM

External Use 40

Eclipse Luna: Dark Appearance

• New Styling Engine, General > Appearance

TM

External Use 41

Ease-of-Use: Kinetis SDK Project Creation

• Kinetis SDK Selection

• Path Selection

TM

External Use 42

Processor Expert Component Repositories

• Improved Version Control System support

• Multiple configurable repositories

• Filtering

TM

External Use 43

Code Generation for Keil/IAR

• Processor Expert Multi-Compiler Code Generation

− GNU: default, for KDS or any other GNU Toolchain, projects within

Eclipse

− External IDE support: IAR & Keil as in DriverSuite

TM

External Use 44

ARM Launchpad Tools

• Using ARM Inc. maintained

standard Launchpad GNU

Toolchain

− Removed dependency on external

provider, newlib-nano optimized

library for devices with < 2 Kbyte

RAM

• Project Upgrade wizard

− Linker options

− Semihosting

− _exit() code

TM

External Use 45

Multi-Toolchain Configuration

• Toolchain configurable globally, on workspace or project

TM

External Use 46

Advanced Debugging Options

• Preserving Memory Ranges

• Using alternative Flash Algorithms

• Trimming

TM

External Use 47

JTAG Multicore Daisy Chaining

• Debug Devices on a JTAG Daisy Chain

TM

External Use 48

Register Detail Viewer

• CMSIS-SVD File support

• Register Bit Level Detail Information

• Includes ARM Core Registers (NVIC, SysTick, …)

TM

External Use 49

Community
www.freescale.com/community

Web
www.freescale.com/kds

Level 2 Support
www.freescale.com/kds/support

Additional Resources

http://www.freescale.com/mqxcommunity
http://www.freescale.com/kds
http://www.freescale.com/kds/support

TM

External Use 50

KSDK Layout

TM

External Use 51

MQX for KSDK 1.1 Installation

• Download Kinetis SDK 1.1 from http://www.freescale.com/ksdk

• Default Install Path: C:\Freescale\KSDK_1.1.0

http://www.freescale.com/ksdk

TM

External Use 52

KSDK Installation Package

• During installation, select the RTOSes you’re interested in

TM

External Use 53

KSDK Environmental Variable

• The KSDK_PATH system variable is used to point to the desired KSDK

installation directory in cases were multiple versions of KSDK are installed

• This variable is used by some toolchains

• Control Panel System Properties Advanced Tab

 Environment Variables

TM

External Use 54

KSDK KDS Plugins

• For Kinetis Design Studio, make sure to install the KSDK Eclipse

Update

− C:\Freescale\KSDK_1.1.0\tools\eclipse_update

• Directions are in the KDS section of the Getting Started with Kinetis

SDK (KSDK).pdf

TM

External Use 55

MQX KDS Plugins

• See chapter 5.2 Install Eclipse update of ‘Getting Started with

Kinetis SDK (KSDK)’ document located in KSDK installation

path.

• C:\Freescale\KSDK_1.1.0\doc\Getting Started with Kinetis SDK

(KSDK).pdf

TM

External Use 56

Directory Structure
Board config. and support

boards/<board_name>/

Demonstration projects

Generated documentation

Projects for compiling libs

Stacks and RTOS

sources

Makefiles for GCC

compilation

TM

External Use 57

Directory Structure (Platform)

System services

TM

External Use 58

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 59

Freedom Development Platforms

Product Features

• Low–cost (starting at $12.95 USD)

• Designed in an industry-standard compact

form factor (Arduino R3)

• Easy access to the MCU I/O pins

• Integrated open-standard serial and debug

interface (OpenSDA)

• Compatible with a rich-set of third-party

expansion boards

Enables quick application
prototyping and demonstration
of Kinetis MCU families

Low-cost/low-power
development hardware

Learn more at: www.freescale.com/freedom

www.freescale.com/mbed

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

FRDM-K22F:

http://www.freescale.com/freedom
http://www.freescale.com/mbed

TM

External Use 60

OpenSDA

• OpenSDA is a circuit built into Freescale evaluation boards to provide a bridge

between your computer and the embedded target processor

• Purpose is to provide inexpensive debug tool for Freescale evaluation boards

• Different apps can be loaded via a bootloader

• Default CMSIS-DAP app does:

− Drag-and-drop flashing via a Mass Storage Device

− Debug via CMSIS-DAP protocol

− Virtual Serial Port

TM

External Use 61

Reset Button

OpenSDAv2 Debug

K22F USB

Push Button

Arduino Expansion Header

Arduino Expansion Header

Push Button

Tri-Color LED

FXOS8700CQ

Accel + Mag

MK22FN512VLH12

120 MHz, Cortex-M4, 512kB Flash,

128K SRAM, USB, 16-bit ADC,

12-bit DAC, SDHC

Learn more at: www.freescale.com/freedom

FRDM-K22F Hardware Overview

http://www.freescale.com/

TM

External Use 62

Lab 1: Importing KSDK demos

TM

External Use 63

Lab 1 Overview

Objective:
This lab explains how to import and build the demos that are bundled with Kinetis SDK

Lab Flow:

Importing platform library

Build Library

Importing demo project

Build Demo

Download and Debug

Required Hardware and Software:

FRDM-K22F Board configured with CMSIS-DAP Debugger

Micro USB Cable

Kinetis Design Studio (v2.0 or newer)

Kinetis Software Development Kit (v1.1.0)

TM

External Use 64

Lab 1 Summary

• Imported and built KSDK platform library for MK22FN512xxx12.

• Imported and built lptmr_demo from KSDK_1.1.0.

• Ran the demo with KDS.

TM

External Use 65

KSDK Project Information

• Right click on lptmr project and select Properties

• Navigate to the C/C++ Build->Settings page

• Look at the Cross ARM C Compiler->Includes screen to see how

the KSDK directories are included

TM

External Use 66

KSDK Project Information Continued

• Look at the Preprocessor screen to see the various KSDK defines

TM

External Use 67

KSDK Project Information Continued

• Linker File

TM

External Use 68

KSDK Project Information Continued

• KSDK Platform Library

TM

External Use 69

Porting KSDK

TM

External Use 70

Reasons to Port KSDK

• Using custom hardware with differences from Freescale development
boards

− Different peripherals

− Different pins

• Porting to a different Kinetis derivative

− Freescale development boards use superset derivatives

− Custom hardware can use derivative with differences in memory, peripherals,
and pins

− Port Example: from MK64FN1M0VMD12 to MK24FN1M0VLQ12

• Different Clock configurations

− Internal or external clock sources

− Different frequencies for core, peripheral bus, and others

TM

External Use 71

Hardware Porting Changes

Minimal Changes Required

• OS, Application, Middleware do not need to

change – they reside on top of HAL and

peripheral drivers

• HAL and Peripheral drivers do not need to

change – they already support different

Kinetis derivatives

Kinetis Derivative Differences

• KSDK has derivative information

• Specify derivative when compiling

• KSDK pulls in correct header files

Board Configuration

• Specific to hardware, needs customized

• Pin Muxing

• GPIO Configuration

• Clock startup configuration

TM

External Use 72

Changing Kinetis Derivative

• KSDK makes changing derivative easy

• KSDK already has derivative information in source code

− Macros used at compile time

− Specify peripheral differences between Kinetis derivatives

like <KSDK_PATH>\platform\hal\adc\fsl_adc_features.h

− Specify which KSDK header files to include in build

like <KSDK_PATH> \platform\CMSIS\Include\device\fsl_device_registers.h

• KSDK uses compiler preprocessor definition to specify derivative.

− Change in ksdk_mqx_lib project and rebuild.

TM

External Use 73

KDS Example: Derivative Defined in project

TM

External Use 74

Derivative Details

• The symbol to use for derivative based on Kinetis part number, like

CPU_MK22FN512VLH12

• Change in the toolchain compiler preprocessor settings for the

library project ksdk_platform_lib

• KSDK already includes supported derivatives

− Can find all derivative options in
<KSDK_PATH> \platform\CMSIS\Include\device\fsl_device_registers.h

• Porting to a new family is not supported. Only derivatives.

− Full list of supported derivatives can be found in the Release Notes.

TM

External Use 75

Porting Board Configuration

• Each development board supported by KSDK has board

configuration files

• Found in <KSDK_PATH>/boards

• Contains board-specific details for KSDK

− Applications easily portable across different boards and devices

• These files should be reviewed and modified for custom hardware:

− board.h

− pin_mux.c and pin_mux.h

− gpio_pins.c and gpio_pins.h

− Hardware_init.c

TM

External Use 76

board.h file

• Specifies debug UART peripheral and pins

− For stdin/stdout functions, like printf()

• Mainly used for KSDK examples, specifying:

− Features available on board, like sensor for demos

− Peripheral instances for examples, like I2C0

− Pins for LEDs and buttons

• Custom port can also use for quick test of board using KSDK

example projects.

TM

External Use 77

KSDK Porting – Change Default UART

• Modify board.h to select the UART and baud rate to use

• Modify pin_mux.c to select the pins to use

TM

External Use 78

pin_mux.c and pin_mux.h

• Kinetis devices provide great flexibility in muxing signals

− Each digital port pin has up to 8 signals muxed on pin

− Some peripherals route same signals to multiple pins

• pin_mux.c:

− Functions to set pin mux options for all pins used on board

− Function for each peripheral type, like configure_can_pins()

• Hardware_init.c calls these functions in pin_mux.c during startup

TM

External Use 79

gpio_pins.c and gpio_pins.h

• KSDK uses pin configuration structures for each pin

− Pin configuration structures in gpio_pin.c, configures

 Input/output

Pull-up/pull-down enabled

Pin filtering

 Interrupt enabled/disabled

 Initial output polarity

Slew rate and drive strength setting

• gpio_pins.h declares

− pin names used in board

− PORT pin to use, like PTE0

TM

External Use 80

System Startup Files

• KSDK uses startup file per Kinetis derivative

− Called system_<MCU>.c/h, like system_MK64F12.h

− Located in <KSDK_PATH>\platform\startup\<MCU>

− SystemInit() in System_<MCU>.c called at startup

Disables watchdog

 Initializes System Clocks

• System Clock initialization controlled by macros in

system_<MCU>.h

− Generated by Processor Expert, can be edited manually

− Can easily change clock configuration just using this file

TM

External Use 81

USB Hardware Porting

• USB stacks have hardware-specific file

− Device stack

\usb\usb_core\device\sources\bsp\<Board>\usb_dev_bsp.c

− Host stack \usb\usb_core\host\sources\bsp\<Board>\usb_host_bsp.c

− OTG stack \usb\usb_core\otg\sources\bsp\<Board>\usb_otg_bsp.c

• Modify this file if USB clock source or divider need to change

TM

External Use 82

KSDK Project Creation

• Two methods for KSDK Project Creation

− Use Kinetis Design Studio/Processor Expert New Project Wizard

− Copy existing example project

• KDS/PEx creation covered in next section and online example

here: https://community.freescale.com/docs/DOC-102612

• Simple script to copy an example project and give it a new name

can be found here: https://community.freescale.com/docs/DOC-

102547

• More full-featured project creation application being developed

https://community.freescale.com/docs/DOC-102612
https://community.freescale.com/docs/DOC-102547

TM

External Use 83

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 84

KSDK with RTOS

TM

External Use 85

There are lots of reasons

to use an RTOS…..
For Embedded Systems

that need…
• Determinism and Low Latency

- Systems based on an RTOS verses a super-

loop are more stable with lower latency

• Concurrent Connectivity

- Multiple communication interfaces are easier

to manage with an RTOS

- Pre-integrated protocols for TCP/IP, USB,

File System, Wi-Fi, etc, enable sophisticated

and connected applications

• Ease of Development

- Board Support Packages (BSPs) available

with drivers, middleware, and protocols,

mean easier and faster development

• Portability and Scalability

- Standard APIs enable high portability of

application code across many MCUs

- Configurable features to scale capabilities to

optimize for performance or lower overhead

• Maintainability and Stability

- New features can be added without affecting

system timing and higher priority functions

Use an RTOS!

• Kinetis SDK provides

an Operating System

Abstraction (OSA) layer

to allow RTOS kernels

to use KSDK BSP and

Drivers

TM

External Use 86

Kinetis SDK RTOS Abstraction

• Common Interface for RTOS/Bare Metal

− Application

− Kinetis SDK

RTOS Abstraction Layer

MQX uCOS-II/IIIFreeRTOS

Kinetis SDK

CMSIS

RTOS
Bare Metal

Declarations Tasks

Events
Synchronization

Locking Message

Queues

Memory

TM

External Use 87

KSDK and RTOS Applications Structure

Kinetis SDK

Application

HAL

SDK Startup Code
Processor Specific Code

Drivers and OSA

Classic MQX RTOS

Application

Kernel Code,

Scheduler, OS Services

and Drivers

(PSP and BSP)

Optional Libraries

(Stacks)

*

* Only a few high level drivers provided by

MQX RTOS for Kinetis SDK. Applications

generally use Kinetis SDK drivers directly.

TM

External Use 88

MQX for Kinetis SDK Application Structure

• A final application project consists of

− A subset of MQX libraries

 MQX software scheduler

 Kernel code

− KSDK libraries

 KSDK drivers

 Hardware Abstraction Layer (HAL)

 Operating System Abstraction (OSA)

Freescale MQX RTOS + KSDK

Application

MQX Kernel Code, Scheduler, OS

Services and Optional Libraries

SDK Startup code

HAL

Drivers and OSA

TM

External Use 89

Classic MQX vs MQX for KSDK

• Is a full-featured complimentary

Real-Time Operating System

− Developed by Freescale as a software

solution for Freescale devices

− Provides real-time performance within a

small, configurable footprint

• Includes

− MQX™ Kernel (PSP)

− Board Support Package (BSP)

− Implements its own peripheral drivers

− TCP/IP stack (RTCS)

− Embedded MS-DOS file system (MFS)

− USB host/device stack

Classic MQX RTOS

• Is the latest evolution of the

Freescale MQX™ Software

Solutions for Kinetis MCUs

• It is built on top of Kinetis SDK

• Leverages the flexible and

extendable peripheral drivers found

within the KSDK.

• The application developer can use

KSDK libraries and device drivers

together with Freescale the MQX

RTOS core.

MQX for KSDK

TM

External Use 90

Evolution of MQX RTOS

Freescale MQX™ RTOS

Freescale MQX™ Lite RTOS

Freescale MQX™ RTOS for Kinetis SDK

Freescale MQX™ RTOS

Processor Expert Component

Lite Configuration of Kernel
Kinetis K, L, E

Traditional Source Code

Full Featured Releases of

Kernel Stacks, & Middleware
Kinetis K, Vybrid, CF, Power

Maintenance for Legacy Devices

Kinetis K, Vybrid, CF, Power

Available for devices supported by Kinetis SDK

Available as source code w/ optional Processor Expert

New Kinetis K, L, E, W, M, V…

Learn more at: www.freescale.com/mqx

http://www.freescale.com/mqx

TM

External Use 91

Delivery

Mechanism

Traditional installer with full

source

Processor Expert (PEx)

component

Traditional installer with full

source

I/O Drivers

Included

MQX peripheral drivers;

PEx driver optional

PEx drivers Kinetis SDK HAL & reference

drivers

Configurability User selects needed services

from full or lightweight versions

Reduced services only;

lightweight options only

User selects needed services

from full or lightweight versions

Components Kernel, TCP/IP stack, USB stack,

File System, middleware.

Includes own peripheral drivers.

Kernel only.

Peripheral drivers provided by

PEx.

Kernel, TCP/IP stack, USB stack,

File System, middleware.

Peripheral drivers provided by

Kinetis SDK.

Availability Select Kinetis K Series, Vybrid,

select ColdFire, select Power

Architecture

Kinetis L Series, Kinetis K Series,

select Kinetis E Series

Kinetis MCUs supported by

Kinetis SDK

Cost Free* Free* Free*

* Commercial support and some add-on

software packages are extra

Full-featured, modular and

scalable, market proven, widely

used

MQX RTOS 4.x

Very light MQX kernel for

Processor Expert. Easy upward

code migration to MQX

MQX Lite RTOS

MQX RTOS in a more flexible

and extendible platform for

Kinetis MCUs

MQX RTOS

for Kinetis SDK

Learn more at: www.freescale.com/mqx

Freescale MQX Version Comparison

http://www.freescale.com/mqx

TM

External Use 92

Using KSDK Drivers

• Using KSDK drivers with MQX is the same as using them without

an RTOS

• Unlike classic MQX, no driver initialization (beyond pin muxing)

occurs during bootup.

• Driver API is in KSDK documentation

− C:\Freescale\KSDK_1.1.0\doc\Kinetis SDK API Reference

Manual.pdf

TM

External Use 93

MQX vs KSDK Driver Comparison Example: I2C

• KSDK Drivers are very different than classic MQX Drivers

• Code to initialize I2C and do simple read of accelerometer data

MQX for KSDK Classic MQX

• I2C_DRV_MasterInit(0, &fxos8700_master);

• I2C_DRV_MasterReceiveDataBlocking(0,&slave,

®, 1,receiveBuff, 1, 200);

• fd = fopen ("i2c1:", NULL);

• ioctl (fd, IO_IOCTL_I2C_SET_MASTER_MODE,

NULL);

• ioctl (fd,

IO_IOCTL_I2C_SET_DESTINATION_ADDRESS

, &i2c_device_address);

• fwrite (®, 1, 1, fd);

• fflush (fd);

• ioctl (fd, IO_IOCTL_I2C_REPEATED_START,

NULL);

• ioctl (fd, IO_IOCTL_I2C_SET_RX_REQUEST,

&n);

• fread (&recv_buffer, 1, n, fd);

• fflush (fd);

• ioctl (fd, IO_IOCTL_I2C_STOP, NULL);

TM

External Use 94

Freescale MQX RTOS for Kinetis SDK

Product Features

• Now with MQX Lite Configuration

• All the components of MQX Software Solutions

available pre-integrated and tested with Kinetis

Software Development Kit (SDK)

• MQX RTOS

• MQX Real Time Comm. Suite (TCP/IP)

• MQX File System

• MQX USB Host/Device Stack

• Leverages Kinetis SDK peripheral drivers

• Builds on common software framework for Kinetis

MCUs to enhance flexibility and extendibility

Essential extensions of Kinetis
SDK framework for connected
and intelligent embedded
products

Powerful MQX RTOS, stacks,
and middleware built on top of
Kinetis SDK

+
S

o
ft

w
a

re
 a

n
d

 H
a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

v1.2

April-28

Download at: www.freescale.com/mqx/ksdk

As of Kinetis SDK v1.1, MQX

RTOS, stacks, and middleware are

available in the Kinetis SDK

http://www.freescale.com/mqx/ksdk

TM

External Use 95

Kinetis SDK Block Diagram

MQX RTOS for Kinetis SDK

Kinetis SDK

Kinetis SDK

apps

doc

middleware

platform

rtos

usb

lib

tools

file system

tcpip

fatfs

mfs

lwip

rtcs

drivers

freertos

mqx

ucosii

ucosiii

TM

External Use 96

MQX RTOS for Kinetis SDK 1.2 Supported

Devices

• Complimentary BSPs covering

devices supported by the Kinetis

Software Development Kit (SDK)

KINETIS
FRDM-KL46Z

FRDM-K22F
FRDM-K64F
FRDM-KL25Z NEW
FRDM-KL26Z NEW
FRDM-KL27Z NEW
FRDM-KL43Z NEW
FRDM-KL46Z
FRDM-KW24 NEW
MRB-KW01 NEW
TWR-K21D50M NEW
TWR-K21F120M NEW
TWR-K22F120M
TWR-K24F120M
TWR-K60D100M
TWR-K64F120M
TWR-K65F180M NEW
TWR-KL43Z48M NEW
TWR-KV10Z32 NEW
TWR-KV31F120M
TWR-KV46F150M
TWR-KW24D512 NEW
USB-KW24D512NEW

MQX RTOS for KSDK 1.2

v1.2

April-28

TM

External Use 97

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 98

Kinetis Unified USB Stack

TM

External Use 99

Freescale USB Stack

Product Features

• USB stack with all sources provided

• Low footprint: down to 7 KBytes Flash and 2.5

KBytes RAM

• Integrated with Kinetis SDK and MQX 4.2

• Device classes

• HID, CDC, PHDC, MSC, AUDIO

• Host classes

• HID, CDC, PHDC, MSC, AUDIO

• USB OTG

• HNP, SRP

• New 'unified' stack combines MQX and Bare Metal

stack

• Support for IAR, Keil, Kinetis Design Studio, and

GNU/GCC tool chains.

Different USB host and device
classes, both bare metal, RTOS
and integrated with Kinetis SDK.

Enable USB applications with
Freescale Devices.

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

Learn more at: www.freescale.com/usb

http://www.freescale.com/usb

TM

External Use 100

Architecture

Applications Mouse Medical USB Serial Storage Audio

Class Driver PHDCHID CDC MSC AUDIO

Peripheral Driver Common Peripheral Layer

Controller driver Full speed Controller driver High speed controller driver

HW Full speed Controller driver High speed controller driver

HAL Full speed Controller driver High speed controller driver

OSA

TM

External Use 101

KSDK USB Folder Structure

TM

External Use 102

USB Examples

• The USB examples that come with KSDK require 2 libraries to be

built first:

− KSDK Platform Library

− USB Host or Device Library (depending on if example is host or device)

• As an example, to run the Device HID Mouse example on FRDM-

K22F with KDS would need to import and compile:

− <ksdk_dir>\lib\ksdk_platform_lib\kds\K22F51212

− <ksdk_dir>\usb\usb_core\device\build\kds\usbd_sdk_frdmk22f120m_bm

− <ksdk_dir>\usb\example\device\hid\hid_mouse\sdk\kds\dev_hid_mouse_frdmk22

f120m_bm

TM

External Use 103

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 104

Processor Expert + KSDK

TM

External Use 105

Freescale Processor Expert Software

Product Features

• Standalone and integrated for

• Eclipse based IDE's (KDS, Atollic)

• Freescale CodeWarrior

• IAR Embedded Workbench

• Keil MDK

• Easy configuration of Kinetis SDK with Processor
Expert Components

• Supports Kinetis, Vybrid, S08, S12, S12Z, ColdFire,
DSC and Power Architecture™ processprs with
reusable software components

• Knowledge base of pins, registers, muxing, clocks
and dependencies

• Initialization and driver code generation with design
time consistency checking

• Bare Metal and RTOS drivers

• On-chip and Off-chip Device Drivers

• Middleware and Stacks: RTOS, TSS libraries and
communication stacks

• Component Development Environment (CDE) to
create and distribute own components

Master complex peripherals with a
few mouse clicks, without the
need to read thousands of data
sheet pages.

Create, configure, generate
software and drivers for
Freescale microcontrollers.

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

Learn more at: www.freescale.com/ProcessorExpert

http://www.freescale.com/ProcessorExpert

TM

External Use 106

Processor Expert Software

• A development system to create, configure,

optimize, migrate, and deliver software and

configuration details for Freescale silicon.

Initialization
CMSIS Headers

CMSIS startup code

Reset register values

Vector Table setup

Peripheral Initialization

Pin Muxing initialization

Device Driver Components
RTOS adaptive drivers

Low power capabilities

Configuration integrated

NOW – Kinetis Platform SDK Drivers supported

Configuration
Reset configuration

DDR configure/validate

Pin Muxing

Device Tree Editor

Uboot configuration

API Factory
Script-based build server

CMSIS Header files

3rd Party Tools NPI support

Detailed Register files

Si Validation scripts

[Used by Common Register Repository initiative]

Processor

Knowledge base
>1000 Processors Supported

TM

External Use 107

Kinetis SDK and Processor Expert

• Processor Expert is a complimentary PC-
hosted software configuration tool (Eclipse
plugin)

• Processor Expert (PEx) provides a time-saving
option for software configuration through a
graphical user interface (GUI)

• Board configuration and driver tuning tasks
include:

− Optional generation of low-level device
initialization code for post-reset configuration

− Pin Muxing tools to generate pin muxing
functions

− Components based on Kinetis SDK drivers
Users configure the SoC and Peripherals in a GUI

 PEx creates the configuration data structures for
driver config and init

TM

External Use 108

Processor Expert with KSDK

• Processor Expert now uses the KSDK drivers and HAL to

implement the automatically generated code

− Only available for devices supported by KSDK

− Older devices will still use the classic PEx Logical Device Drivers (LDDs)

• KSDK-based driver code is not compatible with classic PEx LDDs

− PEx GUI interface will behave similarly

− Configuration options may change

− Code generated will be significantly different

TM

External Use 109

Creating a New Processor Expert Project for non-KSDK

supported devices

• Devices not supported by Kinetis SDK will use the classic PEx

LDDs

• The KSDK checkbox will be grayed out in the New Project wizard.

TM

External Use 110

Creating a New Processor Expert Project for KSDK

Supported Devices

• Devices supported by KSDK will use the Kinetis SDK drivers.

• The KSDK checkbox will be available for these devices

− If Kinetis SDK is checked, PEx will use KSDK drivers and HAL.

− If Kinetis SDK is not checked, PEx will use classic LDDs for drivers (if available)

• Most new devices will be forced to have the KSDK checked in order to use
PEx

− This is because LDD versions have not been created for those new devices. The
future is KSDK drivers/HAL option only.

TM

External Use 111

Creating a New Processor Expert Project – Linked vs

Standalone

• Under the Processor Expert options when creating a project, you

can select Linked or Standalone

• Linked:

− Project will link to files in the KSDK installation path

− Any modifications to KSDK source will affect all other projects

− Good if need to create multiple projects that have same codebase

• Standalone:

− The PEx wizard will copy necessary KSDK files into the project directory

− Modifications to KSDK source in that directory won’t affect other projects

− Will take more hard drive space

TM

External Use 112

Lab 2: PEx Device Initialization +

SDK Drivers

TM

External Use 113

Lab 2 Overview

Objective:
In this lab we will create a KDS Project with Processor Expert support and use the SDK for peripheral

drivers. We will add several components and import a source file with implementation code.

Lab Flow:

Create a new Processor Expert + SDK Project in KDS

Add and Configure Components

Generate Code

Add Code to application

Build

Download Application to Target MCU

Debug

Required Hardware and Software:

FRDM-K22F Board configured with CMSIS-DAP Debugger

Micro USB Cable

Kinetis Design Studio (v2.0 or newer)

Kinetis Software Development Kit (v1.1.0)

TM

External Use 114

Project Definition

Blink the Green LED
Interrupt timer: set at 10 Hz

Turn on Red LED and Disable Timer
Switch 2: Press to turn on; Disable Timer

Restart Timer; Turn off Red LED
Switch 3: Press to restart the Timer

Hardware: FRDM-K22F

Clock Configuration
Internal PLL: set to 120 MHz
Bus Clock: 60 MHz
Flash Clock: 20 MHz

Pin Muxing
GPIO; UART

TM

External Use 115

Create a New Project to Blink the LEDs

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard

− Configure Components with the Component Inspector

− Use Processor Expert Components

− Add Code

− Build the project

− Test the application’s functionality

• The lab uses the FRDM-K22F board

• The application will blink an LED periodically, and turn on/off

blinking LED with push buttons.

Next up!

TM

External Use 116

Lab 2 Notes

• If you can’t find a field, make sure you’ve scrolled all the way down

in the window

• If lose track of a Processor Expert Window and want to reset the

view, click on “Processor Expert Hide Views” and then

“Processor Expert Show Views” from the KDS menu bar

− Also can use “Windows Reset Perspective”

TM

External Use 117

Lab 2 Summary

• Using Processor Expert is an easy way to configure a Kinetis MCU

• Adding SDK peripheral drivers with Processor Expert takes care of

all of the “under the hood” stuff and properly includes files.

TM

External Use 118

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 119

Summary

TM

External Use 120

Session Summary

• You should now be able to:

− Understand how Kinetis SDK works, how to get started writing

applications, and how the RTOS and USB additions can make

application creation easier

− Create a new Processor Expert project and understand how it integrates

in with KSDK

− Use the knowledge and hands-on experience you have gained to quickly

create applications using Freescale Kinetis MCUs

TM

External Use 121

Additional Resources

Community
https://community.freescale.com/community/kinetis/kinetis-software-development-kit
https://community.freescale.com/community/kinetis

Web
www.freescale.com/ksdk
www.freescale.com/kds
www.freescale.com/freedom
www.freescale.com/mqx
www.freescale.com/usb
www.freescale.com/kboot

https://community.freescale.com/community/kinetis
https://community.freescale.com/community/kinetis
http://www.freescale.com/kboot
http://www.freescale.com/kboot
http://www.freescale.com/kboot
http://www.freescale.com/kboot
http://www.freescale.com/kboot
http://www.freescale.com/kboot

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

