
External Use

TM

SDK Quick Start and Demo

M A R . 2 0 1 5

Jerry Zeng | Software Manager

TM

External Use 1

Agenda

Introduction to the Kinetis Software Development Kit (SDK)

• Oveview & Architecture

• Source review

• Stack and Middleware Integration

• Configuration Using Processor Expert

• Roadmap

• Release Content

• Kinetis SDK for MAPS Platform

TM

External Use 2

Initialization

and configuration;

HW abstraction

layers; peripheral

drivers

Wide range of

software including

touch solutions,

graphics suites,

utilities, etc.

Libraries
(DSP, Math, Encryption)S

o
ft

w
a
re

 a
n

d
 H

a
rd

w
a
re

E
v
a
lu

a
ti

o
n

 &
 D

e
v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a
re

RTOS

Bootloader

A
p

p
li
c
a

ti
o

n

S
p

e
c
if

ic

HAL & Drivers

MCU Hardware

Customer Application

Real-time

operating systems;

e.g. MQX, uC/OS,

FreeRTOS,

uVelocity, and

more

e.g.

Audio Solutions,

Motor Control,

Wireless Charging

Pre-compiled

software such as

HW accelerator

drivers, C libraries,

and proprietary

algorithms

Communication

stacks including

TCP/IPv4/IPv6,

ZigBee, BLE,

WIFI, and

USB

HW eval kits,

compilers, IDEs,

GUI layout editors,

data profiling and

visualization,

etc.

Microcontroller Software Taxonomy

TM

External Use 3

Libraries
(DSP, Math, Encryption)S

o
ft

w
a
re

 a
n

d
 H

a
rd

w
a
re

E
v
a
lu

a
ti

o
n

 &
 D

e
v
 T

o
o

ls

S
ta

c
k

s
(T

C
P

/I
P

,
U

S
B

)

M
id

d
le

w
a
re

RTOS

Bootloader

A
p

p
li
c
a

ti
o

n
 S

p
e
c
if

ic

HAL & Drivers

MCU Hardware

Customer Application

Growing Importance of Enablement

Average MCU

Flash size grew x8

in the last decade

53% of

projects are

delayed

>3months due

to FIRMWARE

+

Firmware is MCU developers

BIGGEST pain point

+

FIRMWARE now

accounts for

83% of MCU

implementation

cost

TM

External Use 4

Kinetis Software Development Kit (SDK)

Product Features

• Open source Hardware Abstraction Layer
(HAL) provides APIs for all Kinetis
hardware resources

• BSD-licensed set of peripheral drivers with
easy-to-use C-language APIs

• Comprehensive HAL and driver usage
examples and sample applications for
RTOS and bare-metal.

• CMSIS-CORE compatible startup and
drivers plus CMSIS-DSP library and
examples

• RTOS Abstraction Layer (OSA) with
support for Freescale MQX, FreeRTOS,
Micrium uC/OS, bare-metal and more

• Integrates USB and TCP/IP stacks, touch
sensing software, encryption and
math/DSP libraries, and more

• Support for multiple toolchains including
GNU GCC, IAR, Keil, and Kinetis Design
Studio

• Integrated with Processor Expert

The OSI logo trademark is the trademark of Open Source Initiative.

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

Learn more at: www.freescale.com/KSDK

A complete software framework for
developing applications across all
Kinetis MCUs

SDK

HAL, peripheral drivers, libraries,
middleware, utilities, and usage
examples; delivered in C source

http://www.freescale.com/KSDK

TM

External Use 5

Kinetis Platform SDK Overview

• Hardware Abstraction Layer

− Abstracted IP level Basic operations

− Useable low level drivers

• System Services

− Clock Manager, Interrupt manager, Low
power manager, HW timer…

− Can be used with HAL, PD and
Application

• FSL Peripheral Drivers

− Use case driven high level drivers

• OS Abstraction Layer (OSA)

− Adapt to different OS (MQX, FreeRTOS
and uC/OS) through corresponding OSA

• BSP & Configuration

− Board Configuration, Pin Muxing, GPIO
Configuration

− Can be configured using Processor
Expert

• Stacks & Middle Wares

− USB stack, TCP/IP stack, Connectivity

− Audio, Graphics, more...

TM

External Use 6

Cortex Microcontroller Software Interface Standard

(CMSIS)

• Software layers for all ARM® Cortex®-M processor based devices

− CMSIS-CORE: API for Cortex-M processor and core peripherals

− CMSIS-DSP : DSP library with over 60 functions for Cortex-M

− CMSIS-SVD : XML system view description for MCU peripherals

− CMSIS-RTOS : API for RTOS integration

− CMSIS-DAP : Standardize firmware for connecting to CoreSight DAP

− CMSIS-Driver : defines generic peripheral driver interface for middleware

TM

External Use 7

CMSIS-CORE Compliant Header Files with IP Extensions

• The Kinetis SDK does

− use CMSIS-CORE API for peripheral access C macros, interrupt handler

naming, etc. It also extends the peripheral headers to include

 Easier access to registers

 Use bit-banding where possible

− provide the CMSIS-DSP lib and source (for GCC, built-into other tools) and

usage example

• The Kinetis SDK does not

− provide a CMSIS-Driver compatible layer—this may be considered in a

future release

TM

External Use 8

Peripheral IP Feature Header Files

• The Kinetis SDK uses “feature header files” to define IP specific features

• Helps abstract the drivers and provide common code base for variety of
different IP or IP configurations

• Example:

fsl_uart_features.h
#if defined(CPU_MK10DN512VLK10) || defined(CPU_MK10DN512VLL10)...

#define FSL_FEATURE_UART_HAS_LOW_POWER_UART_SUPPORT (0)

fsl_uart_hal_transfer_functions.c
void uart_hal_getchar(uint32_t uartInstance, uint8_t *readData)

{

#if FSL_FEATURE_UART_HAS_LOW_POWER_UART_SUPPORT

…

#endif

…

}

TM

External Use 9

Hardware Abstraction Layer

• Licensed under BSD 3-clause open-source license

• Provides simple, stateless drivers with an API encapsulating the
functions of Kinetis peripherals

• The layer closest to the hardware in our layered driver approach

• Designed to be run-time configurable by taking user defined
configuration data through “init” function call

• Taking UART as an example:

− HAL offers low-level init and byte transfer operations

 Init, set baud rate, set parity, set stop bit, read byte, write byte…

− HAL provides both blocking and non-blocking data transfers

 non-blocking write byte used by interrupt driven Peripheral Driver

 block write (polling) will make sure the byte can actually write to the data FIFO

TM

External Use 10

Hardware Abstraction Layer

Example API for UART

• Init:

− void UART_HAL_Init(uint32_t baseAddr)

• Enable Tx:

− void UART_HAL_EnableTransmitter(uint32_t baseAddr)

• Baud configure:

− uart_status_t UART_HAL_SetBaudRate(uint32_t baseAddr, uint32_t
sourceClockInHz, uint32_t baudRate)

• Byte write:

− void UART_HAL_Putchar(uint32_t baseAddr, uint8_t data)

• Status check:

− bool UART_HAL_GetStatusFlag(uint32_t baseAddr, uart_status_flag_t
statusFlag)

TM

External Use 11

System Services

• Commonly used services

− Hardware / unified timer can be running on any of the timers in SoC

− Centralized Clock Manager

− Centralized Interrupt Manager

− Low Power Manager

• Can be built using SoC header files and HAL components

• Can be used by Peripheral Drivers or User Application

− User can just use HAL and System Services to build applications

− Alternatively, the Peripheral Drivers utilize the System Services and

users do not need to use system services

• Can be used by OSA

TM

External Use 12

Peripheral Drivers

• Open-source, high-level peripheral drivers

• Built on top of the HAL layer

• May utilize one or more HAL drivers and can take advantage of System
Services

− Shielded from the underlying hardware details by the HAL and System Services

• Drivers may be used as-is or as a reference for creating custom drivers

• Possibly combine one or multiple HALs and system services for a use case
driven high level driver

• Peripheral Drivers are run-time configurable using configuration data
structures passed into init()

• Examples:
 UART: PD can be built on top of the HAL to deal with interrupt driven buffer level of operation

 Composite drivers: ADC driven by using PDB

NOTE: we do not encourage mixing the usage of HAL and Peripheral Drivers. The application
should either using HAL, or PD, but not both at the same time.

TM

External Use 13

Peripheral Drivers

Example PD API for UART

• Init

− uart_status_t UART_DRV_Init(uint32_t instance,

uart_state_t * uartStatePtr,

const uart_user_config_t * uartUserConfig);

• Send

− uart_status_t UART_DRV_SendData(uint32_t instance,

const uint8_t * txBuff, uint32_t txSize);

• Status
− uart_status_t UART_DRV_GetTransmitStatus(uint32_t instance,

uint32_t * bytesRemaining);

TM

External Use 14

OSA: Real-Time Operating System Abstraction

• Kinetis SDK provides an operating system abstraction (OSA) layer

for adapting applications for use with a real time operating system

(RTOS) or bare metal (no RTOS) applications.

• OSAs are provided for:

− Freescale MQX™ RTOS

− FreeRTOS

− Micrium uC/OS-II

− Micrium uC/OS-III

− bare-metal (no RTOS) RTOS abstraction layer bridges KSDK to work

with or without RTOS

• Supports key RTOS services

− Semaphores, Mutex, Memory Management, Event, Task, Message ..

TM

External Use 15

Top 3 MCU Real-Time Operating Systems

#1

#2

#3

Freescale MQX

65K+ Downloads

19K+ Unique Users

Top RTOSes

1. FreeRTOS

2. Micrium uC/OS-II & III

3. Freescale MQX

TM

External Use 16

OSA: Real-Time Operating System Abstraction

• Task

− OSA_TaskCreate(), OSA_TaskDestroy(), OSA_TimeDelay()

• Semaphore

− OSA_SemaCreate(), OSA_SemaWait(), OSA_SemaPost(),
OSA_SemaDestroy()

• Mutex
− OSA_MutexCreate(), OSA_MutexLock(), OSA_MutexUnlock(),

OSA_MutexDestroy()

• Events

− OSA_EventCreate(), OSA_EventWait(), OSA_EventSet(),
OSA_EventClear(), OSA_EventDestroy()

• Message Queue

− OSA_MsgQCreate(), OSA_MsgQPut(), OSA_MsgQGet(),
OSA_MsgQDestroy()

• Memory
− OSA_MemAlloc(), OSA_MemFree()

TM

External Use 17

Middleware and Stack Integration

• Middleware Integration

− runs on top of the Kinetis SDK drivers

− RTOS abstraction addresses the usage with or without RTOS

• Stacks and middleware in source or object formats including:

− USB Stack: comprehensive device and host stack with extensive USB class
support

− CMSIS DSP: a suite of common signal processing functions

− Crypto software utilizing the mmCAU hardware acceleration

− FatFs, a FAT file system for small embedded systems unit

− TCP/IP stack - lwIP

− Freescale MQX™ Real-Time TCP/IP Communication Suite (RTCS)

− Freescale MQX™ File System (MFS)

• More to come…

TM

External Use 18

Board Configuration and Support

• Pin Muxing

− Kinetis SDK driver layer does not handle pin muxing

− It is handled at the board configuration level

− Pin muxing functions can be generated using Pin Muxing tool in PEx

• Board Specific configuration

− GPIO configuration

− Hardware Initialization code

− Function to initialize serial console for debug purposes.

• Drivers for common devices included in our evaluation boards
provided for building demo applications

− ENET PHY

− Accelerometer

− Codec

TM

External Use 19

Processor Expert Software

• A development system to create, configure,

optimize, migrate, and deliver software and

configuration details for Freescale silicon.

Initialization
CMSIS Headers

CMSIS startup code

Reset register values

Vector Table setup

Peripheral Initialization

Pin Muxing initialization

Device Driver Components
RTOS adaptive drivers

Low power capabilities

Configuration integrated

NOW – Kinetis Platform SDK Drivers supported

Configuration
Reset configuration

DDR configure/validate

Pin Muxing

Device Tree Editor

Uboot configuration

API Factory
Script-based build server

CMSIS Header files

3rd Party Tools NPI support

Detailed Register files

Si Validation scripts

[Used by Common Register Repository initiative]

Processor

Knowledge base
>1000 Processors Supported

TM

External Use 20

Kinetis SDK and Processor Expert

• Processor Expert is a complimentary PC-hosted
software configuration tool (Eclipse plugin)

• Processor Expert (PEx) provides a time-saving
option for software configuration through a
graphical user interface (GUI)

• Board configuration and driver tuning tasks
include:

− Optional generation of low-level device
initialization code for post-reset configuration

− Pin Muxing tools to generate pin muxing
functions

− Components based on Kinetis SDK drivers

 Users configure the SoC and Peripherals in a GUI

 PEx creates the configuration data structures for
driver config and init

TM

External Use 21

Demo Applications and Tool Chain Support

• Kinetis SDK includes software examples demonstrating the usage
of the HAL, Peripheral Drivers, supported RTOS, and integrated
middle wares

− The usage of HAL, System Services and Peripheral Drivers

− Demos work with or without RTOSs

− Demos to assemble a typical application or solution for specified vertical
markets

• Tool chains supported:

− IAR Embedded Workbench

− GCC from ARM Embedded project with makefiles

− ARM Keil MDK

− Kinetis Design Studio

− Atollic TrueSTUDIO*

TM

External Use 22

Kinetis IDE Options

Green Hills MULTI

• Complete & integrated software and hardware

environment with advanced multicore debugger

• Industry first TimeMachine trace debugging & profiler

• EEMBC certified top performing C/C++ compilers

Keil Microcontroller Development Kit

• Specifically designed for microcontroller applications,

easy to learn and use, yet powerful enough for the most

demanding embedded applications

• ARM C/C++ build toolchain and Execution Profiler and

Performance Analyzer enable highly optimized programs

• Complete Code Coverage information about your

program's execution

IAR Embedded Workbench

• A powerful and reliable IDE designed for ease of use with

outstanding compiler optimizations for size and speed

• The broadest Freescale ARM/Cortex MCU offering with

dedicated versions available with functional safety

certification

• Support for multi-core, low power debugging, trace, ...

Atollic TrueSTUDIO

• Professional ECLIPSE/GNU based IDE with a MISRA-C

checker, code complexity analysis and source code

review features.

• Advanced RTOS-aware debugger with

ETM/ETB/SWV/ITM tracing, live variable watch view and

fault analyzer. Dual-core and multi-processor debugging.

• Strong support for software engineering, workflow

management, team collaboration and improved software

quality.

Kinetis Design Studio

• Complimentary basic capability integrated development

environment (IDE) for Kinetis MCUs

• Eclipse and GCC-based IDE for C/C++ editing, compiling

and debugging

mbed Development Platforms

• The fastest way to get started with Kinetis MCUs

• Online project management and build tools – no

installation required; option to export to traditional IDEs

• Includes comprehensive set of drivers, stacks and

middleware with a large community of developers.

Additional Ecosystem Partners:

Complimentary Solutions:

Featured IDEs:

SDK 1.0-GA SDK 1.1-GA

http://www.ghs.com/products/kinetis.html
http://www.keil.com/freescale/
http://www.iar.com/kinetis/
http://www.atollic.com/index.php/partnerfreescale
http://www.freescale.com/kds
http://www.freescale.com/mbed

TM

External Use 23

Kinetis SDK 2014/2015 Release Schedule

1.0 GA – 7/29/2014

• Support for K64, K63, K24, K22,
KV31.

• Support IAR, Keil, KDS, GNU GCC

Stand-alone releases

•Based on previous GA release

•Adds support for new Kinetis NPIs
according to their launch schedule.

1.2 GA – April 2015

• Add building block level
examples for IPs.

• Add more IP drivers.

• Add support for KL43,
K20_1M and more

1.1 GA – 19th Dec 2014

• Support for K64, K63, K24, KL03,

KV10,KL46, K60, KV31, K22F, KV30.

• Support IAR, Keil, KDS, ATOLLIC,

GNU GCC

TM

External Use 24

Kinetis SDK 1.0 Directory Structure

− Board configurations

− Demo applications

− Integration guides, RM, User’s Guides

− File System middleware

− libraries for each toolchain and board

− Common make files used for compiling with GCC

− Kinetis platform source

− CMSIS headers and DSP source/libs

− Peripheral Drivers

− Hardware Abstraction

− Linker files

− OS abstraction layer code

− CMSIS startup

− System services

− Debug utilities

− RTOS kernel

− TCP/IP stack

− Eclipse KSDK component update for KDS & MQX plugin for IDE

− USB stack

TM

External Use 25

Kinetis SDK 1.1 Directory Structure

─ Board specific files

─ Demo applications and projects

─ Integration guides, RM, User’s Guide

─ File System middleware

─ Library projects for supported SoCs

─ Kinetis Platform Source

─ CMSIS header, extension header and DSP Lib/Source codes

─ Composite Drivers

─ Peripheral Drivers

─ Hardware abstractions

─ Linker files

─ OSA files

─ CMSIS startup codes

─ System service

─ Debug utilities

─ RTOS source codes

─ TCP/IP stack.

─ Processor expert support and other tools

─ Freescale new unified USB stack

─ Shell and standard library

TM

External Use 26

Kinetis SDK for MAPS Platform

• Customized software based on Kinetis SDK to support MAPS

Platform, specifically for China customers

• Based on Kinetis SDK 1.0 for now, will upgrade to future Kinetis SDK

version periodically

• Difference comparing to Kinetis SDK

− Clean code only for particular SoC

− Chinese document for Release Notes and HW / SW User Guide

− Only support IAR / Keil, No GCC toolchain support for now

− No Processor Expert Service Pack

− Small package size

• K64 platform supported, more to come…

TM

External Use 27

Q&A

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

