
www.iar.com

Keeping Safe at C

IAR Systems, Shanghai

ryan.sheng@iar.com

www.iar.com

• Introduction of IAR Systems

• Functional Safety Certificate

• C: Safe or Not

• C-STAT: Static Code Analysis

• C-RUN: Runtime Code Analysis

Agenda

www.iar.com

Introduction of IAR Systems

www.iar.com

IAR Systems

• Established in 1983

• Headquarter: Uppsala, Sweden

• 170+ employees

• Support for 10,000+ devices

• 3000+ ARM devices

• A world-leading embedded development tools vendor

• Main products

• IAR Embedded Workbench: C/C++ Compiler & Debugger Tools

• IAR visualSTATE: State-Machine Modeling & Software Design Tools

• IAR I-jet / I-scope / JTAGjet: Debugging & Trace Probes

• China office

• Shanghai, 021-63758658

www.iar.com

Strategic collaboration with Freescale

• Long partnership with Freescale

• Initiated close cooperation

around HC12 & S12

• EWCF: released on 2007

• EWS08: released on 2008

• EWARM is the most widely

used commercial tool chain

for ARM-based processors

• Expand the Freescale ecosystem

• IAR Embedded Workbench

• EWHCS12: HC12 & S12 MCU

• EWCF: ColdFire & ColdFire+ MCU/MPU

• EWS08: S08 MCU

• EWARM: Kinetis, i.MX, Vybrid, MC1322x, …

www.iar.com

IAR Embedded Workbench for ARM

IDE

IAR Embedded Workbench IDE

IDE tools

Editor

Project

manager

Build tools

IAR C/C++

Compiler

Linker

Assember

IAR C-SPY

Debugger

Simulator

driver

Power

debugging

RTOS plug-ins

Hardware

system drivers

Librarian

Library builder

Editors

Source code

control systems

Configuration tools

visualSTATE

www.iar.com

EWARM: Product variants

• EWARM -- Standard edition

• EWARM-BL -- Baseline edition

•256KB code size limitation

• EWARM-CM -- Cortex-M edition

•Only for Cortex-M0/M0+/M1/M3/M4/M7

• EWARM-CM0 -- CM0/CM1 only

•Only for Cortex-M0/M0+/M1

• EWARMFS -- Functional Safety

•IEC-61508, ISO-26262 and EN-50128

www.iar.com

Functional Safety Certificate

www.iar.com

What is Functional Safety?

• Simply put, it means that the overall safety of an

embedded system depends on the equipment operating

correctly in response to its inputs.

•This includes erroneous inputs

•Also includes hardware failures

• Traditionally, only safety-critical industries have been

interested in functional safety.

•Automotive

•Avionics

•Medical

• However, other industries are also seeing the benefit.

www.iar.com

Functional Safety Standards

www.iar.com

The IEC 61508 Standard

www.iar.com

Functional safety standards

• IEC 61508

• ISO 26262

• EN 50128

Simplified validation

• Functional safety certificate

• Report to the certificate

• Safety Guide

Guaranteed support and
upgrade

• Cover the product life cycle

• Prioritized technical support

• Validated service packs

• Report of known problems www.iar.com/safety

Certified Tools from IAR Systems

www.iar.com

• EWARMFS
• The Functional Safety edition of

IAR Embedded Workbench for ARM

• Certified by TÜV SÜD

• Functional safety standards
• IEC 61508-3:2010 (SIL 3)

For electrical, electronic and

programmable systems in all

kinds of industry.

• ISO 26262-8:2011 (ASIL D)

Safety standard for road vehicles,

derived from IEC 61508.

• EN 50128

Safety standard for railway control

and protection systems.

EWARMFS

http://www.tuev-sued.de/home_en
http://www.tuev-sued.de/home_en

www.iar.com

C: Safe or Not

www.iar.com

The IEC 61508 Standard

www.iar.com

Suitable programming language

Table C.4.5 of IEC 61508-7 gives a general description of

“suitable programming language”:

•The language should be fully and unambiguously defined.

……

•The language should encourage:

• The use of small and manageable software modules;

• Restriction of access to data in specific software modules;

• Definition of variable subranges; and

• Any other type of error-limiting constructs.

www.iar.com

With the right C subset, coding standard and the use of

static analysis tools, C can be a Highly Recommended

programming language for all 4 levels of SIL.

Recommendation of languages

NR: Not Recommended

HR: Highly Recommended

www.iar.com

Language with Subset

Table C.4.2 of IEC 61508-7 gives the aim and description

of language subsets:

Aim:

• To reduce the probability of introducing programming faults;

• Increase the probability of detecting any remaining faults.

Description:

• The language is examined to determine programming constructs

which are either error-prone or difficult to analyze, for example, using

static analysis methods.

• A language subset is then defined which excludes these constructs.

www.iar.com

C-STAT: Static Code Analysis

www.iar.com

• Code analysis tools – Detecting erroneous code in the application

•Static analysis tools

• Analyze the source code without executing them

•Runtime analysis tools

• Analyze the source code dynamically during execution

Code analysis tools

www.iar.com

• C-STAT is a static analysis tool developed by IAR Systems
•Launched in Feb, 2015

•Both C and C++ source code are supported

• C-STAT is an add-on product of IAR Embedded Workbench
•Fully integrated

•No additional installation

•No separate license

•Cannot work with 3rd-party compiler & debugger tools

• Target support
• IAR Embedded Workbench for ARM, from version 7.40

• IAR Embedded Workbench for TI MSP430, from version 6.30

• IAR Embedded Workbench for Atmel AVR32, from version 4.30

C-STAT: Static code analysis

www.iar.com

C-STAT: What does it check

• Common Weakness Enumeration

• cwe.mitre.org

• An unified and measurable set of
software weaknesses.

• Enumerate design and architecture
weaknesses, as well as low-level
coding errors.

• Computer Emergency Response Team

• www.cert.org

• C/C++ secure coding standards, identifying
insecure constructs which could expose a
weakness or vulnerability in the software.

• Guidelines to avoid implementation, coding
as well as low-level design errors.

• Motor Industry Software Reliability Association

• www.misra.org.uk

• MISRA C:2004 (MISRA C2): Identify unsafe code constructs in the C89 standard.

• MISRA C:2012 (MISRA C3): Extend the support to C99 version of the programming
language whilst maintaining the guidelines for C89 standard.

• MISRA C++:2008: Identify unsafe code constructs in the 1998 C++ standard.

http://cwe.mitre.org/index.html
http://cwe.mitre.org/index.html
http://www.mitre.org/
http://www.cert.org/
http://www.misra.org.uk/

www.iar.com

C-STAT options in IAR EWARM

CWE/CERT rules

MISRA C/C++ rules

www.iar.com

C-STAT: Rules configuration

Enable or disable a set of

rules or any individual rule.

Highlight a rule and

press F1 to show the

detailed description.

www.iar.com

C-STAT: Analyze the code

Analyze the whole project

Analyze an individual source

file or a group of source files

www.iar.com

C-STAT: Result of analysis

Double click the C-STAT

message to direct to the

line of source code.

Highlight the C-STAT

message and press

F1 to show the related

rules information.

Filter the C-STAT messages by selecting a

level of severity: All, Low, Medium or High.

www.iar.com

C-RUN: Runtime Code Analysis

www.iar.com

IAR C-STAT and IAR C-RUN

www.iar.com

• C-RUN is a runtime analysis tool developed by IAR Systems
•Launched in May, 2014

•Both C and C++ source code are supported

• C-RUN is an add-on product of IAR Embedded Workbench
•Fully integrated

•No additional installation

•No separate license

•Cannot work with 3rd-party compiler & debugger tools

• Target support
• IAR Embedded Workbench for ARM, from version 7.20

•All ARM cores are supported

C-RUN: Runtime code analysis

www.iar.com

Arithmetic

checking

Heap

checking

Bounds

checking

C-RUN options in IAR EWARM

www.iar.com

void main (void)

{

int v1 = 0x7fffffff;

unsigned int v2 = 0xffffffff;

v1++; /* signed integer overflow */

v2++; /* unsigned integer overflow */

}

Detecting integer overflow

www.iar.com

void main (void)

{

int v1 = 0x8000;

short v2;

char v3;

v2 = v1; /* 32-bit  16-bit */

v3 = v1; /* 32-bit  8-bit */

}

Detecting integer conversion

www.iar.com

void main (void)

{

int i;

short v1 = 1;

int v2 = 1;

for (i=0; i<32; i++)

{

v1 <<= 1; /* overflow: i>14 */

v2 <<= 1; /* overflow: i>30 */

}

}

Detecting shift overflow

www.iar.com

void main (void)

{

int i;

for (i=0; i<2; i++)

{

switch (i) /* case 1 is not handled */

{

case 0:

break;

}

}

}

Detecting unhandled switch-case

www.iar.com

#include <stdlib.h>

void main (void)

{

char *c1 = (char *)malloc(10);

char *c2 = new char[10];

free(c1+2); /* not the start of a block */

free(c2); /* non-matched new and free */

free(c1);

free(c1); /* free a block more than once */

}

Detecting heap errors - 1

www.iar.com

#include <stdlib.h>

#include <iar_dlmalloc.h>

void main (void)

{

char *c = malloc(10);

c = malloc(20); /* memory leak */

free(c);

/* check for memory leaks, manually called */

__iar_check_leaks();

}

Detecting heap errors - 2

www.iar.com

int main (void)

{

int i, j;

int a[3] = {1, 2, 3};

for (i=0; a[i]!=0; i++) /* out of bounds */

{ /* when i==3 */

j = a[i];

}

return j;

}

Detecting out-of-bounds

www.iar.com

Take full control of your development

Requirements Design Implementation Verification Maintenance

Investigate runtime errors

Let C-RUN analyze your project

Build and debug the application

Review potential issues

Let C-STAT analyze your code

Implement your design in code Release the application

100011001100011

110010101110011

101010110011001

01001

01110

01011

10011

11001

0011010111010

0011001100011

1100101011110

1010110011001

0101010101101

10001

00011

10010

10111

00111

www.iar.com

• Different architecture, one solution

• Most efficient & high performance code

• Freescale MQX™ RTOS integration

• Freescale Processor Expert integration

• Advanced trace debugging

• Power debugging

• C-STAT static code analysis

• C-RUN runtime code analysis

• Stack usage analysis & tracking

• Functional safety certificate

• Global professional technical support

IAR Systems: Your strategic partner

