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Introduction of IAR Systems
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IAR Systems

• Established in 1983

• Headquarter: Uppsala, Sweden

• 170+ employees

• Support for 10,000+ devices

• 3000+ ARM devices

• A world-leading embedded development tools vendor

• Main products

• IAR Embedded Workbench: C/C++ Compiler & Debugger Tools

• IAR visualSTATE: State-Machine Modeling & Software Design Tools

• IAR I-jet / I-scope / JTAGjet: Debugging & Trace Probes

• China office

• Shanghai, 021-63758658
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Strategic collaboration with Freescale

• Long partnership with Freescale

• Initiated close cooperation

around HC12 & S12

• EWCF: released on 2007

• EWS08: released on 2008

• EWARM is the most widely

used commercial tool chain 

for ARM-based processors

• Expand the Freescale ecosystem

• IAR Embedded Workbench

• EWHCS12: HC12 & S12 MCU

• EWCF: ColdFire & ColdFire+ MCU/MPU

• EWS08: S08 MCU

• EWARM: Kinetis, i.MX, Vybrid, MC1322x, …
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IAR Embedded Workbench for ARM
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EWARM: Product variants

• EWARM -- Standard edition

• EWARM-BL -- Baseline edition

•256KB code size limitation

• EWARM-CM -- Cortex-M edition

•Only for Cortex-M0/M0+/M1/M3/M4/M7

• EWARM-CM0 -- CM0/CM1 only

•Only for Cortex-M0/M0+/M1

• EWARMFS -- Functional Safety

•IEC-61508, ISO-26262 and EN-50128
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Functional Safety Certificate
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What is Functional Safety?

• Simply put, it means that the overall safety of an 

embedded system depends on the equipment operating 

correctly in response to its inputs.

•This includes erroneous inputs

•Also includes hardware failures

• Traditionally, only safety-critical industries have been 

interested in functional safety.

•Automotive

•Avionics

•Medical

• However, other industries are also seeing the benefit.
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Functional Safety Standards
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The IEC 61508 Standard
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Functional safety standards

• IEC 61508

• ISO 26262

• EN 50128

Simplified validation

• Functional safety certificate

• Report to the certificate

• Safety Guide

Guaranteed support and 
upgrade

• Cover the product life cycle

• Prioritized technical support

• Validated service packs

• Report of known problems www.iar.com/safety

Certified Tools from IAR Systems
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• EWARMFS
• The Functional Safety edition of 

IAR Embedded Workbench for ARM

• Certified by TÜV SÜD

• Functional safety standards
• IEC 61508-3:2010 (SIL 3)

For electrical, electronic and

programmable systems in all 

kinds of industry.

• ISO 26262-8:2011 (ASIL D)

Safety standard for road vehicles,

derived from IEC 61508.

• EN 50128

Safety standard for railway control 

and protection systems.

EWARMFS

http://www.tuev-sued.de/home_en
http://www.tuev-sued.de/home_en
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C: Safe or Not
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The IEC 61508 Standard
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Suitable programming language

Table C.4.5 of IEC 61508-7 gives a general description of 

“suitable programming language”:

•The language should be fully and unambiguously defined.

……

•The language should encourage:

• The use of small and manageable software modules;

• Restriction of access to data in specific software modules;

• Definition of variable subranges; and

• Any other type of error-limiting constructs.
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With the right C subset, coding standard and the use of 

static analysis tools, C can be a Highly Recommended 

programming language for all 4 levels of SIL.

Recommendation of languages

NR: Not Recommended

HR: Highly Recommended
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Language with Subset

Table C.4.2 of IEC 61508-7 gives the aim and description 

of language subsets:

Aim:

• To reduce the probability of introducing programming faults;

• Increase the probability of detecting any remaining faults.

Description:

• The language is examined to determine programming constructs 

which are either error-prone or difficult to analyze, for example, using 

static analysis methods.

• A language subset is then defined which excludes these constructs.
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C-STAT: Static Code Analysis
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• Code analysis tools – Detecting erroneous code in the application

•Static analysis tools

• Analyze the source code without executing them

•Runtime analysis tools

• Analyze the source code dynamically during execution

Code analysis tools
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• C-STAT is a static analysis tool developed by IAR Systems
•Launched in Feb, 2015

•Both C and C++ source code are supported

• C-STAT is an add-on product of IAR Embedded Workbench
•Fully integrated

•No additional installation

•No separate license

•Cannot work with 3rd-party compiler & debugger tools

• Target support
• IAR Embedded Workbench for ARM, from version 7.40

• IAR Embedded Workbench for TI MSP430, from version 6.30

• IAR Embedded Workbench for Atmel AVR32, from version 4.30

C-STAT: Static code analysis
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C-STAT: What does it check

• Common Weakness Enumeration

• cwe.mitre.org

• An unified and measurable set of 
software weaknesses.

• Enumerate design and architecture 
weaknesses, as well as low-level 
coding errors.

• Computer Emergency Response Team

• www.cert.org

• C/C++ secure coding standards, identifying 
insecure constructs which could expose a 
weakness or vulnerability in the software.

• Guidelines to avoid implementation, coding 
as well as low-level design errors.

• Motor Industry Software Reliability Association

• www.misra.org.uk

• MISRA C:2004 (MISRA C2): Identify unsafe code constructs in the C89 standard.

• MISRA C:2012 (MISRA C3): Extend the support to C99 version of the programming 
language whilst maintaining the guidelines for C89 standard.

• MISRA C++:2008: Identify unsafe code constructs in the 1998 C++ standard.

http://cwe.mitre.org/index.html
http://cwe.mitre.org/index.html
http://www.mitre.org/
http://www.cert.org/
http://www.misra.org.uk/
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C-STAT options in IAR EWARM

CWE/CERT rules

MISRA C/C++ rules
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C-STAT: Rules configuration

Enable or disable a set of 

rules or any individual rule.

Highlight a rule and 

press F1 to show the 

detailed description.
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C-STAT: Analyze the code

Analyze the whole project

Analyze an individual source 

file or a group of source files
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C-STAT: Result of analysis

Double click the C-STAT 

message to direct to the 

line of source code.

Highlight the C-STAT 

message and press 

F1 to show the related 

rules information.

Filter the C-STAT messages by selecting a 

level of severity: All, Low, Medium or High.
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C-RUN: Runtime Code Analysis
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IAR C-STAT and IAR C-RUN
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• C-RUN is a runtime analysis tool developed by IAR Systems
•Launched in May, 2014

•Both C and C++ source code are supported

• C-RUN is an add-on product of IAR Embedded Workbench
•Fully integrated

•No additional installation

•No separate license

•Cannot work with 3rd-party compiler & debugger tools

• Target support
• IAR Embedded Workbench for ARM, from version 7.20

•All ARM cores are supported

C-RUN: Runtime code analysis
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Arithmetic 

checking

Heap 

checking

Bounds 

checking

C-RUN options in IAR EWARM
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void main (void)

{

int v1 = 0x7fffffff;

unsigned int v2 = 0xffffffff;

v1++; /* signed integer overflow */

v2++; /* unsigned integer overflow */

}

Detecting integer overflow
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void main (void)

{

int v1 = 0x8000;

short v2;

char v3;

v2 = v1; /* 32-bit  16-bit */

v3 = v1; /* 32-bit  8-bit */

}

Detecting integer conversion
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void main (void)

{

int i;

short v1 = 1;

int v2 = 1;

for (i=0; i<32; i++)

{

v1 <<= 1; /* overflow: i>14 */

v2 <<= 1; /* overflow: i>30 */

}

}

Detecting shift overflow
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void main (void)

{

int i;

for (i=0; i<2; i++)

{

switch (i) /* case 1 is not handled */

{

case 0:

break;

}

}

}

Detecting unhandled switch-case
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#include <stdlib.h>

void main (void)

{

char *c1 = (char *)malloc(10);

char *c2 = new char[10];

free(c1+2); /* not the start of a block */

free(c2);   /* non-matched new and free */

free(c1);

free(c1);   /* free a block more than once */

}

Detecting heap errors - 1
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#include <stdlib.h>

#include <iar_dlmalloc.h>

void main (void)

{

char *c = malloc(10);

c = malloc(20);             /* memory leak */

free(c);

/* check for memory leaks, manually called */

__iar_check_leaks();

}

Detecting heap errors - 2
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int main (void)

{

int i, j;

int a[3] = {1, 2, 3};

for (i=0; a[i]!=0; i++) /* out of bounds */

{                       /* when i==3     */

j = a[i];

}

return j;

}

Detecting out-of-bounds
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Take full control of your development

Requirements Design Implementation Verification Maintenance

Investigate runtime errors

Let C-RUN analyze your project

Build and debug the application

Review potential issues

Let C-STAT analyze your code

Implement your design in code Release the application
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• Different architecture, one solution

• Most efficient & high performance code

• Freescale MQX™ RTOS integration

• Freescale Processor Expert integration

• Advanced trace debugging

• Power debugging

• C-STAT static code analysis

• C-RUN runtime code analysis

• Stack usage analysis & tracking

• Functional safety certificate

• Global professional technical support

IAR Systems: Your strategic partner


