EEC 195
Autonomous Vehicle Design Project
Fall 2014 - Winter 2015

TEAM BBEJ

Brian Kong
Bruce Krietzer
Earnest Sayles III
Justin Scaccianoce

Final Report: 3/19/2015

L. Overview (Executive Summary)

The basic approach taken in this design project was to try to overcome challenges as they
presented themselves because so little was known about what would be necessary to achieve the
required performance. Beginning with just getting the car around the track, we took note of
performance issues and deficiencies, and systematically addressed each problem preventing us
from achieving a competitive performance. Due to the fact that we didn’t have a real outline or
procedure to follow, we had to work as a team to on each problem that presented itself and work
creatively to find a viable solution. Some of the more important challenges included camera
placement and data acquisition, reliable steering and motor control, and the seamless integration
of these concepts to create a competitive project.

Our design was handled as a team with the tasks being split amongst the team. Justin
Scaccianoce handled a majority of the coding in our design. The other tasks such as hardware,
motor control design, troubleshooting our vehicle, report write-ups and record keeping were

handled by the entire team collaboratively. The task percentages are as follows:

Team Member Effort Percentage
Justin Scaccianoce 30%
Earnest Sayles I1I 23%
Brian Kong 23%
Bruce Krietzer 23%

II. Technical Reports

Brian Kong - Steering Control Loop

Hardware

The steering control loop is mandated by pulse width modulation (PWM). This pulse width is
sent to the servo at a frequency of 50Hz and ranges from Ims to 2ms. At 1ms, the servo is fully
turned in the clockwise direction. Conversely, the servo is fully turned in the counterclockwise
direction when the pulse width is at 2ms. In addition, the servo is centered at the midpoint of
1.5ms. Throughout a turn, an average power of 2.34W was drawn from the servo. This PWM
output signal is sent to the servo as TPM1. The pulse width sent into the servo is dependent on

the values calculated from the ping pong buffers.

PWM
W
S
I]
|]
I I
Clockwise a 1 2 3 P
W
foonnne- .
I I
| |
I I
Center a i z 3 s
’ I— ————————— 1
1 1
| |
I I
Counter-clockwise a 1 2 3 s

Determining Pulse Width

Since the servo relies on a pulse width input, it’s important to send just the right amount of pulse
at specific times. In our system, the amount of pulse width sent to the servo is dependent on the

error values calculated from the ping pong buffers. This also means that the cameras have a

direct effect on the function of the servo; factors such as camera placement, the room’s lighting,
and sensitivity threshold will play an important role in the servo’s performance.

The camera buffer calculations yield error values from both the left and right camera. These error
values are then tested through a series of if-else statements in the steering control section of the
code.! An average of four error values are checked every 16 cycles. Depending on the error value
from each camera, the servo would turn left, right, or straight. In addition to each left or right
turn, there are smaller adjustment conditions which consider minimal corrections during high
speed straight sections.

For left and right turn conditions, the left and right error values were checked. In the case of a
left turn, the right error values from the right camera are tested. The conditions are met when
these error values are within a certain threshold. At the same time, the opposite camera error
value is also tested; the left camera error value must be under a certain amount of error in order
to satisfy the left turn condition:

else if ((ErrorR>=32 && ErrorR < 128) & & (AveL<=0x0F) && !(ErrorR<(AveR-0x1A)) &&
!(ErrorR>(AveR+0x1A)))

When the conditions have been met, a pulse width is set and sent to the servo via TPM1:

W1 = (4600-(((ErrorR1)*1600)/(65))); //calculate value to be sent to servo

However, sending too great of a pulse width would cause the servo to turn too much. Turning too
far in one direction can cause a wheel to rub against the chassis and effectively jam the wheel
during a hard turn. In order to fix this, the amount of pulse width was limited to a certain value
so that an excessive amount of pulse would not be sent to the servo:

if (W1 > 3250) // 3250 pulse limit
TPM1->CONTROLS[0].CnV = W1; // send calculated value if pulse limit hasn’t been reached
else

' See steering control logic in Appendix

TPM1->CONTROLS[0].CnV = 3250; // if pulse limit reached, send limit to servo
This pulse width is proportional to the error value from the right camera in the case of a left turn.
The average of the left and right error values were also considered in order to restrict unwanted
steering during a turn. This effectively produced smooth turning results and eliminated a
significant amount of twitch throughout the turn.
When there is a small amount of error on either cameras, the servo will be centered. The
threshold values for the centering of the servo are not symmetrical due to imperfections in
hardware. These imperfections include the mounting position of the cameras, compensation for
the alignment of the car’s wheels, and tie rod adjustments connecting the front wheels to the
servo. When this small error is detected, the pulse width is sent to the servo via TPMI1 to be
centered.
The threshold values in these if-else statements are a product of trial and error testing on the
track. Each condition had to be fine-tuned so that the car can perform well on all turns of the
track.
Control
For regular left and right turns, differential error values were considered in calculating the pulse
width to be sent to the servo. This would allow the car to predict turns as it runs around the track.
This was especially useful when coming down a hill into a turn. The car has to be able to predict
the turn due to the increased speed coming down the hill. The car is also blind for a certain
amount of time on the hill due to the direction that the cameras are facing. This is also useful
when coming across tight turns or chicanes. However, proportional was still the dominant

control in order to quickly react to changes based on high error values. When the car needs to

make minimal changes, the differential error values were not considered in order to make quick
adjustments.

Bruce Krietzer - Edge Detection

Detecting the edges of the track by our pair of line-scan cameras was pivotal in finding and
utilizing error values for feedback control. These error values were used in both speed control
and servo control to help the car make its way around the course. For line detection, we were
presented with two different line detection schemes in lab; one dealt with a voltage threshold
while the other dealt with slope thresholds. We decided to go with a slope threshold algorithm to
detect the lines of the track. Our reasoning was that detecting a sharp slope would be simpler to
implement and would more effectively ignore noise or lens aberrations; while detecting for a
certain voltage threshold could prove problematic if lighting conditions weren’t satisfactory.

Slope Threshold Line Detection

By displaying the output of the linescan cameras on an oscilloscope, we were able to note that a
sharp negative spike in the signal is displayed when the pixels go from white to black and a sharp
positive spike is displayed in the other direction. Our goal was to set threshold values for
negative and positive slopes where slopes below the threshold would be ignored and large slopes
would be used to detect a line on the track.

In order to implement a slope threshold line detection scheme, we utilized the data stored in the
ping pong buffers. The data from the buffers give us a certain intensity (light or dark)
corresponding to a certain index value (pixel number). Our field of view was 129 pixels wide for
each camera.

Code Breakdown

We used a central difference equation (derivative) in our code to calculate the slope.?
data2=((CenterStr[i+1]-CenterStr[i-1])/2)

The variable ‘data2’ would store new slope values as the index moved from i=2 until it reached
i=126. Even though the array ‘CenterStr[128]" holds 129 values (one for each pixel), we start
the index at 2 and end at 126 so that boundary conditions do not cause glitches in the code. If i=1
or i=127 were considered, the algorithm would catch the boundary pixel values and might
miscalculate a slope. Also, due to lens aberration the boundary pixels might not be as accurate.
It is also simpler to exclude these pixels in the code than to preset boundary conditions because
of varying lighting situations.

Each side of the track had a slightly different line detection scheme. For the left side, in order to
find a local max value we initialized a local variable “high” to equal zero. Inside of the while
loop that is counting from i=2 until it reaches 126, an ‘if” statement is asking if the current
‘data2’ value is greater than ‘high’ (which starts at 0); if so, make high equal to that data2 value
and set another variable ‘locmax’ equal to the index at that present ‘data2’ slope. The point is to
constantly have ‘locmax’ equal to the pixel index at the center of where we believe the black line
to be, or the center of where the slope is the greatest.

The right side implements a similar code® except we are asking if ‘data2’ is lower than a ‘low’
variable initialized at OxFF. This finds the greatest slope in the other direction (noting that data2
is a signed integer) and sets a value ‘locmin’ equal to the index at that slope.

Due to unwanted noise and slow rates of change caused by lens aberration, we had to choose a

threshold value for the slope so that small slopes would be ignored. We found a reasonable

2 See function block: int LeftEdgePosition(int CenterStr[128]) in Appendix
3 See function block: int RightEdgePosition(int CenterStr[128]) in Appendix

threshold by analyzing the values that were printed to a terminal when we had a camera pass
over a line. At the end of the while loop counting from i=1 until i=126, if the variable ‘high’ is
not greater than that certain threshold, then an error variable is set to equal 0x00 (no error). If
this slope variable does exceed the threshold (and is considered a change from white to black or
vice versa), then an error is set. For the left side error, the error variable is equated to the
‘locmax’ index value and pushed to an error buffer.

For the right side error, the error variable is equated to 129 - ‘locmin’ and pushed to an error
buffer. Itis important to also note that we did not push the error to the error buffer unless it was
greater than a certain preset error value. This was done to keep our car in the center of the track
given our camera setup and to ignore the edge pixels as much as possible. The diagram below

gives a better visual on how these error values were calculated.:

FIELD OF VIEW
Local min'max value
\ Pixel Number

Track [1T 43 /

1 129

W

left side error = local right side error = 120 -

max value local min value
Camera . — —
Signal v

1 129
Slope 0 /\

1 \/ 128

Local min/max value

Earnest Savles II1 - Cameras

Hardware

One design factor that we had to decide was how many cameras we wanted to utilize in our final
design, and we decided that using a two camera system would be best. Both cameras were
mounted on a pole that is centered on the car at a specific height of 7.5 inches in order to achieve
the proper angle looking outward. Understanding that the hypotenuse of the camera to the
ground is equal to the width of the 128 pixels allowed us to determine the mounting height,
giving us a camera width of about 12 inches. We utilized a measuring tape to make sure we
were getting accurate heights and widths, as well as eliminating overlap of the cameras.

Camera Angles

The two cameras are slightly angled outward towards the track edges. We did this so the field of
view for the cameras will be inside the track edges, but still able to quickly detect the edges as it
deviates from the center of the track. This positioning helps with limiting oscillation. We took
this approach to the placement because, instead of a line following design, our design avoids
high error values which are created as the track edge progresses towards the center pixel of the
camera. One expected tradeoff would be an overlapped field of vision, but we overcame this by
positioning our cameras so our field of vision has a “V” shape with the center of the V pointing
directly ahead of the car. Using the current camera positioning each camera sees only one line at
a time, on either side of the car, with no overlap. For the vertical angle, we adjusted the cameras
so they were seeing at the perfect distance ahead. If the cameras were to look downward, closer
to the car, they would not be able to anticipate turns in the track; this would cause a delay in data

for our derivative term causing the car to ride off the track. However, if the cameras were

looking too far in front of the car, they could read false data beyond the track. This same issue
occurs once hills are integrated and the car starts to point upward on the hill. Understanding
these two limitations helped us find the right angle in the middle which we used an app to
maintain.

Camera Focus

The process to get the optimal focus was to hook up the cameras to the oscilloscope and to
actually evaluate the wave signal that was being produced. Naturally the camera has a fault
slope on both edges when it is out of focus, so we wanted to have the widest and most positive
band; eliminating the fault edges allows for the camera to better read when it is hitting the edge
of the track rather than having an inaccurate threshold. After we found the proper focus position
we used tape to hold the camera focus in place for a consistent quality focus.

Integration Time

The integration time is vital in assuring that the cameras are able to take in an correct amount of
data. The different factors of any given room or track dictate whether or not the integration time
should be increased or decreased. For example, if it is a dim room the integration time needs to
be longer in order to fully read and process the value of the pixel that is coming in. However,
due to dirt and gaps on the track, we must at times shorten the integration time so that we don’t
process that false data. The minimum clock frequency is 33.75us at a max clock frequency of 8

MHz utilizing the following equation.
T = (1/max clk frq) x (n-18)pixels + 20us

Ping-Pong Buffers

10

In order to maximize efficiency within the code it is important to have nonstop acquisition and
interpretation of the data. The way this works is that while one buffer, 128 pixels, is being
written to by the program the other is being read by the code within the ADC interrupt. As a
result of the two camera system it is essential to implement ping-pong buffers with both cameras.
Essentially both cameras have one buffer that is being written to and an alternative that is being
read from. The code alternates between writing to both camera buffers one pixel value at a time;
it alternates within every clock cycle. This allows both buffers to be filled at the same rate so
that it can respond to either edge of the track appropriately. After both of those buffers are filled
the code ping pongs both sets of camera buffers to read the new data in the ADC; it alternates
between both cameras read and write buffers every time the SI signal is called.

ADC Function

First the ADC is triggered by the PIT handler. Then, at the end of each ADC, another ADC
cycle is started; this cycle occurs 256 times, once for each pixel of the appropriate buffers
camera. When triggered it is assigned a set value of either Set = 1 or Set = 2. This set value
indicates which pair of ping pong buffers will be filled in the ADC. During the succession, a
counter keeps track of how many conversions are being completed to insure that the ADC covers
enough cycles. It also alternates between the two cameras based on the count value, which
determine even and odd, to make sure that the data is being interpreted for each camera and edge
of the track at the same rate. The actual clock signal is only cycled once, when each camera has

been read, to insure that there are only 129 cycles per succession.

11

Justin Scaccianoce - Speed Control Loop

Basic Operation

One of the most important components of our vehicle is the speed control or motor control loop.
In our design, motor control is very dynamic and plays a big role in our ability to negotiate turns
competitively. Our motor control design has many subtle aspects but our principal concept is
that our vehicle should go as quickly as possible down straight sections of track and break hard
and fast while turning to quickly pivot 90 degrees.

Basic operation is as follows: An initial speed is selected using a single potentiometer. This
establishes a constant pulse width value which will drive both motors. This pulse width, or
speed, will be used as reference during vehicle operation and will be the steady state condition.
The reference pulse width is modified in a number of ways during operation but ultimately, our
motor control loop is managed by a single differential controller. We effectively use our error
differential to reduce or increase pulse width, or change the direction of the motor completely.

Derivative Values

The choice to rely completely on the error derivative for plant control came after several
attempts of using solely proportional control, then PD, then less proportional, then solely
differential control. It allows the vehicle to respond, slow down, only when there is a sudden
increase in error, which is almost always do to a fast approaching turn. In this way it is stopping
as it enters a turn and accelerating as it leaves a turn.

Derivative: Acquisition and Thresholding

The derivative value is found using an averaging equation that is fed by a buffer of the four most

recent error values. Diff = ((Error[0]+3*Error[1]-3*Error[2]-Error[3])/((6)*T));

12

Here, our time constant T was chosen to be .01 seconds because our PIT frequency was most
often adjusted to frequency of 100Hz and so our error values are received at roughly .01 second
intervals. It is important to note that the differential value is stored as a signed integer and
processed as such. Values may be erroneous when this is not considered.

To make the differential values useful to speed control, modeling of different track scenarios was
required. In our control design, the range of differential values was very large but this allowed
for different ranges of values to be associated with the many different track features.

High Derivative Value

For example, assuming a speed of 8 ft/sec entering a quarter turn from center track, the
differential value could be as high as 600-1600 error/sec. This would be an extreme case, and
requires the most deceleration in the quickest time. To accomplish this, we actually reverse both
motors to a relatively fast speed and keep them there for a predetermined amount of time after
the initial high differential condition is recognized. This is done by starting a count down period
of around 150 cycles of our Main-loop, during which time all other motor controls are locked
out. Then, the motors are returned to the forward direction and the speed is momentarily made
very high to accelerate after stopping.

Low Derivative Value

In less severe conditions, a differential value between 200 and 600 could indicate the vehicle is
approaching a turn at a lower speed or navigating a long sloping turn. In these cases, the pulse
width is changed as a function of the differential. When values are below ~400 just a fraction of

the diff. is subtracted from the pulse width and above that the entire value is subtracted. This

13

ensures the vehicle maintains an appropriate speed when navigating obstacles, but again allows it
to return to speed quickly as it leaves them.

Negative Derivative Value

Using negative differential values further helps the vehicle to accelerate back to the desired
speed when leaving turns. As the vehicle turn out of and away from a turn, the differential value
is momentarily negative. At this point the pulse width is momentarily made larger then it set
value and vehicle is able to quickly accelerate out of the turn.

Hardware

Freescale Cup shield

When competing with Freescale rules, we take advantage of the Freescale Cup Shields’ two on
board MC33887 H-Bridges to control each motors. They are pre-configured to conveniently
allow enabling/disabling through a single pin, and motor operation with two input pins per
H-Bridge. We relied on unipolar pulse width modulation, in which one input to the H-Bridge
was held either high or low, forward or reverse, and the second input provided with a square
wave signal whose pulse width determined motor speed.

NATCAR Motor-Control Design

When competing with Natcar rules, we were required to assemble our own motor control
hardware. We chose to use a simple, single, full H-Bridge to control both motors. In this way, we
lost independent control of each motor, but retained the ability to quickly reverse the motors
direction, which was an important aspect of our control logic. This was not big loss because we

had already determined that independent motor control was of little benefit to our current control

14

logic. Any traction control that we could have benefited from using independent motor control is

lost when are main control strategy involves entering a turn at full reverse.

Code Description
The code is very straight-forward for the control logic. On each cycle of the main loop, the

derivative value is obtained from the differentiating function. Then a series of else statements
compare the value and function accordingly. The motor is actually controlled in a couple of
ways. It can be either enabled or disabled by a single pin, It can be driven in reverse or forward
operation by making one pin per motor high or low, and the speed can be changed by changing
the pulse width of the signal sent to either motor. To extend the breaking time, a variable Break
1s used. Once break is incremented above zero, it will lock out all other motor controls until it
reaches 200 and resets.

Break-Down of Motor-Control

Derivative Value (Error/Second) |Action Taken

0-120 No action taken

120-650 Current Speed — [((Der. Value)*(1/2))/10] % duty cycle
650-3000 Reverse at 80% duty cycle for 200 main-cycles

-500-0 Current Speed + [((-Der. Value)*(1/10))/5] % duty cycle

*Duty cycle is measured from 0 to 1000, where 500 represents 50% duty cycle.

15

Derivative values as car approaches different points of 4 turn:
decivative Velie

Ofr 1 /e e

/’/1.)- ’ : :
Lre .

o, CC r

~$Sc. 7 \
3 £ /'/r/fi

I11. Design and Performance Summary

Very quickly we started off progressing in the right direction seeing a lot of success in our early
checkpoints. We were also successful in implementing various designs before settling upon the
design that we used for our time trials. Over the course of the quarter we were able to construct
a successful and fairly fast car. We created a custom motor control board that was innovative in
the fact that we put two motors in parallel across an H-Bridge. Also, we managed to overcome a
variety of problems as a team to make our car competitive. We learned and practiced new
programming skills as well as technical skills that we will be able to apply in the future.

One improvement we could have made to the process would be to decide on a permanent design
to perfect. Throughout the design process we saw benefits to various designs including the
number of cameras and their placement. We tried multiple placements and quickly found out,
with each one, that there were various trade offs. Instead of trying new camera placements and

focusing on getting purely faster times, we recognize that it would have beneficial to focus on

16

one design and work on consistency within our laps around the track. This would have allowed
more planning, troubleshooting, and enhancing of performance all for our final cars design.
IV. Safety

Safety goggles and proper soldering techniques were applied during the assembly of our
motor control board and any other soldering that needed to be done. We installed a metal
bumper on the front of the car to protect against collisions that may occur at the edges of the
track or oncoming traffic in practice runs. The bumper was spring loaded to help ease the load
on the actual car.

Also, “Emergency Stop” code was written in order to stop our car if it veered off the
course. This was done to avoid being reckless and ensure the safety of both our classmates and
our vehicle. This was implemented by simply adding a few lines of extra code to both the line
detection and motor control sections. As pixel values were being read in and used to detect a
line, we took an average value of the 125 pixels that were considered during the line detection
code. Then, in the main function block (where the motor control code is), we checked to see if
that average value was below a certain threshold; if the value is below the threshold (only seeing

black) we shut off the motors thus stopping our car.

17

V. Appendixes
Code Examples

Example Of ADC Code:

132 // ADC Interrupt
133 Hvoid ADCO_IRQHandler (void) {

134 // read result register from AD conversion

33 HVIC ClearPendingIRQ(ADCO IRQn); // clear ADCO interrupt reguest

136 CLEcounter++;

137 FEAAAFAFFFFY Blternates between buffers 1&2 and 2&4 om each 5I signal

138 // Winthin each 5I signal, alternates between cameras one and two on each clock cycle
138 // Ewven CLKcounter reads camera two, calls ADC for camera one

140 Jf 0dd CLE counter reads camera one, calls camera two. Stops after 128 pixels x32.
141 if (set==1)

182] {

143 if ((CLEcounter%z))

144 {

145 if fciXcounter < 257j

146 [- { //h=ssert CLCK Signal (FTE1)

147 FPTE->»PS0R = (1UL << 1):

148 res = ADCD->R[O]:

149 PushToQueue (res) ;

150 //Channel B

151 ADCO->CFGZ = MUXSEL ADCE | ADACKEN DISABLED | ADHSC HISPEED | ADC CFG2 ADLSTS (ADLSTS 2)
152 ADCO-»>SC1[0] = ((Ox6) | (1UL << &}):

15 i }

L .

155 else

156 [|

157 if (CLEcounter <257}

158 [{//hzsert CLCK Signal (FTE1)

155 FPTE->PS0R = (1UL << 1):

1&0 res = ADCO->R[0]:

181 PushToQueue3 (res) ;

162 //Channel B

163 ADCO->CFG2 = MUXSEL ADCE | ADACKEN DISABLED | ADHSC HISPEED | ADC CFG2_ADLSTS (ADLSTS 2)
164 ADCO-»>SC1[0] = ((0x7) | (1UL << &}):

165 |- }

166 //Deasert CLCK

167 FPTE->PCOR = {10L << 1):

168 | 1}

Example of edge detection code:

420 int LeftEdgePosition({ int Center3Str[lZ2EZ])

421 [{

422 gigned int data2=0;

423 int locMax=0; int high=0;
424 int threshold; int i=0; int Errorl=0x00;
425 FAEAArrrrrsr i rAf A Ss Data 5tring Two: Derivative aprox.
428 high=0;

427 i=2;

428 while (i<127

29 [|

430 datald=({CenterStr[i+l]-CenterStr[i-1]1)/2) s
431 if (data2xhigh)

432 [{

433 high=dataz;

434 locMax=i;

435 }

438 it++;

437 h

438

4389 if{ high « &)

440 {Errorl=0x00;}

441 glae

442 [|

443 Errorl=locMax;

444 -}

445 if {Errorl > 3)

448 PushIo{ueueleft (Errorl);
447 elaq

448 PushIocf{ueueleft (0);

4445

450 return ErrorL;

451 S /CenterStr=0;

452 L}

201
202
203
S04
505
s06
S07
208
209
210
511
212
213
514
215
ale
217
518
215
220
221
222
223
o224
225
226
227
228
229
230
531
532
STE
=3
ST
536

int RightEdgePosition(int CenterStr[l2E])

=i

gigned int dataZ2=0;

int locMin=0; int low=0xFF;
int i=0; int Error=0x00;
int Maghwve=0;

FAAERAAAAAPARAAfAArAif// Data String Two:

low=0xFF;
i=2;
while (i<127)
{

Maghwve=Maglhwve+ (CenterStcr[i]) f5:
dataZ=(CenterStr[i+l]-CenterStcr[i-1]1)/2:

if [(dataZ<low)

{

low=data;
locHMin=i;

}
i+4:
}
MaghwveGlobal=Maghve/25;
Maghve=0;
if(low > -&)

Error=0x00;
else
{
Error = (129-1locMin);
}
if (Error > 3)
PushToQueueRight (Error) ;
else
PushToQueueRight (0)

return Error:
S iCenterStr=0;

Derivative aprox.

19

Example of derivative of error function:

481
432
483
434
485
4846
487
488
4339
430
431
432
433
434
4335
494
437
433
4335

Example of motor control code (breaking/reducing speed):

693
694
695
696

il

signed int Differentaticnleft (void)

=i

int i=0;

int Error[4]:

gigned int Diff = 0;

while (i < 4)

{
Error[i]=RetrieveFromjuensleft (i)
i++4;

}

Diff = {(Error[0]+3*Error[l]-3*Error[2]-Error[3])/({e)*.01));

if (Diff>=-3000 s& Diff<=3000)
Diff=Diff:

else

Diff=0;

return Diff;

//Load Derivative Values
TerrorR= DifferentationRight ()
Terrorl= Differentationleft ()

€97 | //// MOTCR CONTROL

698
629 -
700
701
702
703
708 [
705
706
707
708 &
709
710
711
712
713
714
715
716
717 &
718
713
720
721
722
723
724
G

if (MagAveGlobal<25 && Break2?==0) // Disable motor if car leaves track
{
FETC-»PCCR = (10L << 4); //BR1l Clear
FPTC->FCCR = (10L << 2);

TEMO->CONTROLS [0] .CoV =0:
TEMO->CONTROLS [2] .CoV =0;
}
//MA¥ BRERKING

else if (((({ TerrorR>=560 && TerrorR<=3000) && ErrorL==0)
Il Break2>=1) && (Errorl<30 && ErrorR<50})
{ BreakZ++; //=start breaking timer
TEPMO->CONTRCLS [0] .CnWV =0;
//TEMO->CONTROLS [2] .CoV =0;
FETC->PCOR = (10L << 4); //reverse motor operaion
FPTC->F5CR = (10L << 2);

/ /TEMO->CONTROLS [0] .CoV =
TEMO->CONTROLS[2] .CnV = 800;

0;//Set speed of reversed motor

if (Break2==200) // Rfter 200 counts accelerate Forward

{

TEMO->CONTROLS[2] .CnV =0;
FETC->PCOR = (1UL << 2}:
FPTC-»PSOR = (1UL << 4);
TEPMO->CONTROLS [0] .CnV = &00;
TPMO->CONTROLS[2] .CnV = 0;
Break2=0:

({ TerrorL>=560 && TerrorL<=3000)

20

&& ErrorR==0)

21

[reduce speed)

else if (TerrorR»120 &£& TerrorR<S500 && Break2==0)

(1UL << 2); //F
(1UL << 4); //Forward

f/HMake sure speed change i=s not too =low

.CnV = testVal; //set speed change Kd=.5
.Cnv =0;

{ uses negative derivative wvalues)

{{TerrorB«<-50 && TerrorR>-2000) && BreakZ==0)

Iy
//Forward

if ((PW1l + fabs(TerrorR)/5)<500) //Make sure not to set to fast of a speed

[PW1) +fabs (TerrorR/5) ://set speed change Kd=1/5
0;

500;

if ((PW1l + fab=(TerrorR)/5)<500) //Make sure not to set to fast of a speed

[PW1) +fabs (TerrorR/5) ; //set speed change Kd=1/5
0z

500;

T27 S/ Medium breaking
728
729 [{
T30 FPTC->PCCR =
T31 FPTC-»>P5CR =
T332
NI testVal=FWl- (TerrorR/2);
TIE)
N2 if (testWValxZ00)
T36 [{
T3T TPHMO->CONTROLS[0]
T38 TPMO->CONTROLS[Z]
T e H
T40 else
T41 [i
T42 TPMO->CONTROLS[O0] .
743 TPMO->CONTROLS[2] .
744 - }
745 - ¥
802 S/ /RCCELEBATICH OUT OF TURN
803 else if
804 [H {
805 FPTIC->PCCR = (1UL << 2):
206 FPTC->P5CR = (1UL << 4);
807
808 if (TerrorR>-200)
809 [H {
Slﬂ:i
811 [H {
812 TPHMO->CONTRCLS[0] .CnV =
813 TPHMO->CONTRCLS[2] .CoV =
814 ¥
815 else
816 [H {
817 TPHMO->CONTRCLS[0] .CnV =
818 TEPHMO->CONTRCLS[2] .CoV =
819 ¥
820 }
821 else if (TerrorR«<=-200)
822 [{
823:i
824 [H {
825 TPHMO->CONTRCLS[0] .CnV =
826 TPMO->CONTROLS[2] .CnV =
827 H
828 else
829 [{
830 TPHMO->CONTRCLS[0] .CnV =
831 TPMO->CONTRCLS[2] .CnWV =
832 H

22

Example of steering control code:

a0 // Move Servo straight

a07 if (Errorl»=0 && Errorl<=5 && ErrorR>=0 && ErrorB<=E)

908 - i{

909 Wl = (4600);//4600=3traight

910 TPM1->CONTROLS[0] .CnV = Wl1;

911 - }

912 // Move Servo right

813 else 1f ((Errorl>=33 && Errorl<i1Z8) && (AveR<=0x0F) && ! (Errorl< (Avel-0Oxl1R)) && ! (Errorl> (&vel+0x1R)))
914 - {

915 W1l = (46004 {{(Errorll) #1600}/ (65)));:

9lse if (Wl«3850)

917 TPM1->CONTRCLS[0] .CnV = W1;

918 else

919 TPM1->CONTROLS[0] .CnV = 5850;

920 }

921 /f Move Servo Left

Q22 else if ((ErrorB>»=33 && ErrorR < 12E8) && (4vel<=0x0F) && ! (ErrorR< (AveR-0xlZ)) && ! (ErrorR>»(AveR+0x1Z)))
923 i{

924 W1l = (4600-(((ErrorR1)*1600)/(65))):

925 if (W1 > 3250)

928 TPM1->CONTRCLS[0] .CnV = W1;

927 else

928 TPM1->CONTROLS[0] .CnV = 3250;

929 | }

230 J// Move Servo Left, minimal corrections for straigh lines/highs speeds
931 else if ((ErrorR>=2 && ErrorR < 33)) //was 35 and 120 below

932 H {

933 W1l = (4600-{{{ErrorR)*1600)/{150}))):

934 if (W1 » 3250)

935 TEM1->»>CONTRCLS[0] .CnV = W1:

936 else

937 TPM1->CONTROLS[0] .CnV = 32507

938 | }

asn f M mmem T mwvem wnd - T e m wn -o--v--:nJ'-\ Timmm (s i ol =

Acknowledged and Approved by:

Brian Kong:

Bruce Krietzer:

Earnest Sayles III:

Justin Scaccianoce:

23

