EEC 195A/B Final Report.

Alisson Li
Kevin Su
Siyuan "Peter" Hu
Thien Nguyen

2014 - 2015

Alisson Li
Kevin Su
Siyuan "Peter" Hu
Thien Nguyen
EEC 195B Report
I. Overview (Executive Summary)

The basic approach to designing our car is to make the car run as fast as possible. We
tried our best to get the best camera data we could get by changing the angle, lens and length it
was protruding from the chassis. We integrated an aerodynamic and light design in order to
reduce any air resistance when the car was running at full speed. We focused on making tight
turns at high speeds. Once we have reached the speed limit of our car, where it would go off the

track, we would make small changes to our car to make it go faster. We spent a lot of time

adjusting our camera angle and gain, so that our car will be able to make tight turns.

Task Breakdown

Servo Control Loop Alisson Li
Camera Mount/ Configuration Kevin Su

DC Motor Control Board Siyuan “Peter” Hu

ADC/ Ping-Pong Buffer Thien Nguyen

II. Technical Reports

Servo Control Loop Algorithm

by Alisson Li

The car runs through a while statement checking to see if the ping or pong buffer is filled
at the same time. The ADC is set to interrupt whenever the data conversion was complete, so that
the processor can be analyzing the data of the other buffer. The servo control depends on two
elements: the proportional component and the differential component.

The proportional component is the main element in controlling the servo. The equation is
as follows:

trackloc = center + pingloc1 * turnstat - pingloc2 * turnstat; //P

trackloc = center + pongloc1 * turnstat - pongloc2 * turnstat; //P

The variables pingloc1 and ponglocl represent where the left black line is from camera 1
and the variables ponglocl and pongloc2 represent where the right black line is from camera 2.
The trackloc is the value sent to the servo motor, and depends on whether the ping buffer or pong
buffer is being analyzed at that time. The variable turnstat is the proportional gain. The car first
starts out in the center value, with pingloc1 and pingloc2 negating eachother. To make a left turn,
camera 2 would see an increase in its value, meaning that the right edge line is getting closer to
the car. Camera 1 would see a decrease in its value, meaning that the left edge line is getting
farther from the car. Therefore, the value of trackloc would decrease to a value that depends on
how high the value is for camera 2 and how low the value is for camera 1. To make a right turn,

the cameras operate in the opposite direction than the previous case.

The differential component helps the servo turn faster at high speeds. The equation is as
follows:

df = ((trackloc - pastloc) * turning_d) /ig; //D

The previous value of trackloc is stored into the variable pastloc. The variable turning d
is the differential gain. The variable ig (which is set to 100) is used to remove small noise by
dividing the differential gain to 0 if the change is small. When the difference between the current
value and the previous value is big, then it will be incorporated into the equation that determines
the position of the servo motor.

The equations that determines the location of the servo motor is as follows:

turn = trackloc +df; /P +D
if(turn >5000)

turn = 5000;
else if (turn < 3200)

turn = 3200;

The variable turn is the value that is sent to the servo motor. The proportional component
dominates on the straight track, while the differential component will have a large part in high
speed turns. When the sum of these two components surpasses the limit of how hard to turn the
servo, then it saturates to the highest value that the servo motor can turn.

We tried to use an integral term in the control algorithm, but it gave us too many errors.
The errors would stack up, and would cause the car to go off the track.

The proportional gain is adjusted so that when the car veers off from the center of the

track, it comes back to the center of the track. We calibrated the gain by having the car see the

maximum left and right edges of the track, and have the wheels pointing straight along the track.
At slow speeds, the proportional gain would be enough. At higher speeds, the car would not be
able to turn fast enough. As a result, we added a differential component to handle fast speeds.

The differential gain is adjusted so that the car does not randomly go off the track. The
differential component is very sensitive to noise, because it takes small changes that the car sees
and multiplies it by the differential gain factor.

We had trouble make the car fast and responsive. The cameras were set to sample at 100
Hz, which is double the recommended sampling rate. The servo motor was set to receive inputs
at 50 Hz, which is the recommended rate. There is a notable delay when the car sees a change in
the track, and when it turns. To cope with this, I tried to make the ADC data acquisition fast. |
eliminated as many if statements as I could, so that the processor can move along its control loop
faster. 50 Hz is slow at the processor level, but if we could make the update to the servo motor
faster, we would make the rate much higher.

Since the car was a bit heavy, the car had a very hard time making tight turns as high
speeds. The car would always go off the track, and then return back to the track and complete the
turn. This results in lost time, since the car has to deaccelerate more to complete the turn, and
was not taking the fastest route. To alleviate this problem, the car had to turn earlier. I tried to
make the car be sensitive to small, consistent changes on the track, which meant raising the
proportional gain. As a result, the car would oscillate, and then would make the turns. I had to
balance how much time the car would waste on oscillating on the straight track, or on making the

turn.

We kept using two cameras to detect the edges of the track, instead of switching to one
camera. We had to sample twice as much data, but we would be more accurate in determining
where in the track the car was. We decided to use the threshold voltage method for analysis

because it was faster than the slope method and was more reliable.

Camera Mount
by Kevin Su

The initial intended goal of the design is to create a design that has a low center of gravity
and mimic current automotive aerodynamics to reduce camera shake in order to get the best data
possible. Starting up with a clear styrene platform with steel poles sticking out worked great, but
the car was slowed down by the weight. The car also needed to be faster and more stable, so |
decided to use a thermoplastic to mold the individual supports by hand that hold the car together.
This not only made the car stable, it made retrieving the car a much easier process. Knowing that
the triangular shape is the strongest geometrical shape, I choose triangles to be the support shape.
The design of camera support is then inspired by a bridge structure called a “truss bridge”. The
triangular spaces on the car also allowed air to pass through so it wouldn’t stop the car from
reaching its full potential. Through trial and error we realized that to make the sharp turns faster
we had to receive the camera data earlier so we can send the signal to the servo in time for the
turn. Therefore we extended the camera as far as possible in order to make the turn and have the
car stay in the track. There was also a slight delay in the response of the servo, so in pushing the
camera far out it also made up for the delay. The maximum camera sampling rate was too low

but we tried to make it up with good camera data. Although the camera would look out far and

make the turns and intersections on the flat track, when it got up hills it would lose sight of the
track and giving it the false sense of a turn. We then attached small angle brackets so we can
adjust the angle at which the camera is looking at. The angle is also very important due to the
camera’s limitations. The camera was viewing too far and since all cameras had a drop off at the
end of the set of image data we had to angle it down so it wouldn’t mess with our derivative
values and disturb our turns. By taking out the first couple pixels of the image data array we
fixed that problem. Due to the camera gathering data algorithm, with one camera looking from
right to left we had to flip the other camera to basically inverting what it gathered. Therefore one
side of the camera mount is higher than the other to make up for the fact that one set of data is
for right turns and the other for left turns. A couple weeks into testing the car we realized the
performance of the car would increase and decrease without changing the algorithm or the
mount. After shining a bright light on the track during some of our test runs we then realized
that lighting was a really big issue. Since the amount of charge that was gathered at the pixel
through a capacitor was directly related to the light intensity and the integration time and
therefore the data; we had to reduce that. I built a camera housing for the back of the camera to
reduce the light noise, we also sealed it with electrical tape for extra support. We also had to
make sure that we had evenly lighting of the track every time we test the car. In the future we
plan on adding a set of LEDs to make sure that the lighting is the same every time we tested it.
At one point one of our camera lenses fell out and that is how we figured out that we can further
refine our image data from focusing the camera lens. We used an oscilloscope and connected the
SI and CO signals and rotated the lens until the black line was clearly seen by the camera and we

taped it down using electrical tape. The chassis of the car were giving us some problem due to

the fact that our turns were so sharp that our wheel was rubbing the chassis and stopping one of
the wheels from turning. We couldn’t make any changes to the chassis of the car so we had to
limit the max angle of the servo as a trade-off; it wasn’t the most ideal, but it made the turns
during the class competitions. Although the camera data was good enough the rest depended on
the algorithm applied to it. We tested our car with a PID controller and we ended up with using
a PD controller the Integral term didn’t make much of a difference. Our derivative term took
some tweaking to get right since we always ended up with too much noise. To solve that we

divided the term by the inverted gain to reduce the noise when the derivative term changes.

Motor Control Board

by Siyuan “Peter” Hu

The objective of the self-made motor control board is to allow us to make custom
modifications in addition to the Freescale TFC Shield functionalities and to satisfy the NATcar
competition requirement. The motor board itself contains parts like discrete transistors, diodes,
capacitors, terminal blocks, 18-pins socket, MAX620 chip. We finished building the motor
control board following the lab manual description and the related motor control board schematic
posted on SmartSite. Something to keep in mind is to have all the proper capacitors properly
connected to the given PCB board. Capacitors in the wrong places might cause shorting the Vcc
to GND.

In addition to the motor control board, we found it necessary and convenient to add a
separate breadboard to the design. Having a breadboard allows us to have all the Ground(GND)

pins properly grounded, give proper voltage(5V) for the processor board, MAX chip and the

servo motor. Another key element of having this separate breadboard is to include a 1-ohm
resistor to limit the current goes to the DC motor when the switch goes from OFF to ON. On this
breadboard we also built connection for both camera pins and servo pins so we can easily
identify and test the data received/sent from/to the cameras and servo.

Moreover, we also built a simple circuit using the +5V regulator(LM2940) with a setup
of decoupling capacitors to regulate maximum current of our circuit. This is a necessary step
because 5V is the recommended voltage for the processor board, MAX chip, and servo motor.
Having this +5V regulator circuit allows us to ensure the current going to each key component of
our design.

Lastly, in order to have the full functionalities of the Freescale TFC shield, we also built a little
circuit board contains two potentiometers and two switches to turn on the motor and servo. To
ensure the potentiometers and the switches are working properly, we first tested the behaviors of
them using the combination of Oscilloscope, Power supply, Voltmeter, and Function generator.

Tradeoffs & Improvements

There are quite a bit of tradeoffs in our current self-made PCB motor control board. First
tradeoft is that we have multiple boards “lying” within our car. We need to have multiple wires
to connect the boards together to make our design complete. Although having multiple boards
allow us to test out the parts before connecting, multiple boards add weights to the car and could
possibly slow down our speed.

The quick bread-boarding prototype saved us quite some time building up the board, but
left with lots of wires hanging around, which can be easily come out, create unwanted shorts.

Also, the loose wire connections of the breadboard give us lots of noise for the camera data.

Our little circuit board with potentiometers and switches also can be improved. Our current
design keep them right next to each other. It allows easy access to them; however, we used the
parts from we found in lab. The potentiometers require we use a small screwdriver to turn the
knots and the switches are quite small to turn them off and on.

In order to solve these issue, we are looking to design and build our own PCB during
Spring break and have it ready prior to the Freescale Cup competition. On this PCB we are going
to build, we will have all the functionalities that all the circuit boards had listed above. Having
one PCB can have us to decrease the weights of the car and decrease the numbers of loose wires
hanging around. On this PCB board, we will purchase big enough potentiometers, which we can
turn the knots by our fingers; simple button ON/OFF switches allow us to quickly turn on the

motors and ready for the race.

LineScan Camera Configuration:Ping Pong buffer

Specs: About the camera function and how we implemented our program
by Thien Nguyen

Our camera interface has two signals, which are SI and clock. Those two act as output
from our processor board and input signal to camera. The SI and Clock signal take in between 0
to 3 volts. The SI single is used to control the integration time of the pixel. The integration time
determines how long each pixel is exposed to light. In the dim lighting environment, we would
need a relatively long integration time so that the pixels corresponding to white objects reach a
sufficient voltage to distinguish from dark objects. Also, control the integration time is extremely

useful for varying lighting conditions. On the other hand, we would need short integration time

in the bright environment. Since we need to maintain the contrast between light and dark objects,
we only require having short integration time. With intense light and long integration time, we
risk to saturating all the pixels and losing the contrast between light and dark pixels. Both of the
cameras receive the same SI and CLK signals, so their integration time is the same. The
minimum integration time is calculated as follow: (128-18)*clock period + 20pus. The 128 is the
number of pixels in series and the 18 is the needed logic setup clocks. The 20us is the pixel
charge transfer time. Our clock signal is 7.4pus. The calculation is (128-18) * 7.4 us + 20 ps =
0.01628s. Basically the minimum integration time is the time it is required to clock out the pixels
in addition to the time to discharge the pixels. An increase in minimum integration time would
mean a slower clock speed and the maximum light level is reduced. The clock signal is used to
shift out each of 128 analog pixel voltages sequentially. For this project, all we have to do is
implement the code to generate SI and Clock signal by using a Periodic Interrupt Timer (PIT)
interrupt. This PIT interrupt handler will also generate the first CLK cycle and start an A/D
conversion for pixel 1. The ADC will generate an interrupt when the conversion is complete. The
ADC interrupt handler will read the A/D value and store it in a ping and pong buffer, generate
the next clock signal and start the next A/D conversion for pixel 2. Ping-pong buffer is a way to
speed up a computer that can overlap I/O processing. Data in one buffer is processed while the
next set of data is read into the other one. We implemented ping-pong buffers by first creating 2
buffers, and filling one up at a time, while the other one is being analyzed. The ADC interrupt
handler stores the converted values into either an unfilled ping buffer or an unfilled pong buffer.
Then it starts another conversion, and stops once the buffer counter (also the clock counter)

reaches 128. Once the count reaches 128, it sets the global variables “pingdone” and “readping”

to 1, or “pongdone” and “readpong” to 1. The global variables “pingdone” and “pongdone” are 1
when their buffers are full, and 0 when it is ready to be filled, while “readping” and “readpong”
are 1 when their buffers are ready to be operated on, and 0 when the average and difference are
already calculated. Then, inside the main function, if a buffer is filled, the buffer is operated on,
and then clears the “read ping” and “readpong” variables to 0. During this time, the ADC can be
collecting data on the other buffer. First, we set up the UART function so that we can control the
microcontroller using serial input, and see the serial output on a terminal. Then, we created a
ping-pong buffer so that we could read in new values into one buffer and evaluate the values in
the other buffer. Once we filled a buffer, the average and the difference between the maximum
and minimum was calculated. We calculated the average by summing the values and dividing by
128. You can also divide by 128 by shifting to the right 7 bits. The maximum and minimum were
obtained by sweeping through the buffer during the summing process, and using a comparison
function. Then, we converted the ADC values into hexadecimal characters, so that the data can
be easily read. The lower 4 bits of the 8-bit ADC value were extracted using a mask (0x0F), and
the upper 4 bits were extracted by dividing the value by 32.The high pulse signal is on PTB3.
The GPIO signal used to measure the conversion time of the 128 pixels goes high for 400 us
(microseconds). The period for the PIT interrupts is 600 us when the program is running at its
maximum frequency. Thus, the duty cycle of this GPIO signal is 67%. The limiting factor in
determining the maximum between the rate of PIT interrupts is length of time the ADC spends
taking in values and converting them, and the length of time the main function spends processing
the data. One of the most important part is that we have to use TFC shield, which has an

interface (J6 header) to the linescan camera. We need to connect the ribbon cable from the J6

header on the TFC shield to the linescan camera. One of the most important things when we set
up for the TFC shield is to consider the light noise. To prevent as much noise, we follow the lab
instruction by put a piece of black electrical tape across the back of the linescan camera pcb. The
length of the ADC conversion for the 2 cameras is 1 ms. The optimal configuration is to have the
2 cameras about 6 inches apart from each other, and 5 inches off the ground. We used the
simulated line scan camera program to communicate with the line scan camera. Once we
confirmed that the camera works, we tested on the track paper with different SI frequencies and
at different heights. For the voltage threshold method, we converted the values into 1 or 0
depending on whether the value was higher or lower than 80% of the maximum value. We
calculated the index of the buffer that correlates to the center of the black line by finding the
point where the buffer goes from 1 -> 0 and the point where the buffer goes from 0 -> 1, and
then calculating the average of the two points. If the camera does not detect a black line, the
default index value is set to either 0 or 128, depending on whether the camera is used for the left
black line or the right black line of the track. For the slope method, we used the difference
equation to calculate the slope, and found the index of the buffer that correlates to the center of
the black line by finding the point with the maximum slope. This point describes where the track
goes from black to white, or white to black. One of the good things using the slope method is

because it is easier the find the center of the black line by finding the maximum slope.

III. Design and Performance Summary
For the first competition, our car clocked in at 23.7 s, which was 4.8 ft/s. For the second

competition, our car clocked in at 31.2 s, which was 5.1 ft/s. Our car was heavy due to the

amount of plastic on the chassis. We wanted to distribute the weight evenly on the car, but we
ended up making it heavier. We may build a lighter mount so that the car can speed up and turn
faster. We used wires and a breadboard to hook up our motor control board to the processor. For
the next competitions, we are planning on building a PCB board to house all the connections.
The algorithm was designed so that while one buffer is being filled by the camera data, the
processor would be analyzing the data from the other buffer. At 50 Hz though, it seems that
having one buffer is enough, since analyzing the data would not take too long. We might move

to one buffer before the Freescale Cup.

IV. Safety

The bumper consists of a bumper that was the length of the camera mount therefore to
not damage the camera or anything that it hits. We wanted an easy way to grab our car in case it
loses track and runs into people. By using the plastic material on top of the chassis it made it
sturdy enough to grab simply by one support. The design of the car created a “handle” shape for
easy retrieval of the car in case it loses track of its target. The overall car design was meant to
stay low and out of the way but sturdy enough to survive a collision with other cars. We also
tapped the wires down and hid it in a cardboard housing so that it wouldn’t tangle with any other
car wires or short out any part of our circuit. In the algorithm we tried to put in a stop function
for our car when it would run off the track. However, it was unreliable, since it would not stop
when the car ran out of the track, and would stop when the car was still on the track. We are

planning to add a stop function by the time the Freescale Cup starts.

V. Appendixes

Current camera
e allows us to quickly adjust the camera angles

SV for Servo, Max Chip ——__

3.3V for Cameras

Design for the new PCB board (To-Be-Finished)

— All the on the motor control board /
| capacitors, DMOS(s) /
/

MAX Chip goes here —,

In order to eliminate the loose wires, we decide to have a similar design to the TFC shield
to have the plug & play functionality

We will have 3 different voltage port(7.2V, 5V, 3.3V) on the PCB board for testing
purposes

In order to protect each component from possible shorting, we will have four different
push button switches. This allows the current to only go to the component we are testing
and keep everything else safe

Advantages

light weight

No loose wires

Plug and play

easy to debug each component on the board

Code

/* Alisson Li
Kevin Su

Siyuan "Peter" Hu
Thien Nguyen

*/

/*

//PTDS5: ADC channel C1

//PTB3: POT1

//PTB0O: PWM output signal for servo motor

//PTBS: Pit interrupt square wave toggle (x2 sampling rate)
PTD7 ->GPIO: SI

PTE1 ->GPIO: CLK

*/

#include "main.h" /* include peripheral declarations */
#include "stdio.h"
#include "stdlib.h"

volatile int period us = 10000; //100 Hz //controls pit frequency
volatile char data[128]; //not relevant

volatile unsigned inti=0; //for a loop

volatile unsigned int clkcounter = 0; //counts clock cycle

//1ms = 3000 2ms = 6000
volatile unsigned short PW1;//4300;
volatile unsigned short PW2 = 0;
volatile unsigned short PW3 = 0;
volatile char TPMflag = 0;

volatile char pingc1[128]; // holds pingcl buffer
volatile int pingdone = 0; //holds flag if buffer is filled
volatile char pongc1[128];
volatile int pongdone = 0;

volatile int readping = 0; //holds flag to show if pingcl buffer is read
volatile int readpong = 0;

volatile int b = 0;

volatile char ping10c1[128]; //holds 1/0 values (voltage threshold)
volatile char pong10c1[128];

volatile char ping10c2[128]; //holds 1/0 values (voltage threshold)
volatile char pong10c2[128];

volatile char pingclslope[128]; //holds slope value
volatile char pongclslope[128]; /!

volatile char pingc2slope[128];
volatile char pongc2slope[128];

volatile int pingpslope; //holds positive slope
volatile int pongpslope;

volatile int pingcImaxslope; //holds maximum slope value
volatile int pongclmaxslope;

volatile int pingc2maxslope;
volatile int pongc2maxslope;

volatile char pingloc1 = 0;
volatile char pinghex[2];
volatile char ponglocl = 0;
volatile char ponghex[2];

volatile char pingloc2 = 0;
volatile char pongloc2 = 0;

volatile char pingthres[128];
volatile char pongthres[128];
volatile int ping0Oflagc1 = 0; /Ivoltage threshold 10 -> 01

volatile int pongOflagcl = 0;

volatile int pingOflage2 = 0;
volatile int pong0Oflagc2 = 0;

volatile int adcamflag = 0; //0->Cl;1->C2

volatile char pingc2[128];
volatile char pongc2[128];

volatile char pot[2];

volatile char start = 0;
volatile char end = 0;
volatile unsigned int swl,sw2;

volatile char A_IFBflag =0;
volatile char B_IFBflag =0;

volatile char IFB[2];
volatile char readIFB = 0;
volatile char IFBdone=1;

volatile int capmode = 1; //0:slope 1:voltage
volatile int center; /14300

volatile float turning = 25; //18 how hard to turn
volatile float turning_d = 60; //90; //how hard to d-turn
volatile int turnstat;

volatile int print = 0; //1:print to terminal 0:don't print
volatile int turn;

volatile int left;
volatile int right;

volatile int trackloc;
volatile int ig = 100;

volatile int df = 0;
//volatile int pastloc[3];

volatile int pastloc;

volatile int pclread = 0;
volatile int pc2read = 0;

volatile int maxcl = 0;
volatile int maxc2 = 0;

volatile int driftfunct = 0;

volatile int driftl = 0; //increase speed of left wheel

volatile int drift2 = 0; //increase speed of right wheel

volatile int driftgain = 10;
volatile int idrift = 10000;

volatile int sumterm = 0;
volatile int turning 1= 1;

/190

/148

volatile int iig = 100;

volatile int p1stall = 0;
volatile int p2stall = 0;

void LedInitialize() {

SIM->SCGC5 |= (1UL << 10) | (IUL <<11) |(IUL << 12)| (IUL <<13); /* Enable Clock
to Port B, C, D & E*/

PORTB->PCR[18] = (IUL << 8); /* Pin PTB1S is GPIO */

PORTB->PCR[19] = (IUL << 8); /* Pin PTB19 is GPIO */

PORTB->PCR[8] = (1UL << 8);
//Pin PTB8 is GPIO
PORTD->PCR[1] = (1UL << 8); /* Pin PTD1 is GPIO */
PORTD->PCR[7] = (1UL << 8);
//Pin PTD7 is GPIO ->SI
PORTE->PCR[1] = (1UL << 8);
//Pin PTE1 is GPIO ->CLK
PORTE->PCR][21] = (1UL << 8);
//Pin PTE21 is H-bridge enable

PORTC->PCR[4] = (1UL << 8);
//Pin PTC4 is GPIO =0
PORTC->PCR[2] = (1UL << 8);
//Pin PTC2 is GPIO =0
PORTC->PCR[13] = PORT _PCR_MUX(1);
//Pin PTC13 is set to input
PORTC->PCR[17] = PORT PCR MUX(1);

FPTB->PDOR = ((1UL <<19) | (1UL <<18) | (1UL <<3)| (1UL <<8)); /* switch
Red/Green LED off */
FPTB->PDDR = ((1UL <<19) | (IUL <<18) | (1UL <<3)| (1UL <<8)); /* enable
PTB18/19 as Output */
FPTD->PDOR = (1UL <<1) | (1UL <<7); /* switch Blue LED off */
FPTD->PDDR = (1UL <<1) | (1UL <<7); /* enable PTD1 and PTD7as Output */

FPTE->PDOR = (1UL <<1) | (1UL << 21);
FPTE->PDDR = (1UL <<1) | (1UL << 21);

FPTC->PDDR &= ~(1UL << 13);
FPTC->PDDR &= ~(1UL << 17); //Configure as input~(1UL << 17); //Configure as
input

FPTC->PDOR |= (1UL <<4) | (1UL <<2);
FPTC->PDDR |= ((IUL <<4) | (1UL <<2));
FPTC->PCOR |= (1UL <<4) | (1UL <<2);

}

void InitPIT(){
// PIT module enable

// Enable clock to PIT module
SIM->SCGC6 |- SIM_SCGC6 PIT MASK;

// Enable module, freeze timers in debug mode
PIT->MCR &=~PIT MCR_MDIS MASK;
PIT->MCR |= PIT MCR_FRZ MASK;

// Initialize PITO to count down from argument
PIT->CHANNEL[0].LDVAL =PIT _LDVAL TSV(period us*24); // 24 MHz clock
frequency

// No chaining
PIT->CHANNEL[0].TCTRL &=PIT TCTRL CHN MASK;

// Generate interrupts
PIT->CHANNEL[0].TCTRL |=PIT TCTRL TIE MASK;

/* Enable Interrupts */

NVIC_SetPriority(PIT_IRQn, 128); // 0, 64, 128 or 192
NVIC_ClearPendingIRQ(PIT IRQn);

NVIC EnableIRQ(PIT IRQn);

}

void PIT IRQHandler() {
//clear pending IRQ
NVIC_ClearPendingIRQ(PIT IRQn);

// check to see which channel triggered interrupt
if (PIT->CHANNEL[0].TFLG & PIT TFLG TIF MASK) {

// clear status flag for timer channel 0
PIT->CHANNELJ[0].TFLG &= PIT_TFLG_TIF_MASK;

/' Do ISR work - move next sample from buffer to DAC

FPTD->PSOR = (1UL << 7);
PTD7 hi SI

clkcounter = 0;
//delay 20 ns

FPTE->PSOR = (1UL << 1);
CLK PTEI1 hi CLK

FPTB->PTOR = (1UL << 8);
toggle PTBS
//delay 120 ns

FPTD->PCOR = (1UL << 7);
PTD7 low

ADCO0->CFG2 = ADC_CFG2 MUXSEL MASK;
ADCO0->SC1[0] = ADC_SC1_AIEN MASK | 0x6;
conversion (software trigger) on AD12 i.e. ADCO SE12 (PTB2)

interrupt enabled

//FPTE->PCOR = (1UL << 1);
//set CLK PTE1 low

} else if (PIT->CHANNEL[1].TFLG & PIT TFLG TIF MASK) {

// clear status flag for timer channel 1
PIT->CHANNEL[1].TFLG &= PIT_TFLG TIF _MASK;

}
void Init. ADC(void) {

// Calibrate ADC

//set SI

//set

/!

//set SI

// start

//ADC

unsigned short cal var;
SIM->SCGC6 |= (SIM_SCGC6 ADCO MASK); // Enable ADCO clock

ADC0->SC2 &= ~ADC SC2 ADTRG MASK ; // Enable Software Conversion Trigger for
Calibration Process - ADCO SC2=ADCO0 SC2 | ADC SC2 ADTRGW(0);

ADCO0->SC3 &= (~ADC _SC3 ADCO_MASK & ~ADC _SC3 AVGS _MASK); // set single
conversion, clear avgs bitfield for next writing

ADCO0->SC3 |= (ADC_SC3 AVGE MASK | ADC_SC3 AVGS(0x03)); // Turn averaging
ON and set at max|1 value (16)

ADCO0->SC3 |= ADC_SC3 CAL MASK; //Start CAL
while ((ADC0->SC1[0] & ADC_SC1_COCO MASK) == 0x00); // Wait calibration end

// Calculate plus-side calibration
cal_var = 0x00;

cal var= ADCO->CLPO;

cal var += ADCO->CLP1;
cal var += ADCO0->CLP2;
cal_var += ADCO0->CLP3;
cal var += ADC0->CLP4;
cal var += ADCO0->CLPS;

cal var = cal var/2;
cal var |= 0x8000; // Set MSB

ADCO0->PG = ADC_PG_PG(cal var);

// Calculate minus-side calibration
cal_var = 0x00;

cal var= ADCO0->CLMO;

cal _var += ADC0->CLM1;
cal var += ADCO0->CLM2;
cal_var += ADCO0->CLM3;
cal var += ADC0->CLM4;
cal var += ADCO0->CLMS;

cal_var = cal var/2;

cal var |= 0x8000; // Set MSB

ADCO->MG = ADC_MG MG(cal var);

ADCO0->SC3 &=~ADC _SC3 CAL MASK ; /* Clear CAL bit */

ADCO0->CFG1 = (ADC_CFG1_ADLPC MASK | 0x01); // 8 bit, Bus clock/2 =12
MHz

ADC0->SC2 = 0; /I ADTRG=0 (software trigger mode)

//intialize ADC
ADCO0->CFG1 = ADC_CFG1_MODE(0x00)

| ADC_CFGI1_ADICLK(0x00); //CFG1

ADCO0->CFG2 = ADC_CFG2 MUXSEL MASK;
ADCO0->SC2 = ADC_SC2 REFSEL(0x00);
ADCO0->SC3 =0;

NVIC EnableIRQ(ADCO _IRQn); //enable interrupt

}

void Init PWM(void) {

/I Set up the clock source for MCGPLLCLK/2.

// See p. 124 and 195-196 of the KL.25 Sub-Family Reference Manual, Rev. 3, Sept 2012
/I TPM clock will be 48.0 MHz if CLOCK_SETUP is 1 in system MKIL25Z4.c.

SIM-> SOPT2 |= (SIM_SOPT2 TPMSRC(0) |SIM_SOPT2 TPMSRC(1) |
SIM_SOPT2 PLLFLLSEL MASK);

/I 'See p. 207 of the KL25 Sub-Family Reference Manual, Rev. 3, Sept 2012

SIM->SCGC6 |= SIM_SCGC6 TPM1 MASK | SIM_SCGC6 TPMO MASK ; // Turn
on clock to TPM1 and TPMO

/I See p. 163 and p. 183-184 of the KL.25 Sub-Family Reference Manual, Rev. 3, Sept 2012
PORTB->PCR[0] = PORT PCR_MUX(3); // Configure PTB0 as TPM1_ CHO
PORTC->PCR[3] = PORT PCR_MUX(4); // Configure PTC3 as TPM0_CH2
PORTC->PCR[1] =PORT_PCR_MUX(4); // Configure PTC1 as TPM0_CH2

/I Set channel TPM1_CHI to edge-aligned, high-true PWM and the CHF interrupt

TPM1->CONTROLS[0].CnSC = TPM_CnSC_MSB MASK |
TPM_CnSC_ELSB_MASK | TPM_CnSC_CHF MASK | TPM_CnSC_CHIE MASK;
TPMO->CONTROLS[2].CnSC = TPM_CnSC_MSB MASK |
TPM_CnSC_ELSB_MASK | TPM_CnSC_CHF MASK | TPM_CnSC CHIE MASK;
TPMO->CONTROLS[0].CnSC = TPM_CnSC_MSB_MASK |
TPM CnSC_ELSB _MASK | TPM_CnSC_CHF MASK | TPM_CnSC CHIE MASK;;

// Set period and pulse widths

TPM1->MOD = 60000-1; // Freq. = (48 MHz / 16) / 60000 = 50 Hz
TPM1->CONTROLS[0].CnV = PW1;

TPMO->MOD = 600-1; // Freq. = (48 MHz / 16) / 600 = 5000 Hz
TPMO->CONTROLS[2].CnV = PW2;

TPMO->MOD = 600-1; // Freq. = (48 MHz / 16) / 600 = 5000 Hz
TPMO->CONTROLS[0].CnV = PW3;

// set TPM1 to up-counter, divide by 16 prescaler and clock mode

//TPM1->SC = (TPM_SC_TOF_MASK | TPM_SC_CMOD(1) | TPM_SC_PS(4));
TPM1->SC = (TPM_SC_CMOD(1) | TPM_SC_PS(4));
TPMO0->SC = (TPM_SC_CMOD(1) | TPM_SC_PS(4));

// clear the overflow mask by writing 1 to TOF
//if (TPM1->SC & TPM_SC_TOF MASK) TPM1->SC |= TPM_SC_TOF MASK;
if (TPM1->CONTROLS[0].CnSC & TPM_CnSC_CHIE_MASK)
TPM1->CONTROLS[0].CnSC |= TPM_CnSC_CHIE _MASK;

if (TPMO->CONTROLS[2].CnSC & TPM_CnSC_CHIE_MASK)
TPMO->CONTROLS[2].CnSC |= TPM_CnSC_CHIE_MASK;

if (TPMO->CONTROLS[0].CnSC & TPM_CnSC_CHIE_MASK)
TPMO->CONTROLS[0].CnSC |= TPM_CnSC_CHIE MASK;

// Enable Interrupts

NVIC_SetPriority(TPM1_IRQn, 192);// 0, 64, 128 or 192
NVIC_ClearPendingIRQ(TPM1 _IRQn);
NVIC EnableIRQ(TPM1 IRQn);

NVIC_SetPriority(TPMO_IRQn, 192); // 0, 64, 128 or 192

NVIC_ClearPendingIRQ(TPMO IRQn);
/INVIC_EnableIRQ(TPMO_IRQn);

}

void TPM1 IRQHandler(void) {

//clear pending IRQ
NVIC_ClearPendingIRQ(TPM1_IRQn);

// clear the overflow mask by writing 1 to TOF

if (TPM1->CONTROLS[0].CnSC & TPM_CnSC_CHIE MASK)
TPM1->CONTROLS[0].CnSC |= TPM_CnSC_CHIE_MASK;

// modify pulse width for TPM1_ CHI1
TPM1->CONTROLS[0].CnV = PWI;

void TPMO_IRQHandler(void) {

//clear pending IRQ
NVIC_ClearPendingIRQ(TPMO_IRQn);

// clear the overflow mask by writing 1 to TOF

if (TPMO->CONTROLS[2].CnSC & TPM_CnSC_CHIE MASK)
TPMO->CONTROLS[2].CnSC |= TPM_CnSC_CHIE MASK;

if (TPMO->CONTROLS[0].CnSC & TPM_CnSC_CHIE_MASK)
TPMO->CONTROLS[0].CnSC |= TPM_CnSC_CHIE_MASK;

TPMO->CONTROLS[2].CnV = PW2;
TPMO->CONTROLS[0].CnV = PW3;

void ADCO_IRQHandler(void){

//clear pending IRQ
NVIC_ClearPending]RQ(ADCO IRQn);

if(pingdone ==0){

if(adcamflag ==0){
pingcl[clkcounter]= ADCO->R][0];
to pingcl
adcamflag =1;

//if(clkcounter<128){

FPTE->PSOR = (1UL << 1);
//set CLK PTE1 hi

ADCO0->SC1[0] = ADC_SC1_AIEN MASK |7;
conversion (software trigger)

/*}

else if(clkcounter==128){

// read result register

// start

pingdone = 1; //pingcl buffer finished
readping = 1; //analyze pingcl buffer
readpong = 0;
pongdone = 0;

//FPTE->PCOR = (1UL << 1);
//set CLK PTE1 low

}
*/

else{

pingc2[clkcounter]= ADCO->R[0];
to pingc2

adcamflag = 0;

FPTE->PCOR = (1UL << 1);
//set CLK PTE1 low

if(clkcounter<128){

clkcounter++;

// read result register

ADC0->SC1[0] = ADC_SC1_AIEN MASK |6;

// start conversion (software trigger)

}
else if(clkcounter==128){

pingdone = 1; //pingc] buffer finished
readping = 1; //analyze pingcl buffer
readpong = 0;

pongdone = 0;

//FPTE->PCOR = (1UL << 1);
//set CLK PTE1 low

}
}

}
else if (pongdone == 0){

if(adcamflag ==0){
pongcl[clkcounter] = ADCO->R[0]; // read result register to
pongcl
adcamflag = 1;
//if(clkcounter<128){
FPTE->PSOR = (1UL << 1);
//set CLK PTE1 hi
ADCO0->SC1[0] = ADC_SC1_AIEN MASK |7; // start
conversion (software trigger)
/*
h
else if(clkcounter==128){
pingdone = 0; /Ipingcl buffer finished
readping = 0; //analyze pingcl buffer
readpong = 1;
pongdone = 1;
//FPTE->PCOR = (1UL << 1),
//set CLK PTE1 low
j
*/
h

else{
pongc2[clkcounter] = ADCO->R[0]; //read result register to pongc2
adcamflag = 0;
FPTE->PCOR = (1UL << 1);
//set CLK PTE1 low
if(clkcounter<128){
clkcounter++;
ADCO0->SC1[0] = ADC_SC1_AIEN MASK | 6;
// start conversion (software trigger)

b

else if(clkcounter==128){

pingdone = 0; //pingcl buffer finished
readping = 0; //analyze pingcl buffer

readpong = 1;

pongdone = 1;
//FPTE->PCOR = (1UL << 1);
//set CLK PTE1 low
h
}

void put(char *ptr_str)
{
while(*ptr_str)
uart0_putchar(*ptr_str++);

int main(void){
int uart0_clk khz;
inta=0;

//Read buffer variables
int max1 = 0;

int max2 = 0;

char ad;

int onethcl = 0;
int onethc2 = 0;

center = 4100; /4300

PW1 = center;
trackloc = center;
pastloc = center;
turnstat = turning;

pot[0] = 0;
pot[1] = 0;

/* Enable the pins for the selected UART */
/* Enable the UART TXD function on PTA1 */

SIM->SCGCS |= (SIM_SCGC5 PORTA_MASK
| SIM_SCGC5 PORTB._MASK
| SIM_SCGC5 PORTC MASK
| SIM_SCGC5 PORTD _MASK
| SIM_SCGC5 PORTE MASK);
SIM->SOPT2 |= SIM_SOPT2 PLLFLLSEL MASK; // set PLLFLLSEL to select the
PLL for this clock source
SIM->SOPT2 |= SIM_SOPT2 UARTOSRC(1); // select the PLLFLLCLK as UARTO
clock source

PORTA->PCR[1] =PORT_PCR_MUX(0x2); // Enable the UARTO0 RX
function on PTA1

PORTA->PCR[2] = PORT_PCR_MUX(0x2); // Enable the UARTO_TX
function on PTA2

uart0_clk khz = (48000000 / 1000); // UARTO clock frequency will equal half the PLL
frequency
uart0_init (vart0 clk khz, TERMINAL BAUD);

LedlInitialize();
InitPIT();

PIT->CHANNEL[0].TCTRL |=PIT TCTRL TEN MASK; //start PIT

Init. ADC();
Init PWM();

PORTC->PCR[13] = PORT PCR MUX(1);
//Pin PTC13 is set to input
PORTC->PCR[17] = PORT _PCR_MUX(1);

FPTC->PDDR &= ~(1UL << 13);
FPTC->PDDR &= ~(1UL << 17); //Configure as input~(1UL << 17); //Configure as
input

while(1) {

if(start ==0){
swl = FPTC->PDIR&(1UL<<13);
if(swl){
start = 1;

//FPTE->PSOR |= (1UL <<21);
NVIC EnableIRQ(TPMO _IRQn);

else if(start ==1){
sw2 = FPTC-> PDIR & (1<<17);
if(sw2){
start = 2;
NVIC DisableIRQ(TPMO IRQn);
break;

ADCO0->SC1[0] = 0xD; // start conversion (software trigger)
on AD12 i.e. ADCO _SE12 (PTB2)
while (I(ADCO0->SC1[0] & ADC_SC1_COCO_MASK)) { ; // wait for
conversion to complete (polling)
pot[0] = ADCO->R][0];

//hex: diff
ADCO0->SC1[0] = 0xC;
while ((ADC0->SC1[0] & ADC_SC1_COCO_MASK)) { 5} // wait for

conversion to complete (polling)
pot[1] = ADCO->R][0];

//Potentiometer control

PW?2 = (pot[0] * 399)/ OXFF;
PW3 = PW2;

turnstat = turning/2 + (pot[1] * turning/ 0xFF);

while(1){

if(readping == 1){
readping = 0;

max1 = pingc1[0];
max?2 = pingc2[0];

for(b=1;b < 128; b++){
if(max1 < pingcl1[b])
max1 = pingcl[b];

if(max2 < pingc2[b])
max2 = pingc2[b];

else;
}
/*
if(capmode == 0){

pingclmaxslope = 0;
pingc2maxslope = 0;
pingloc1 = 0;
pingloc2 = 0;

for(b=1;b < 128; b++){
pingclslope[b] = (pingc1[b+1] - pingc1[b-1])/2;
// divide by 2 not required
pingc2slope[b] = (pingc2[b+1] - pingc2[b-1])/2;
// divide by 2 not required
//check for center of black line

if (b>0) && (b<127)){
// ping 1
if((pingclslope[b] & 0x80) == 0x80)
pingpslope = pingclslope[b] * -1;

else

pingpslope = pingclslope[b];

if(pingpslope > pingc1maxslope){
pingclmaxslope = pingpslope;
pingloc1 = b;

//pong c2
if((pingc2slope[b] & 0x80) == 0x80)
pingpslope = pingc2slope[b] * -1;

else
pingpslope = pingc2slope[b];
if(pingpslope > pingc2maxslope){
pingc2maxslope = pingpslope;
pingloc2 = b;

//voltage threshold

if(capmode == 1){
*/

onethcl = max1 * .8;
onethc2 = max2 * .8;

if((maxcl < onethcl) && (max1 < 255)){

maxcl = onethcl;

}

if((maxc2 < onethc2)&& (max2 < 255))¢
maxc2 = onethc?2;

}

//ping0Oflagcl =0;
//ping0flagc2 =0;
/Ipingloc1 = pclread;
//pingloc2 = pc2read;

for(a=127;a>=0; a--){

//calculate voltage threshold of c1
if(pingc1[a] > onethc1){
pinglOclfa] =1;

else{
pinglOcl[a] = 0;
if((pingl0cl[a+1] == 1) && (pinglOcl[a+2] ==
1)&& (pingl0cl[at3]==1) && (a <123)){
pinglocl = a;
//break;

b
for(a=127; a>=0; a--){
//calculate voltage threshold of c2

if(pingc2[a] > onethc2){
pingl0c2[a] = 1;

else{
pingl0c2[a] = 0;
if((pingl0c2[a+1] == 1) && (ping10c2[a+2] ==
)&& (pingl0c2[a+3] == 1) && (a <123)){
pingloc2 = a;
break;

}

if(max1 <maxcl * .35)
pinglocl = pclread,

if(max2 < maxc2 * .35)
pingloc2 = pc2read;

/Iy

//convert index to hex

out index of black line

//convert index to hex

pclread = pinglocl;
pc2read = pingloc2;

if(print == 1){

//ping cl
ad = pingloc1 & 0x0f;

if(ad < 10)
pinghex[1]=ad +'0";
else
pinghex[1]=ad - 10 +'A’;

ad = pingloc1 / 16;
if(ad < 10)
pinghex[0] =ad +'0";
else
pinghex[0] =ad - 10 +'A’;

uart0_putchar(10);
uart0_putchar(13);

for (a=0; a <2; at+){
uart0_putchar(pinghex[a]);

h
uart0_putchar('');

//ping c2
ad = pingloc2 & 0x0f;

if(ad < 10)
pinghex[1] =ad +'0';
else
pinghex[1]=ad - 10 +'A";

ad = pingloc2 / 16;
if(ad < 10)

pinghex[0] =ad +'0";
else

//print

pinghex[0] =ad - 10 +'A";

for (a=0; a <2; at++){
uart0_putchar(pinghex[a]); //print
out index of black line

h
uart0_putchar('');

trackloc = center + pingloc1 * turnstat- pingloc2 * turnstat; //P

df = ((trackloc - pastloc) * turning_d)/ig; //D
turn = trackloc + df; //P+D
if(turn >5000)
turn = 5000;
else if (turn < 3200)
turn = 3200;

PW1 =turn;
pastloc = turn;

}

//Calculate and display avg/diff

if(readpong == 1){

readpong = 0;

max1 = pongcl[0];
max2 = pongc2[0];

for(b=1; b < 128; b++){
if(max1 < pongcl[b])
max1 = pongcl[b];

if(max2 < pongc2[b])
max2 = pongc2[b];

j

/*

if(capmode == 0){
pongclmaxslope = 0;
pongc2maxslope = 0;

ponglocl = 0;
pongloc2 = 0;

for(b=1;b < 128; b++){

pongclslope[b] = (pongcl[b+1] - pongcl[b-1])/2;
// divide by 2 not required

pongc2slope[b] = (pongc2[b+1] - pongc2[b-1])/2;
// divide by 2 not required

if (b>0) && (b<128)){
//find index of center of black line

//pong cl
if((pongclslope[b] & 0x80) == 0x80)
pongpslope = pongclslope[b] * -1;

else
pongpslope = pongclslope[b];

if(pongpslope > pongclmaxslope) {
pongclmaxslope = pongpslope;
ponglocl = b;

b

//pong c2
if((pongc2slope[b] & 0x80) == 0x80)
pongpslope = pongc2slope[b] * -1;

else
pongpslope = pongc2slope[b];

if(pongpslope > pongc2maxslope){

pongc2maxslope = pongpslope;
pongloc2 = b;

/Ivoltage threshold

if(capmode == 1){
*/

onethcl = max1 * .§;
onethc2 = max2 * .8;

if((maxcl < onethcl) && (max1 < 255)){

maxcl = onethcl;

§

if((maxc2 < onethc2)&& (max2 < 255)){
maxc2 = onethc2;

}

//pong0flagc1 =0;
//pong0flagc2 =0;
/Iponglocl = pclread;
//pongloc2 = pc2read;

for(a=127; a >=0; a--){

//calculate voltage threshold of c1
if(pongcl1[a] > onethcl){
ponglOcla] =1;

else{
ponglOclfa] = 0;
if((ponglOcl[a+1]==1) && (ponglOcl[a+2] ==
1)&& (ponglOcl[at+3] == 1) && (a <123)){
ponglocl = a;
//break;

}
}
for(a=127;a>=0; a--){
//calculate voltage threshold of c2

if(pongc2[a] > onethc2){
ponglOc2[a] = 1;

else{

ponglOc2[a] = 0;
if((pongl0c2[at1] == 1) && (pongl0c2[a+2] ==
1)&& (pongl0c2[a+3] == 1) && (a <123)){
pongloc2 = a;
break;

}

if(max1 <maxcl * .35)
ponglocl = pclread,

if(max2 < maxc2 * .35)
pongloc2 = pc2read,

pclread = ponglocl;
pc2read = pongloc2;
1}

if(print == 1){

//pong cl
ad = pongloc! & 0x0f;
/lconvert index to hex
if(ad < 10)
ponghex[1] =ad +'0";
else
ponghex[1]=ad - 10 +'A";

ad = ponglocl / 16;
if(ad < 10)
ponghex[0] =ad +'0";
else
ponghex[0] =ad - 10 +'A";

uart0_putchar(10);
uart0_putchar(13);

out index of black line

//convert index to hex

out index of black line

V//MAIN(

for (a=0; a <2; a++){
uart0_putchar(ponghex[a]);

}

uart)_putchar('");

//pong c2
ad = pongloc2 & 0x0f;

if(ad < 10)
ponghex[1] =ad +'0";
else
ponghex[1]=ad - 10 +'A";

ad = pongloc2 / 16;
if(ad < 10)
ponghex[0] = ad +'0";
else
ponghex[0] =ad - 10 +'A";

for (a=0; a <2; a++){
uart0_putchar(ponghex[a]);

}
uart0_putchar('');

trackloc = center + pongloc1 * turnstat - pongloc2 * turnstat;

df = ((trackloc - pastloc) * turning d) /ig; //D
turn = trackloc + df; //P+D
if(turn >5000)

turn = 5000;

else if (turn < 3200)

turn = 3200;

PW1 =turn;
pastloc = turn;

}

//print

//print

//P

