NATCAR Final Report
EEC195AB

Weijie Zhang
Weitang Liu
Mason Lee

Brian Jae Kim

I. Overview: Executive Summary

The basic approach that we took with splitting work amongst the group was to have a main
person in charge of design while taking in the opinions of others. Our approach to software was to
have a main person code while the other people provided support and opinions. We found that this
was the most efficient way to work because having too many people code at the same time and
not being able to merge different peoples’ code together made it too difficult and inefficient. In
terms of hardware, the same idea applied. We mainly had one person as the main designer for
hardware, while the rest provided support and ideas. Virgil Zhang was our main person for
software, while Weitang Liu was our main person for hardware. Mason Lee provided support and
worked on car construction, while Brian Jae Kim provided support for various tasks and got

supplies.

Percentage of Overall Effort for each member:

Weijie Zhang: 30% Signature:
Weitang Liu: 30% Signature:
Mason Lee: 20% Signature:

Brian Jae Kim: 20% Signature:

I1. Detailed Technical Reports

A) Mason Lee: Camera Data and Current Feedback Capture/Processing

For our camera data capture, we used an ADCO interrupt handler, which would be
triggered by the camera each time there is a new value that needs to be stored and processed. In
the interrupt handler, we implemented the conversion system using two Ping-Pong buffers. While
our data is being stored in the Ping buffer, it is simultaneously processing the Pong buffer. The
same thing is true for when we are storing data in the Pong buffer, it is simultaneously processing
the data from the Ping buffer. We chose to implement Ping Pong buffer instead of just using one
buffer because it was much more efficient and allowed us to process our code much faster. We
implemented this system twice, once with cameral data and the other with the data from camera

2.

Specifically in our code, depending on the value of the camFlag variable, the data from the
camera would go to different ping/pong buffers. For example, if camFlag = 0, the data would go
to either the valPing or valPong buffer depending on whether the value of the Done_Flag is O or 1.
0 would indicate that it goes to the valPong[ind] buffer, while 1 would mean that it goes to the
ValPing[ind] buffer. Ind is the index of our buffer, which increments after every variable is stored.
Since the camera reads at 128 pixels, we determined our parameters for index at 128. This would
ensure that all data is stored and incremented to prevent overlapping of data. After storing values

from camera 1, the code will set it so the next value is from camera 2 and vice versa.

Next, in the case that we are storing values in the buffers designated to camera 1. After
storing those values, we will start ADC conversions on the corresponding buffer value on camera
2 with the code ADCO -> CFG2 |= ADC_CFG2_MUXSEL_MASK; ADCO0->SC1[0] =

(AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(7)); This would start the conversion of the data

that was received from camera 2. If we were storing values from camera 2, we would trigger the
conversion of camera 1 data by using the same code as above, but it would be

ADC_SC1_ADCH(7) rather than ADC_SC1_ADCH(6).

This allows us to use ping pong buffers to efficiently process and store data. With this, we
were able to store values from camera 1 into one buffer, while also process values from buffer?2.
The same process happens if we assume that we are storing values in camera 2, it will process
data from camera 1 at the same time. Once 128 values have been stored in the ping pong 1 and 2
buffers designated to cameras 1 and 2, indicated by whether or not (ind < 128), the same ADCO0

Interrupt Handler will start to process the current feedback from the left and right motors.

In our code, when ind >= 128, and IFB_Done == 0, the code will check the left side
current feedback from the motor by doing ADCO -> CFG2 &=~ADC_CFG2_MUXSEL_MASK;
ADCO0->SC1[0] = (AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(7)); , while the second
iteration, when IFB_Done == 1, you will do the same code, except with ADC_SC1_ADCH(6)
instead of 7. That code will check the right side current feedback. The values from the
conversions are then used to decide the torque on the motor, which would indicate whether the car
is going uphill or downhill and etc. which is useful information for speed and other changing
variables in our code. After both conversions for current feedback are complete, which means that
IFB_Done == 2, the values will be reset because it indicates that either the ping or pong buffer are

done, hence values are reset and the process starts over again with the data capture from cameras.

B) Weijie Zhang: Servo/Motor Control and Speed Algorithm

For our servo/motor control algorithm, we started off with initializing and configuring
PWM on servo and motors. We made them edge-aligned, high true PWM, and enabled channel
interrupts. We set the period and pulse widths of TPM, the servos period is 50 Hz, while the
motor’s period is 5 KHz. Then, we set up the clock to TPM and PWM and made sure to clear the
overflow mask by writing 1 to CHF, while enabling interrupts on TPM. In our TPM interrupt
handlers, every time the interrupt is triggered, we clear the pending IRQ as well as the overflow

mask by writing 1 to CHF.

In the infinite loop of the main function, we update TPM values to PW1, PW2, and PW3
for the motor and servo every time. We then use these values in the speed algorithm to change the
speed of the motors and the angle of the servo. The way our speed algorithm works alongside our
servo/motor control, is that our car accelerates to a maxspeed and retains that value when it is
going straight. When the camera detects an angle, or an edge that requires a turn to be made, then
depending on the edge where the line is detected, the motor on the opposite side slows down,
while the servo also inputs a signal to turn. The rate at which the motor slows down is correlated
to the angle at which the servo is required to turn. If the angle that the servo needs to turn is quite
sharp, then the motor will also slow down at a much higher rate. To prevent our car from slowing
down every time it detects an edge, we had conditions where if(PW3 > (4500 +
SinMoThreshold)), else if(PW3<(4500 - SinMoThreshold)), and if they both are not applicable,
which means that the car is in a dead zone that we established, then the car maintains its current
speed of max_speed. This allows the car to run at a fast pace without slowing down every time
you detect an edge. We also added more safety checks to our car by having additional code to

check the values of PW1 and PW2 to make sure that they are within the speeds established at 0 to

max_speed.

We also used ADC to get the current feedback from the motors, which we used to detect
the hills that our car would face around the track. If the current feedback on the left and right sides
experience current feedback, we compare those values to a threshold current feedback value that
would allow us to determine if the car is going on a hill or not. If the car is actually on a hill, the
motors would decelerate. We decided to decelerate the motors when high feedback is detected
because at the rising edge of the hill, our car would still have the inertia from the straight edge to
keep it heading towards the top. When high current feedback is detected, the car is already at the

peak and starting to head downhill, which is why we decelerate the motor.

C) Weitang Liu: Control Algorithm

We used the PID controller theory to design our control algorithm. The term PID refers to
the use of proportional, integral, and derivative terms to calculate the movement (correction

factor). The algorithm of the PID controller theory is as follows:

t
u(t) = MV(t) = K,e(t) + K, / e(r)dr + I\'d%c'(t)
JO

where

K p;: Proportional gain, a tuning parameter
I{;: Integral gain, a tuning parameter
I 4 Derivative gain, a tuning parameter

€ Error= SP — PV
t: Time or instantaneous time (the present)

7: Variable of integration; takes on values from time 0 to the present ¢.

First, we found the error associated with our values by doing the error = (index of our left
camera) - (index of our right camera). Then, we used that value to get the center_average term,
which was determined by taking the average of our last 10 error terms. We also used the error
array to find the Kd term, which was found by doing 0.5 * (error[0] - error[3])/3 + 0.5 * (error[1]
- error[2]). Now that we know the Kd term, to determine the movement value, depending on if
error[0] > 0, we do either 4500 + (center_average*center_average/PgLeft + PWConsLeft)
*center_average + average[0]*Dg....or we do....500 + (center_average*center_average/PgRight
+ PWConsRight)*center_average + average[0]*Dg if error[0] > 0. The values of PgRight, PglLeft,
Dg, PWConsLeft, PWConsRight are preset at 950, 700, 520, 10, and 15 respectively. After getting
the result, we inputted that into the PW3 term, which is used to determine the PW1 and PW2
terms, which are the speeds of each motors. This allows us to implement turning, by speeding up
or slowing down one motor/wheel at a time, which allows the car to turn in the desired direction

depending on the input from the camera.

The way we determined our PID coefficients was through trial and error. We first
implemented our calculations with P, but we saw that our car was not stable and wiggling, so we
tried doing P+1, but it turns out that it made our car’s reaction time too long (too slow). Then, we
tried doing just P+D, without including the “I” term in our calculation for turning and path
recognition. This allowed our car to move much more smoothly without the jagged and unstable
path that we saw with just P. The P term is determined by the angle of the turn and error,
regardless of how long it has been in the turn, for example, if the error is between 0 and 10, then
we would have one P, but once we reach a range of 10 to 20, we would require a higher P. The D
term, however, is determined by the rate of change in the turn angle. Hence, when the car just
enters a turn from a straight line, the D term will be large, however when the car has been in a
turn for a long time, the rate of change in the turn angle is basically 0, hence D term becomes

insignificant.

D) Brian Jae Kim: Car’s Physical Design

For our car’s physical design, we designed the car to have the lowest center of gravity
possible to make sure that the car will not flip when making sharp turns at a high speed. To do
this, we would have to keep everything as compact as possible. We kept this in mind when we
decide to put the battery at the back and lowest part of the car. This would keep the car from being
flipped because of the heavy back end of the car. Also, a car with a heavy tail will be able to make
turns more swiftly when under-steered, hence drifting. Batteries also tend to give off heat after
being used for a long time, so we made sure to elevate our control boards and processor so that

they are not touching the battery and risk damaging the board.

In order to elevate the board, we found out that the most hassle-free way was using
wooden boards and drilling holes which we later used along with metal gauges and screws to
secure to the car itself. This allowed a type of platform that was not touching the battery or motor,
yet still compact enough to keep the car’s center of gravity low to prevent flipping when
over-steering or sudden turns. To secure the motor control boards and processor to the platform,
we used Velcro tape and Velcro band to secure them solidly. This allowed the board to be very

accessible for testing and flashing new code.

Wire management was also a big deal because since all parts of the car needs to be
connected to each other in order for it to function. We needed to prevent the wires from hitting the
sides of wheel or getting twisted into the wheel while doing test runs. To do this, we used tape or

curled it around the wooden stick that we used to secure the cameras.

Camera placement is one of the most design aspects of the entire car physical design. We

need the camera to be as high as possible so that we can angle it to see a good 45 degrees in front

of the car. This angle and height will allow the car to see far enough so it does not force our code
to react too quickly to turns and sudden changes in the route. If the camera is too low, it would not
be able to see the data clearly due to it being too low at an awkward angle. We also set our
cameras as far apart from each other as possible so it makes the dead-band or the overlapping
pixels from causing our data to become the same. We achieved this by using a wooden stick and
attaching it to the metal poles that we fastened the wooden platform with, and extending them to
make it as high, yet as stable as possible. We then attached one camera to each of the ends of the
pole, while setting it horizontally across the car. By doing this, the overlapping sights of the
cameras are as minimal as possible. This allows us to get clear and distinct data for our code to

process.

I11. Design and Performance Summary

In terms of accomplishments, our NATCAR design was able to meet all checkpoint
requirements and complete the track at faster than average times at the competitions. One of the
things that we would change if we could, was instead of using PID, we should have just used PD.
This is because in our design, we use PD values instead of PID. Also, for our design, we went
with using two cameras instead of one. There were some groups that only used one camera and
had an easier time because they did not have to deal with certain problems that comes along with
two camera detection such as: difference in photo-detector threshold, calibration issues, and
dead-band detection/calibration. So if we could do it differently, we may try to use only one
camera instead of one. Finally, we would also like to try using 2-D cameras because the resolution

is higher and you can see much more and clearer than the cameras that we use right now.

IV. Safet

The steps that we took to ensure that our car would never be a hazard was that if one
camera sees black, it would preserve the errors and send it to the servo for it to turn. If both
cameras see black, it would signal the motor to stop running, which would prevent the car from

running off the track at full speed across the room.

Another safety precaution that we had was that, if the car accidentally hit something
without first realizing that it was off the track, the current feedback to the board would be really
large, and our program would be able to recognize that and tell the motor to stop, hence keeping it
from constantly running against the wall. These functionalities would allow our car to safely run

without any hazards. These functions would allow our car to safely run without any hazards.

V. Appendix

//Mason Lee
//Weijie Zhang
//Weitang Liu
//Jae Kim

#include "MKL25Z4.h" // Device header

volatile unsigned char valIFB_A, valIFB B;
volatile unsigned char IFB Done = 0;

volatile char valPing[128], valPong[128];
volatile char valPing2[128], valPong2[128];
volatile unsigned int ind=0;

volatile int counter 1=0; /*introduce a global variable of
counter */

volatile int counter 2=0; /*introduce a global variable of
counter */

volatile int counter 3=0; /*introduce a global variable of
counter */

volatile int counter print=0; /*introduce a global variable

of counter */

volatile unsigned int counter CLK=0;

volatile char Done Flag=0;

// if Done Flag == : Ping buffer store, Pong buffter anaylze

// if Done Flag == : Pong buffer store, Ping buffter anaylze
volatile char Done Ping=0;
volatile char Done Pong=0;
volatile char camFlag = 0;

// if camFlag == : Read value from Camera #1

// if camFlag == : Read value from Camera #2

volatile signed int sum = 0,center average = 0,curve=0; //integration error
volatile signed int error[10] = {0,0,0,0,0,0,0,0,0,0};

//volatile int error2[10] = {0,0,0,0,0,0,0,0,0,0};

volatile signed int average[3] = {0,0,0};

//volatile int average2[3] = {0,0,0};

volatile int counterl=0; /*introduce a global variable of
counter */

volatile int counter2=0;

volatile int badframe = 0;

volatile int left = 0;

volatile int right = 0;

volatile int x = 0;

volatile int index1,index2;

#define voltageThresholdLeft 0x28 //0x39
#define voltageThresholdRight 0x32 //0x39
#define discardLeft 0x05

#define discardRight 0x03
#define leftRightRatio 4/3

// Weitang's control parameters
#define MAX SPEED 260

#define SPEED DIV 0.45
//turning control

#define ERROR 13

#define ERROR2 13

#define Dg 220

#define PglLeft 650 //400
#define PgRight 800 //500
#define PWConsLeft 15 //10
#define PWConsRight 18 //15

#define ErrorNum 2

#define IThreshold 100
#define SinMoThreshold 15

//#define turning location 25
//#define Pg turning 16
//#define Turng 0.65
//#define Pg inside track 14

//speed control

#define SPg 1
#define P_strait gain 0.7

volatile unsigned short PW1 = MAX SPEED;

volatile unsigned short PW2 = MAX SPEED;

volatile unsigned short PW3 = 4500;

/* ..
ADC Definations
K L L o o o o o o o e o o e = 2

#define A 0x0

#define B 0x1

/////// NOTE: the following defines relate to the ADC register definitions
/////// and the content follows the reference manual, using the same symbols.

//// ADCSC1l (register)

// Conversion Complete (COCO) mask

#define COCO COMPLETE ADC SC1 COCO MASK
#define COCO NOT 0x00

// ADC interrupts: enabled, or disabled.
#define AIEN ON ADC_SC1 AIEN MASK
#define AIEN OFF 0x00

// Differential or Single ended ADC input

#define DIFF_SINGLE 0x00
#define DIFF DIFFERENTIAL ADC SC1 DIFF_MASK

//// ADCCFG1

// Power setting of ADC

#define ADLPC_LOW ADC_CFG1 _ADLPC MASK
#define ADLPC_NORMAL 0x00

// Clock divisor

#define ADIV 1 0x00

#define ADIV 2 0x01

#define ADIV 4 0x02

#define ADIV 8 0x03

// Long samle time, or Short sample time
#define ADLSMP_ LONG ADC_CFG1 ADLSMP_ MASK
#define ADLSMP_SHORT 0x00

// How many bits for the conversion? 8, 12, 10, or 16 (single ended).
#define MODE 8 0x00

#define MODE 12 0x01

#define MODE_ 10 0x02

#define MODE 16 0x03

// ADC Input Clock Source choice? Bus clock, Bus clock/2, "altclk", or the

// ADC's own asynchronous clock for less noise
#define ADICLK BUS 0x00

#define ADICLK BUS 2 0x01

#define ADICLK ALTCLK 0x02

#define ADICLK ADACK 0x03

//// ADCCFG2

// Select between B or A channels
#define MUXSEL ADCB ADC_CFG2_ MUXSEL MASK
#define MUXSEL ADCA 0x00

// Ansync clock output enable: enable, or disable the output of it
#define ADACKEN ENABLED ADC CFG2 ADACKEN MASK
#define ADACKEN DISABLED 0x00

// High speed or low speed conversion mode
#define ADHSC HISPEED ADC CFG2_ ADHSC MASK
#define ADHSC NORMAL 0x00

// Long Sample Time selector: 20, 12, 6, or 2 extra clocks for a longer sample
time

#define ADLSTS 20 0x00
#define ADLSTS 12 0x01
#define ADLSTS 6 0x02
#define ADLSTS 2 0x03
////ADCSC2

// Read-only status bit indicating conversion status
#define ADACT ACTIVE ADC SC2 ADACT MASK
#define ADACT INACTIVE 0x00

// Trigger for starting conversion: Hardware trigger, or software trigger.
// For using PDB, the Hardware trigger option is selected.

#define ADTRG HW ADC _SC2 ADTRG_MASK

#define ADTRG_SW 0x00

// ADC Compare Function Enable: Disabled, or Enabled.
#define ACFE_DISABLED 0x00

#define ACFE_ENABLED ADC SC2 ACFE_MASK

// Compare Function Greater Than Enable: Greater, or Less.
#define ACFGT_GREATER ADC_SC2 ACFGT_MASK

#define ACFGT LESS 0x00

// Compare Function Range Enable: Enabled or Disabled.
#define ACREN ENABLED ADC_SC2 ACREN MASK

#define ACREN DISABLED 0x00

// DMA enable: enabled or disabled.

#define DMAEN ENABLED ADC SC2 DMAEN MASK

#define DMAEN DISABLED 0x00

// Voltage Reference selection for the ADC conversions
// (***not*** the PGA which uses VREFO only).
// VREFH and VREFL (0) , or VREFO (1).

#define REFSEL EXT 0x00

#define REFSEL ALT 0x01

#define REFSEL RES 0x02 /* reserved */

#define REFSEL RES EXT 0x03 /* reserved but defaults to Vref */
////ADCSC3

// Calibration begin or off

#define CAL BEGIN ADC_SC3 CAL MASK

#define CAL_OFF 0x00

// Status indicating Calibration failed, or normal success
#define CALF FAIL ADC SC3 CALF MASK

#define CALF _NORMAL 0x00

// ADC to continously convert, or do a sinle conversion
#define ADCO CONTINUOUS ADC SC3 ADCO MASK

#define ADCO SINGLE 0x00

// Averaging enabled in the ADC, or not.
#define AVGE ENABLED ADC_SC3 AVGE MASK
#define AVGE DISABLED 0x00

// How many to average prior to "interrupting" the MCU? 4, 8, 16, or 32
#define AVGS 4 0x00

#define AVGS 8 0x01
#define AVGS 16 0x02
#define AVGS 32 0x03
////PGA

// PGA enabled or not?

#define PGAEN_ENABLED ADC_PGA_ PGAEN_MASK

#define PGAEN DISABLED 0x00

// Chopper stabilization of the amplifier, or not.
#define PGACHP_CHOP ADC_PGA PGACHP_MASK
#define PGACHP_NOCHOP 0x00

// PGA in low power mode, or normal mode.

#define PGALP_LOW ADC_PGA PGALP_MASK
#define PGALP_NORMAL 0x00

// Gain of PGA. Selectable from 1 to 64.

#define PGAG 1 0x00

#define PGAG 2 0x01

#define PGAG 4 0x02

#define PGAG_8 0x03

#define PGAG 16 0x04

#define PGAG_32 0x05

#define PGAG 64 0x06

/* Uses UARTO for both Open SDA and TWR-SER Tower card */
#define TERM PORT_NUM 0

#define TERMINAL BAUD 115200

#undef HW_FLOW CONTROL

#define UART MODE POLLING
#define POLLING 0
#define INTERRUPT 1

/* Misc. Defines */
#ifdef FALSE
#undef FALSE
#endif

#define FALSE (0)

#ifdef TRUE
#undef TRUE
#endif

#define TRUE (1)

#ifdef NULL
#undef NULL
#endif

#define NULL (0)

#ifdef ON

#undef ON

#endif

#define ON (1)

#ifdef OFF

#undef OFF

#endif

#define OFF (0)

/////////// The above values fit into the structure below to select ADC/PGA
/////////// configuration desired:

#include "stdint.h"

typedef struct adc cfg {
uint8 t CONFIGI;
uint8 t CONFIG2;
uintl6 t COMPAREL;
uint16_t COMPARE2;
uint8 t STATUS2;
uint8 t STATUS3;
uint8 t STATUSIA;
uint8 t STATUS1B;
uint32 t PGA;
} *tADC ConfigPtr, tADC Config ;

#define CAL BLK NUMREC 18
typedef struct adc cal {

uintlé t OFS;
uintle t PG;
uintle t MG;
uint8 t CLPD;
uint8 t CLPS;
uintle t CLP4;
uintle t CLP3;
uint8 t CLP2;
uint8 t CLP1;
uint8 t CLPO;
uint8 t dummy;
uint8 t CLMD;
uint8 t CLMS;
uintle t CLM4;
uintle t CLM3;
uint8 t CLM2;
uint8 t CLM1;
uint8 t CLMo;
} tADC Cal Blk ;

void GPIO Initialize(void) {

PORTB->PCR[18] = (1UL << 8); /* Pin PTB18 is GPIO */
PORTB->PCR[19] = (1UL << 8); /* Pin PTB19 is GPIO */
PORTD->PCR[1] = (1UL << 8); /* Pin PTD1 1is GPIO */

PORTB->PCR[0O] = (1UL << 8);
/* Pin PTBO is GPIO */

PORTB->PCR[1] = (1UL << 8);
/* Pin PTB1 is GPIO */

PORTB->PCR[3] = (1UL << 8);
/* Pin PTB3 is GPIO */

PORTD->PCR[7] = (1UL << 8);
/* Pin PTD7 - SI is GPIO*/

PORTE->PCR[1] = (1UL << 8);
/* Pin PTE1l - CLK is GPIO*/

PORTC->PCR[13] = (1UL << 8); /* Pin PTC13 is GPIO
PORTC->PCR[17] = (1UL << 8); /* Pin PTC17 is GPIO
PORTE->PCR[21] = (1UL << 8); /* Pin PTE21 is GPIO
PORTC->PCR[2] = (1UL << 8); /*¥ Pin PTC2 1is GPIO
PORTC->PCR[4] = (1UL << 8); /* Pin PTC4 1is GPIO
FPTE->PDDR |= (1lUL << 21);

/* enable PTE21 as OQutput */
FPTC->PDDR |= (1UL << 2 | 1UL << 4);

/* enable PTC2/4 as Output */
FPTE->PCOR &= ~(1UL << 21);

/* disable H-Bridge */
FPTB->PDDR |= (1UL << 0);

/* enable PTBO as Qutput */
FPTB->PDDR |= (1UL << 1);

/* enable PTB1l as Output */
FPTB->PDDR |= (1UL << 3);

/* enable PTB3 as Output */
FPTD->PDDR |= (1UL << 7);

/* enable PTD7 - SI as Output */
FPTE->PDDR |= (1lUL << 1);

/* enable PTE1l - CLK as Output */
FPTB->PCOR |= ((1UL << 0) | (1UL << 1) | (1UL << 3));
FPTD->PCOR |= (1UL << 7);
FPTE->PCOR |= (1UL << 1);

}

/* __

ADC Initialization

K o e m e e mmmm e e e mmm . mmm——— e, ———————————— */

unsigned char ADC Cal()

{

unsigned short cal var;

ADCO->SC2 &= ~ADC SC2 ADTRG MASK ; // Enable Software Conversion Trigger for
Calibration Process - ADCO SC2 = ADCO SC2 | ADC SC2 ADTRGW(O);

ADCO->SC3 &= (~ADC _SC3 ADCO MASK & ~ADC SC3 AVGS MASK); // set single
conversion, clear avgs bitfield for next writing

ADCO->SC3 |= (ADC _SC3 AVGE MASK | ADC SC3 AVGS(AVGS 32)); // Turn averaging
ON and set at max value (32)

ADCO->SC3 |= ADC SC3 CAL MASK ; // Start CAL
while ((ADCO->SC1[@] & ADC SC1 COCO MASK) == COCO NOT); // Wait calibration
end

if ((ADCO->SC3& ADC_SC3 CALF MASK) == CALF FAIL)
{

return(l); // Check for Calibration fail error and return

*/
*/
*/
*/
*/

// Calculate plus-side calibration
cal var = 0x00;

cal var = ADCO->CLPO;
cal var += ADCO->CLP1;
cal var += ADCO->CLP2;
cal var += ADCO->CLP3;
cal var += ADCO->CLP4;
cal var += ADCO->CLPS;

cal var = cal var/2;
cal var |= 0x8000; // Set MSB

ADCO->PG = ADC PG PG(cal var);

// Calculate minus-side calibration
cal var = 0x00;

cal var = ADCO->CLMO;
cal var += ADCO->CLM1;
cal var += ADCO->CLM2;
cal var += ADCO->CLM3;
cal var += ADCO->CLM4;
cal var += ADCO->CLMS;

cal var = cal var/2;

cal var |= 0x8000; // Set MSB

ADCO->MG = ADC MG MG(cal var);

ADCO->SC3 &= ~ADC_SC3 CAL MASK ; /* Clear CAL bit */

return(0);

}
void ADC Config ALt (tADC ConfigPtr ADC CfgPtr)

{
ADCO->CFG1 = ADC _CfgPtr->CONFIG1;

ADCO->CFG2 = ADC CfgPtr->CONFIG2;
ADCO->CV1 = ADC CfgPtr->COMPAREL;
ADCO->CV2 = ADC CfgPtr->COMPARE2;
ADCO->SC2 = ADC CfgPtr->STATUS2;
ADCO->SC3 = ADC CfgPtr->STATUS3;

//ADCO->PGA = ADC CfgPtr->PGA; pbd
ADCO->SC1[0]= ADC CfgPtr->STATUSIA;
ADCO->SC1[1]= ADC CfgPtr->STATUS1B;

}
void ADC Read Cal(tADC Cal Blk *blk)
{

blk->0FS = ADCO->0FS;

blk->PG = ADCO->PG;

blk->MG = ADCO->MG;

blk->CLPD = ADCO->CLPD;

blk->CLPS = ADCO->CLPS;
blk->CLP4 = ADCO->CLP4;
blk->CLP3 = ADCO->CLP3;
blk->CLP2 = ADCO->CLP2;
blk->CLP1 = ADCO->CLP1;
blk->CLP® = ADCO->CLPO;
blk->CLMD = ADCO->CLMD;
blk->CLMS = ADCO->CLMS;
blk->CLM4 = ADCO->CLM4;
blk->CLM3 = ADCO->CLM3;
blk->CLM2 = ADCO->CLM2;
blk->CLM1 = ADCO->CLM1;
blk->CLMO = ADCO->CLMO;

void init ADCO(void){
tADC Config Master Adc Config;

SIM->SCGC6 |= (SIM SCGC6 ADCO MASK); // Enable ADCO clock

// setup the initial ADC default configuration

Master Adc_Config.CONFIG1 = ADLPC_NORMAL
| ADC_CFG1 ADIV(ADIV 8)
| ADLSMP_LONG
| ADC_CFG1_MODE (MODE_8)
| ADC_CFG1 ADICLK(ADICLK BUS);

Master Adc Config.CONFIG2 = MUXSEL ADCA
| ADACKEN DISABLED
| ADHSC HISPEED
| ADC_CFG2_ ADLSTS(ADLSTS 2) ;

Master Adc Config.COMPARE1
Master Adc Config.COMPARE2

0x1234u ; // can be anything
0x5678u ; // can be anything

Master Adc Config.STATUS2 ADTRG_SW
| ACFE_DISABLED
| ACFGT_GREATER
| ACREN DISABLED
| DMAEN DISABLED
I

ADC_SC2 REFSEL (REFSEL EXT);

Master Adc Config.STATUS3 = CAL_OFF
| ADCO_SINGLE
| AVGE_ENABLED
| ADC_SC3 AVGS(AVGS 32);

Master Adc Config.STATUSIA = AIEN ON | DIFF_SINGLE | ADC_SC1 ADCH(31);
// Configure ADC as it will be used, but becuase ADC SC1 ADCH is 31,

// the ADC will be inactive. Channel 31 is just disable function.
// There really is no channel 31.

ADC Config Alt(&Master Adc Config); // config ADC

// Calibrate the ADC in the configuration in which it will be used:
ADC Cal(); // do the calibration

// The structure still has the desired configuration. So restore it.
// Why restore it? The calibration makes some adjustments to the
// configuration of the ADC. The are now undone:

// config the ADC again to desired conditions

Master Adc Config.CONFIG1 = ADLPC_ NORMAL
| ADC_CFG1 ADIV(ADIV 2)
| ADLSMP_ LONG
| ADC_CFG1_MODE (MODE_8)
| ADC CFG1 ADICLK(ADICLK BUS);

Master Adc Config.STATUS3 = CAL OFF // no hardware averaging
| ADCO SINGLE;

ADC Config Alt(&Master Adc Config);

ADCO->CFG1 = (ADLPC_LOW | ADIV 1 | ADLSMP_LONG | MODE 8 | ADICLK BUS 2);
// 8 bit, Bus clock/2 = 12 MHz
ADCO->SC2 = 0; // ADTRG=0 (software trigger mode)

void ADCO IRQHandler(void)

{
//clear pending IRQ
NVIC ClearPendingIRQ(ADCO@ IRQn);

if(ind < 128)
{

// Store in Camera #1

if(!camFlag)
{
FPTE->PSOR = (1UL << 1);
// Set PTEl1l - CLK

if(Done Flag)

valPing[ind] = ADCO->R[0];
else

valPong[ind] = ADCO->R[0];
camFlag = 1;

ADCO -> CFG2 |= ADC CFG2 MUXSEL MASK; // select b
channel

ADCO->SC1[0] = (AIEN ON | DIFF_SINGLE |
ADC SC1 ADCH(7)); // start conversion on channel SE7b (PTD6)

}
else
// Store in Camera #2
{
if(Done Flag)
valPing2[ind] = ADCO->R[0];
else
valPong2[ind] = ADCO->R[0];
camFlag = 0;
ind++;

// Index Update

ADCO -> CFG2 |= ADC CFG2 MUXSEL MASK; // select b
channel

ADCO->SC1[0] = (AIEN ON | DIFF SINGLE |
ADC SC1 ADCH(6)); // start conversion on channel SE6b (PTD5)

}
}
else
{
if(IFB Done == 2)
{
valIFB B = ADCO->R[0O];
ind = 0;
IFB Done = 0;

if(Done Flag)
// Ping Buffer Done

{
Done Flag = 0;
Done Ping = 1;
}
else
// Pong Buffer Done
{
Done Flag = 1;
Done Pong = 1;
}

FPTB->PCOR = (1UL << 3);
// Clear GPIO - PTB3

}
else if(IFB Done == 0)
{
counter CLK = ADCO->R[0];

IFB Done++;

ADCO -> CFG2 &= ~ADC CFG2 MUXSEL MASK; // select a
channel

ADCO->SC1[0] = (AIEN ON | DIFF SINGLE |
ADC SC1 ADCH(7)); // start conversion on channel SE7a (PTE23)

}
else if(IFB Done == 1)
{

valIFB A = ADCO->R[0];
IFB Done++;

ADCO->SC1[0] = (AIEN ON | DIFF SINGLE |
ADC SC1 ADCH(3)); // start conversion on channel SE3 (PTE22)

}
}

FPTE->PCOR = (1UL << 1);
// Clear PTE1l - CLK

}

void Init PIT(unsigned period us) {
// Enable clock to PIT module
SIM->SCGC6 |= SIM SCGC6 PIT MASK;

// Enable module, freeze timers in debug mode
PIT->MCR &= ~PIT MCR MDIS MASK;
PIT->MCR |= PIT MCR FRZ MASK;

// Initialize PITO to count down from argument
PIT->CHANNEL[O].LDVAL = PIT LDVAL TSV(period us*24); // 24 MHz clock
frequency

// No chaining
PIT->CHANNEL[O].TCTRL &= PIT TCTRL CHN MASK;

// Generate interrupts
PIT->CHANNEL[O].TCTRL |= PIT TCTRL TIE MASK;

/* Enable Interrupts */

NVIC SetPriority(PIT IRQn, 128); // 0, 64, 128 or 192
NVIC ClearPendingIRQ(PIT IRQn);

NVIC EnableIRQ(PIT IRQn);

void Start PIT(void) {
// Enable counter

PIT->CHANNEL[O].TCTRL |= PIT TCTRL TEN MASK;
}

void Stop PIT(void) {
// Disable counter

PIT->CHANNEL[O].TCTRL &= ~PIT TCTRL TEN MASK;
}

void PIT IRQHandler() {

//clear pending IRQ
NVIC ClearPendingIRQ(PIT IRQn);

// check to see which channel triggered interrupt
if (PIT->CHANNEL[O].TFLG & PIT TFLG TIF MASK) {

// Do ISR work - move next sample from buffer to DAC
FPTD->PSOR = (1UL << 7);
// Set PTD7 - SI

// clear status flag for timer channel 0
PIT->CHANNEL[O].TFLG &= PIT TFLG TIF MASK;

// Do ISR work - move next sample from buffer to DAC
FPTB->PSOR = (1UL << 3);

// Set PTB3 - GPIO
FPTE->PSOR = (1UL << 1);

// Set PTEl1l - CLK

counter CLK = counter CLK + 1;
counter CLK = counter CLK - 1;
counter CLK = counter CLK + 1;
counter CLK = counter CLK - 1; // Delay

FPTD->PCOR = (1UL << 7);
// Clear PTD7 - SI

// Start ADC Conversion
ADCO -> CFG2 |= ADC_CFG2 MUXSEL MASK; // select b channel
ADCO->SC1[0] = (AIEN ON | DIFF SINGLE | ADC_SC1 ADCH(6)); // start
conversion on channel SE6b (PTD5)

FPTE->PCOR = (1UL << 1);
// Clear PTE1l - CLK

} else if (PIT->CHANNEL[1].TFLG & PIT TFLG TIF MASK) {
// clear status flag for timer channel 1
PIT->CHANNEL[1].TFLG &= PIT TFLG TIF MASK;

}

/***

* Begin UARTO functions
**/
void uartO init (int sysclk, int baud)
{
uint8 t i;
uint32 t calculated baud = 0;
uint32 t baud diff = 0;
uint32 t osr_val = 0;
uint32 t sbr val, uartOclk;
uint32_t baud rate;
uint32 t reg temp = 0;
uint32 t temp = 0;

SIM->SCGC4 |= SIM SCGC4 UARTO MASK;

// Disable UARTO before changing registers
UARTO->C2 &= ~(UARTO C2 TE MASK | UARTO C2 RE MASK);

// Verify that a valid clock value has been passed to the function
if ((sysclk > 50000) || (sysclk < 32))

{
sysclk = 0;
reg _temp = SIM->SOPT2;
reg temp &= ~SIM SOPT2 UARTOSRC MASK;
reg temp |= SIM SOPT2 UARTOSRC(O);
SIM->SOPT2 = reg temp;
// Enter inifinite loop because the
// the desired system clock value is
// invalid!!
while(1)
{}
}

// Verify that a valid value has been passed to TERM PORT NUM and update
// uart0 clk hz accordingly. Write 0 to TERM PORT NUM if an invalid

// value has been passed.

if (TERM PORT NUM != 0)

{
reg _temp = SIM->SOPT2;
reg temp &= ~SIM SOPT2 UARTOSRC MASK;
reg temp |= SIM SOPT2 UARTOSRC(O);
SIM->SOPT2 = reg temp;
// Enter inifinite loop because the
// the desired terminal port number
// invalid!!
while(1)
{}
}

// Initialize baud rate
baud rate = baud;

// Change units to Hz

uartOclk = sysclk * 1000;

// Calculate the first baud rate using the lowest OSR value possible.
i=4;

sbr val = (uint32 t)(uartOclk/(baud rate * 1i));

calculated baud = (uartOclk / (i * sbr val));

if (calculated baud > baud rate)

baud diff = calculated baud - baud rate;
else

baud diff = baud rate - calculated baud;

osr val = i;

// Select the best 0OSR value

for (i =5; i <= 32; i++)

{
sbr val = (uint32 t)(uartOclk/(baud rate * i));
calculated baud = (uartOclk / (i * sbr_val));

if (calculated baud > baud rate)
temp = calculated baud - baud rate;
else
temp

baud rate - calculated baud;

if (temp <= baud diff)
{

baud diff = temp;
osr _val = i;
}
}
if (baud diff < ((baud_rate / 100) * 3))
{

// If the OSR is between 4x and 8x then both

// edge sampling MUST be turned on.

if ((osr_val >3) && (osr val < 9))
UARTO->C5|= UARTO C5 BOTHEDGE MASK;

// Setup OSR value

reg temp = UARTO->C4;

reg_temp & ~UARTO C4 OSR MASK;

reg temp |= UARTO C4 OSR(osr val-1);

// Write reg temp to C4 register
UARTO->C4 = reg temp;

reg temp = (reg temp & UARTO C4 OSR MASK) + 1;
sbr val = (uint32 t)((uartOclk)/(baud rate * (reg temp)));

/* Save off the current value of the uartx BDH except for the SBR field

*/
reg temp = UARTO->BDH & ~(UARTO BDH SBR(OX1F));
UARTO->BDH = reg temp | UARTO BDH SBR(((sbr val & O0x1F00) >> 8));
UARTO->BDL = (uint8 t)(sbr val & UARTO BDL SBR MASK);

#if UART MODE == INTERRUPT
UARTO->C2 |= UART C2 RIE MASK;

#endif
/* Enable receiver and transmitter */
UARTO->C2 |= (UARTO C2 TE MASK | UARTO C2 RE MASK);
}
else
// Unacceptable baud rate difference
// More than 3% difference!!
// Enter infinite loop!
while(1)
{}
}
}

char uart0 getchar()

{

/* Wait until character has been received */
while (! (UARTO->S1 & UARTO S1 RDRF _MASK));

/* Return the 8-bit data from the receiver */
return UARTO->D;

}

void uartO putchar (char ch)

{
/* Wait until space is available in the FIFQ */
while(!(UARTO->S1 & UARTO S1 TDRE MASK));
/* Send the character */
UARTO->D = (uint8 t)ch;

}

/**/

/*

* Check to see if a character has been received
*
* Parameters:
* channel uart channel to check for a character
*
* Return values:
* 0 No character received
* 1 Character has been received
*/
int uart0 getchar present ()
{
return (UARTO->S1 & UARTO S1 RDRF MASK);
}

/**/

#1f UART MODE == INTERRUPT
void UARTO IRQHandler (void)
{
char ¢ = 0;
if (UARTO->S1&UART S1 RDRF_MASK)

{
¢ = UARTO->D;

if ((UARTO->S1&UART S1 TDRE MASK) | | (UARTO->S1&UART S1 TC MASK))
{

}
}

}
#endif

UARTO->D = c;

/***

jalotutalo TPM Handler Frokok ok
***/

void TPMO IRQHandler(void) {
//clear pending IRQ
NVIC ClearPendingIRQ(TPMO IRQn);

// clear the overflow mask by writing 1 to CHF

if (TPMO->CONTROLS[O].CnSC & TPM_CnSC_CHF_MASK)
TPMO->CONTROLS[0] .CnSC |= TPM CnSC_CHF MASK;

if (TPMO->CONTROLS[2].CnSC & TPM CnSC CHF MASK)
TPMO->CONTROLS[2].CnSC |= TPM_CnSC_CHF MASK;

}

void TPM1 IRQHandler(void) {
//clear pending IRQ
NVIC ClearPendingIRQ(TPM1 IRQn);

// clear the overflow mask by writing 1 to CHF

if (TPM1->CONTROLS[O].CnSC & TPM CnSC_CHF_ MASK)
TPM1->CONTROLS[0].CnSC |= TPM CnSC CHF MASK;

}
void Init PWM(void) {
// Set up the clock source for MCGPLLCLK/2.
// See p. 124 and 195-196 of the KL25 Sub-Family Reference Manual, Rev. 3, Sept
391$PM clock will be 48.0 MHz if CLOCK SETUP is 1 in system MKL25Z4.c.
SIM-> SOPT2 |= (SIM SOPT2 TPMSRC(1) | SIM SOPT2 PLLFLLSEL MASK);
// See p. 207 of the KL25 Sub-Family Reference Manual, Rev. 3, Sept 2012

SIM->SCGC6 |= SIM SCGC6 TPMO MASK; // Turn on clock to TPMO
SIM->SCGC6 |= SIM SCGC6 TPM1 MASK; // Turn on clock to TPM1

// See p. 163 and p. 183-184 of the KL25 Sub-Family Reference Manual, Rev. 3, Sept
2012

PORTC->PCR[1]
PORTC->PCR[3]
PORTB->PCR[0]

PORT PCR MUX(4); // Configure PTCl as TPMO CHO
PORT PCR MUX(4); // Configure PTC3 as TPMO CH2
PORT PCR MUX(3); // Configure PTB1l as TPM1 CHO

// Set channel TPMO CHO to CHIE, edge-aligned, high-true PWM

TPMO->CONTROLS[0] . CnSC
TPM CnSC_ELSB MASK;

TPMO->CONTROLS[2] . CnSC
TPM_CnSC_ELSB MASK;

TPM1->CONTROLS[0] .CnSC
TPM_CnSC_ELSB MASK;

TPM_CnSC_CHIE MASK | TPM CnSC_MSB_MASK |

TPM_CnSC_CHIE MASK | TPM CnSC_MSB_MASK |

TPM_CnSC_CHIE MASK | TPM CnSC_MSB_MASK |

// Set period and pulse widths

TPMO->MOD = 600-1; // Freq. = (48 MHz / 16) / 600 = 5000 Hz
TPMO->CONTROLS[0O] .CnV = PW1;
TPMO->CONTROLS[2].CnV = PW2;
TPM1->MOD = 60000-1; // Freq. = (48 MHz / 16) / 60000 = 50 Hz
TPM1->CONTROLS[@] .CnV = PW3;

// set TPMO to up-counter, divide by 16 prescaler and clock mode

TPMO->SC
TPM1->SC

(TPM_SC_CMOD(1) | TPM_SC_PS(4));
(TPM_SC_CMOD(1) | TPM_SC_PS(4));

// clear the overflow mask by writing 1 to CHF

if (TPMO->CONTROLS[0].CnSC & TPM_CnSC_CHF_MASK)
TPMO->CONTROLS[0].CnSC [= TPM CnSC_CHF MASK;

if (TPMO->CONTROLS[2].CnSC & TPM CnSC_CHF MASK)
TPMO->CONTROLS[2].CnSC |= TPM_CnSC_CHF MASK;

if(TPM1->CONTROLS[0].CnSC & TPM_CnSC_CHF_MASK)
TPM1->CONTROLS[O].CnSC |= TPM CnSC CHF MASK;

// Enable Interrupts

NVIC SetPriority(TPMO IRQn, 192); // 0, 64, 128 or 192
NVIC ClearPendingIRQ(TPMO IRQn);
NVIC EnableIRQ(TPMO IRQn);

NVIC SetPriority(TPM1 IRQn, 192); // 0, 64, 128 or 192
NVIC ClearPendingIRQ(TPM1 IRQn);
NVIC EnableIRQ(TPM1 IRQn);

}
void put(char *ptr str)
{
while(*ptr_str)
uart0 putchar(*ptr str++);
}
void printHexAscii(char value)
{
char vall, val2;
vall = value & (OxFO);
vall = vall >> 4;
val2 = value & (OxOF);
if(vall < 10)
uart® putchar('0' + vall);
else
uart® putchar('A' + vall - Ox0A);
if(val2 < 10)
uart0 putchar('0' + val2);
else
uart® putchar('A' + val2 - 0x0A);
}
void control(void)
{
int i;

// sum = sum + error[0];

// d control
center_average =

(error[l]+error[2]+error[3]+error[4]+error[5]+error[6]+error[7]+error[8]+error[9]+

error[0])/10;
for(i =9; i >0; i--)
{
error[i] = error[i - 1];
}
/*
//
if((center average> ERROR2) || (center average < -ERROR2))
{
//
PW1 = MAX SPEED;
//
PW2 = MAX SPEED;
}
// else
{
//
if(center _average > 0)
{
//
PW1 = MAX SPEED - (128-center_average)*(128-center_average) / 130;
//
PW2 = MAX SPEED - (128-center_average)*(128-center_average) / 130;
}
//
else
{
//
PW1 = MAX SPEED - center average*center average / SPEED DIV,
//
PwW2 = MAX SPEED - center average*center average / SPEED DIV;
, }
*/ [111717177777777777777777777777777
[111771777777777177777777777
if((indexl ==
0)&&(index2 == 0))
{
PW3 = 4500
+ (x * x / PgLeft) * x;
if(PW3 >
6000 && error[0] < 0)
{
PW3 = 3200;
}
else

if(PW3 < 3000)

PW3 = 3200;
if(PW3 > 6000)

PW3 = 5800;

0)&&(index2 == (Ox7F*leftRightRatio)))

x / PgRight) * x;

3000)
PW3 = 3200;
if(PW3 > 6000)

PW3 = 5800;

0) || (index2 != 0)

if((center average > ERROR) || (center average < -ERROR2))

= error[ErrorNum];

d term

average[0] = 0.5 * (error[0]

if(error[0]>0)

(index2 '= (Ox7F*leftRightRatio)))

- error[3])/3 + 0.5 * (error[1]

else

}

else if((indexl ==

{

PW3 = 4500 + (x *
if(PW3 <
else

}

else if((indexl !=

{

//

- error[2]);

PW3 = 4500 + (center average*center average/PglLeft + PWConsLeft)*center average +

average[0]*Dg;

else

PW3 = 4500 + (center average*center average/PgRight + PWConsRight)*center average

+ average[0]*Dg;

if(PW3 > 6000 && error[0] < 0)

PW3 = 3200;

else if(PW3 < 3000)

PW3 = 3200;

else if(PW3 > 6000)

PW3 = 5800;
}
else
PW3 = 4500;
}
// if(PW1 > MAX SPEED
|| PW2 > MAX_SPEED)
// if((indexl ==
0)&&(index2 == 127))
// PW1 = 0;
// PW2 = 0;
// else
{
//
PW1l = MAX SPEED;// - center_average*center average / SPEED DIV;
//
PW2 = MAX SPEED;// - center average*center average / SPEED DIV;
}

if(PW3 > (4500 +
SinMoThreshold))

{
if (MAX SPEED > x/SPEED DIV)
PW1 = MAX SPEED - x / SPEED DIV;
PW2 =
MAX SPEED;
}
else if(PW3 <
(4500 - SinMoThreshold))
{
if (MAX SPEED > (- x/SPEED DIV))
PW2 = MAX SPEED + x / SPEED DIV;
PW1 =
MAX SPEED;
}
else
{
PW1 =
MAX SPEED;
PW2 =
MAX SPEED;
}
if (PW1 >
MAX SPEED)

PW1l =

MAX SPEED;
if(PW2 >
MAX_SPEED)
PW2 =
MAX SPEED;

if((valIFB A >
IThreshold) && (valIFB B > IThreshold))

’
1

{
PW1=0;
PW2=0;
}
printHexAscii(index1);
uart@ putchar('/');
printHexAscii(index2);
uart@ putchar('/');
printHexAscii(center average);
uart@ putchar('/');
printHexAscii(x);
('

uart@ putchar)

* Main: Initialize
int main (void) {

char valPingBinaryVT[128], valPongBinaryVT[128]; // Voltage Threshold
Buffer of 1 (light) and 0 (dark)

char valPingBinaryVT2[128], valPongBinaryVT2[128]; // Voltage Threshold
Buffer of 1 (light) and 0 (dark)

char firstOne, lowZeroIndex, highZeroIndex;

unsigned int i=0;
char key;
int uart0 clk khz;
char str[] = "\r\nEnter 'p' to print buffer\r\n";
char str2[] = "\r\nEnter 'c' to continue or 'q' to quit\r\n";

SystemCoreClockUpdate();
/* Enable the pins for the selected UART */
/* Enable the UART TXD function on PTAl */
SIM->SCGC5 |= (SIM SCGC5 PORTA_ MASK
SIM SCGC5 PORTB MASK
SIM SCGC5 PORTC MASK
SIM SCGC5 PORTD MASK
I
SIM SCGC5 PORTE MASK);
SIM->SOPT2 |= SIM SOPT2 PLLFLLSEL MASK; // set PLLFLLSEL to select the PLL

for this clock source
SIM->SOPT2 |= SIM SOPT2 UARTOSRC(1); // select the PLLFLLCLK as UARTO

clock source

PORTA->PCR[1] = PORT_PCR MUX(0x2); // Enable the UARTO RX
function on PTAl
PORTA->PCR[2] = PORT_PCR MUX(0x2); // Enable the UARTO TX

function on PTA2

uart@ clk khz = (48000000 / 1000); // UARTO clock frequency will equal
half the PLL frequency
uart@ init (uart® clk khz, TERMINAL BAUD);

GPIO Initialize(); /* Initialize the LEDs */
init ADCO(); // initialize and calibrate ADCO
Init PWM();

Init PIT(10000);
// count-down period = 100 us - 10KHz

TPMO->CONTROLS[2].CnV =
TPMO->CONTROLS[0] .CnV = 0;

put("Please turn on the power supply and press SW2...\r\n");
while(! (FPTC->PDIR & (1UL << 17)))
// wait for SW2 pressed

{
}

while(!(FPTC->PDIR & (1UL << 13)))
// while SW1 not pressed

{

}

Start PIT();

/* Enable Interrupts */

NVIC SetPriority(ADCO IRQn, 64); // 0, 64, 128 or 192
NVIC ClearPendingIRQ(ADCO IRQn);

NVIC EnableIRQ(ADCO IRQn);

__enable irq();

TPM1->CONTROLS[O].CnV = PW3;

put(str);

// Main Loop

while(1)

{ // Parameter Initialization
firstOne = 0;

lowZeroIndex = 0;
highZeroIndex = 0;

// If Keyboard Input

if(uart® getchar present())
{ //here is
very dangerous pay attention
key = uart@ getchar();
while(key != '
{

p')

put("\r\nWrong Command!\r\n");
key = uart0 getchar();
}

Stop PIT();

if(Done Flag)
// Print Pong Buffers

{
put ("\r\nIFB Values: ")
printHexAscii(valIFB A);
put(ulu);
printHexAscii(valIFB B);
put ("\r\n\r\n#1 Camera Print Pong Buffer:\r\n");
for(i=0; i<128; i++)
{
printHexAscii(valPong[i]);
uart@ putchar(' ');
}
put("\r\n\r\nVoltage Threshold Buffer:\r\n");
for(i=0; i<128; i++)
{
printHexAscii(valPongBinaryVT[i]);
uart@ putchar(' ');
}
put ("\r\n\r\n#2 Camera Print Pong Buffer:\r\n");
for(i=0; i<128; i++)
{
printHexAscii(valPong2[il]);
uart@ putchar(' ');
}
put("\r\n\r\nVoltage Threshold Buffer:\r\n");
for(i=0; i<128; i++)
{
printHexAscii(valPongBinaryVT2[1i]);
uart@ putchar(' ');
}
//here is very
dangerous pay attention
}
else
// Print Ping Buffers
{
put("\r\nIFB Values: ")

printHexAscii(valIFB A);
put(lllll);

printHexAscii(valIFB B);

put ("\r\n\r\n#l1 Camera Print Ping Buffer:\r\n");
for(i=0; i<128; i++)
{
printHexAscii(valPing[i]);
uart@ putchar(' ');
}

put("\r\n\r\nVoltage Threshold Buffer:\r\n");
for(i=0; i<128; i++)
{
printHexAscii(valPingBinaryVT[i]);
uart@ putchar(' ');

put ("\r\n\r\n#2 Camera Print Ping Buffer:\r\n");
for(i=0; 1i<128; i++)
{

printHexAscii(valPing2[i]);

uart@ putchar(' ');

}
put("\r\n\r\nVoltage Threshold Buffer:\r\n");
for(i=0; i<128; i++)

{
printHexAscii(valPingBinaryVT2[i]);
uart@ putchar(' ');
}
}
put(str2);

while(!uart@ getchar present());
key = uart@ getchar();

while(key != 'c' && key != 'q")

{
put ("\r\nWrong Command!\r\n");
key = uart@ getchar();

}
if(key == 'c'")
{
put("\r\nContinue.\r\n");
Start PIT();
}
else if(key == 'q')
{
put ("\r\nQuit.\r\n");
}
}

/**
**/

// Main Analysis

else

{
if(Done_Ping || Done_Pong)
{
if(Done Flag && Done Pong)
{
// Camera #1 Pong Buffer Analysis
for(i=0;i<128;i++)
{

if(valPong[i] <
voltageThresholdLeft)

valPongBinaryVT[i] = 0;
else
{
valPongBinaryVT[i] = 1;
if(!firstOne)
lowZeroIndex = i;
firstOne = 1;
}

// Calculate Cam 1 Voltage Binary Buffer
}

indexl = lowZeroIndex;
// Parameter Initialization

firstOne = 0;
lowZeroIndex = 0;

// Camera #2 Pong Buffer Analysis
for(i=0;i<128;i++)
{

if(valPong2[i] <
voltageThresholdRight)

valPongBinaryVT2[i] = 0;
else
{
valPongBinaryVT2[i] = 1;
if(!firstOne)
lowZeroIndex = i;
firstOne = 1;
}

// Calculate Cam 1 Voltage Binary Buffer

if(firstOne && valPongBinaryVT2[1i]

{
highZeroIndex =
(i-1);
firstOne = 0;

}
}
index2 = 127 - highZerolIndex;
index2 = index2 * leftRightRatio;

// if(indexl > 0 && indexl <= discardLeft)

// indexl
if(index2 > 0 &
index?2

0;
index2 <= discardRight)
0

’

e 1

error[0] = (index1l - index2);

control();

TPMO->CONTROLS[O].CnV = PW1;
TPMO->CONTROLS[2].CnV = PW2;
TPM1->CONTROLS[O].CnV = PW3;

//Print Values onto terminal

// printHexAscii(index1);
// uart@ putchar('/');
// printHexAscii(index2);
// uart@ putchar(' ');

Done Pong = 0;

}

/**
**/

else
if(Done Ping)
{
// Camera #1 Ping Buffer Analysis
for(i=0;1i<128;i++)
{

if(valPing[i] <
voltageThresholdLeft)

valPingBinaryVT[i]
= 0;
else
{
valPingBinaryVT[1i]
=1;
if(!firstOne)
lowZeroIndex = i;
firstOne = 1;
}

// Calculate Cam 1 Voltage Binary Buffer

if(firstOne &&

valPingBinaryVT[i] == 0)
{
highZeroIndex = (i-1);
firstOne =
0;
}

}

index1l = lowZerolIndex;

// Parameter Initializatio
firstOne = 0;
lowZeroIndex = 0;

// Camera #2 Ping Buffer Analysis
for(i=0;i<128;i++)
{

if(valPing2[i] <
voltageThresholdRight)

valPingBinaryVT2[i] = 0;
else
{
valPingBinaryVT2[i] = 1;
if(!firstOne)
lowZeroIndex = i;
firstOne = 1;
}

// Calculate Cam 1 Voltage Binary Buffer

if(firstOne &&
valPingBinaryVT2[i] == 0)

{
highZeroIndex =
(i-1);
firstOne = 0;
}
}
index2 = 127 - highZeroIndex;
index2 = index2 * leftRightRatio;
// if(index1l > 0 && indexl <=
discardLeft)
// indexl = 0;
if(index2 > 0 && index2 <=
discardRight)
index2 = 0;
error[0] = (indexl - index2);
control();
TPMO->CONTROLS[O].CnV = PW1;
TPMO->CONTROLS[2].CnV = PW2;
TPM1->CONTROLS[O].CnV = PW3;
//Print Values onto terminal
// printHexAscii(indexl);
// uart® putchar('/');
// printHexAscii(index2);
// uart@ putchar(' ');

Done Ping = 0;

}

Displaying K1065 3-13_Speed-260.c.

