Ethernet Notes
Example 1
I will now give a brief explanation of the first example. This example can either be run with two boards, or a single board in loopback. After the device initialisation, the main code repeatedly takes a sample with the SDADC from the EVB potentiometer, taking the result direct from the result register (no DMA). The PIT4 interrupt is called at 10Hz which calls the txEthernetFrame() function. This function sends a MAC message, simply a message from one MAC address to another. As the app note explains, this is the lowest level before the physical interface, but as we are not using the stack, we only send a single integer. When the FEC receives a message, the interrupt calls the rxEthernetframe() function, which takes the integer it has received. The PIT5 timer is used for 1200Hz PWM on PA[0] and takes the integer and uses it for the duty cycle.
Most of the porting work was done in initFEC(). 
Communications between the FEC and the PHY take place on a Media Independent Interface (MII), or a reduced MII (RMII) which has half the number of data lines (2 RX + 2 TX instead of 4 RX and 4 TX). They must still send Ethernet at the same rate (either 10Mbps or 100Mbps) therefore needs a 25MHz clock for MII and 50MHz clock for RMII. The PHY has a 25MHz crystal or can accept a 25MHz or 50MHz clock input (not capable of using a 50MHz crystal). Sysclk1 is configured to output via PA15 to the PHY clock. The clock output to the PHY and FEC setting will be configured automatically depending on the #define of #FEC_MII or #FEC_RMII (in FEC.h).
The same #defines select the correct initFECIo() configuration, which is the biggest difference between Matterhorn and previous devices. Configuration of the PHY is done with the MDIO and MDC lines which can be thought of as like an I2C interface. They are outside normal MII operation and are only used to configure the settings of the PHY by reading or writing to its internal registers. To read a register, the MDIO line gives an address and the PHY is expected to spit out the register contents immediately after the bus is handed over. MDC must be configured as very strong drive as it can suffer synchronisation problems when control of the MDIO line is handed over. The MDIO port is not configured as an IO, rather MSCR[34] is the output pad and MSCR[924] is the input.
If the MDIO lines are not configured correctly, findPhyAddress() will loop forever. Up to 32 PHY can share the MDIO and MDC lines, this function requests the address from the PHY, which it then uses later when configuring the PHY. The function tries each PHY address, until the value returned is not 0x0000 or 0xFFFF. The value normally returned is 8192 on PHY address 1, but the address is often between 1 or 8. 
The remainder of the initFEC() function sets the PHY for settings such as:
· MII or RMII
· Loopback on or off
· 10Mbps or 100Mbps
Resetting the device does not clear the configuration settings of the PHY, so it is often necessary to power off the device if the configuration has changed. E.g. the code and PHY are operating over an RMII interface, the code is changed to use the MII interface and the device reprogrammed. Despite the FEC configuring the PHY for MII, it will not allow the change until after the power has been cycled.
#define Loopback(1) uses the FEC loopback option, but this is completely internal to the MCU. Setting the PHY to loopback instead allows debugging of the FEC-PHY interface.
For the full MII interface, the RXCLK input signal was not included on the EVB so a jumper wire is required from PC[10] to PM[6].
