Freescale Semiconductor
Application Note

Document Number:AN4674
Rev. 0, 01/2013

Qorivva Boot Assist Module

Application

by: Mong Sim

1 Introduction

The boot loader software is a prevailing technology for
modern System on Chip (SoC) application development. It
provides some level of initialization to the system and bridges
portability to the application program. In many cases, its role
is invaluable. However, the boot loader does have its set of
problems. It takes up resources and requires special skills to
build it. The boot loader is also susceptible to corruption due
to electrical surges, bad application programs, and so on, that
can render the boot loader inoperable and cause the system to
fail.

Freescale, however, provides its automobile customers an
alternative to custom boot loader software— the Boot Assist
Module (BAM). The BAM provides its users two interfaces
— the Enhanced Serial Communication Interface (ESCI) and
the Controller Area Network interface (CAN) — to upload
application program using the BAM protocols. To embellish
the BAM further, these two interfaces are equipped with the
ability to detect fixed baud rate and automatic baud rate.

The BAM protocol is unique: it provides a simple but secure
protocol, with password protection to ensure access rights to
its users. The passwords are classified as Public and FLASH.
The Public password option provides a fail-safe mechanism in
case the FLASH password is forgotten. Although the BAM
protocol does not provide any form of data integrity checks, it
echoes back every byte that it has received to the user, for
parity check.

© 2013 Freescale Semiconductor, Inc.

AW

Contents

Introduction...........ccovuveeiieeceveeeeeiinns

BAM Prerequisite..........ccceveeereeeennnn.

Programming Language Prerequisite

BAM Protocol.......ccoooeeveiivivveveniinnnns

BAM Protocol for Controller Area

Network Interface (CAN)..................

BAM Qorivva Device Specific

Application Program

BAM Host Specific Application

Programccccoooeeiiiiniiniiiic

SUMMATYeveiiiieeiiieeeieeeeee e

Appendix 1: BAM Qorivva Specific

Application Source Code...................

2/

Z“freescale

A ————
BAM Prerequisite

The BAM requires the user to send data in a certain format defined by the BAM protocol. Whether it operates in fixed baud
rate mode or automatic baud rate detection mode, the uploading application program must not violate the BAM protocol.
This application note provides instructions for creating an application program that is capable of uploading application
program to the SoC via the BAM ESCI and CAN interface in either fixed baud rate mode or automatic baud rate detection
mode.

2 BAM Prerequisite

The BAM module is available in the MPC55XX and MPC56XX Freescale Qorivva devices. The BAM module supports the
BAM protocol over the Enhanced Serial Communication and the Controller Area Network interfaces. However, in the
MPC57XX, the BAF (Boot Assists Flash) provide a similar functionality as BAM. These Qorivva devices are tailored to
target different market segments; therefore, these devices are configured differently. Although the BAM protocol remains the
same across different devices, the BAM module initialization and memory map vary across devices. The BAM chapter of
your Qorrivva device will provide information that complements this application note.

3 Programming Language Prerequisite

In this application note, the software examples are illustrated in Power Architecture assembly, C and C++ programming
language. Readers are required to have working knowledge of these programming languages. The example programs are
grouped into two types. The first type is the Target side program, which is a target specific program to be uploaded by the
Host application and executes in the Target system. The second type is the Host side program, which is an implementation of
the BAM protocol used to upload device specific application program to the Target system, the Qorivva device. All of these
software examples require various hardware and software tools. Here is a list of the hardware and software tools used in this
application note.

Software

¢ Microsoft Visual C++ Express 2010 microsoft.com
¢ Green Hills MULTI Compiler for Power PC ghs.com

Hardware

* XPC56XX Evaluations Motherboard with XPC563M144QFP Mini Module (EVB, The Target system)
* 12 VDC Power Supply for the EVB

* RS-232 cable

* Green Hill Probe for debugging

» Desktop PC with serial interface or any USB to serial cable

* SYSTEC USB CAN tool

* USB Cable to the CAN Tool

* DB9 Female to Female Connector to connect CAN Tool to EVB CAN port A

* Personal Computer with XP Operating System (The Host System)

4 BAM Protocol

The BAM provides two different protocols for downloading application program via the ESCI or the CAN interfaces
(MPC5746 does not supports BAF over CAN protocol). These two interfaces support both the fixed baud rate mode and
automatic baud rate detection mode (Not all Qorivva devices support automatic baud rate detection).

Let us see how these protocols are formatted, what the fields are and how we can use the protocols to upload application
program to the Qorivva device.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

2 Freescale Semiconductor, Inc.

https://www.microsoft.com
www.ghs.com

e
BAM Protocol

NOTE
To select BAM protocol over eSCI or CAN by simply using the correct interface cable to
connect to that interface and start sending the BAM formatted data to that interface.

4.1 BAM Protocol for Enhanced Serial Communication Interface
(ESCI)

The BAM Protocol for the ESCI is a simple, yet secure, protocol. Although the BAM does not provide data integrity checks,
it echoes back every byte received to the sender. The sender is requested to ensure the echoed byte is correct before sending
the next byte out. If the echoed byte is a mismatch, the sender must terminate the transfer, reset the Qorivva device and
restart the transfer.

4.1.1 ESCI Fixed Baud Rate

The BAM protocol for ESCI fixed baud rate format, shown in Table 1, consists of a Password field, a Start Address field, a
Data Size field and a Data field. The Qorivva devices support both BookE (Classic Power Architecture fixed length code)
and VLE (Variable Length Encoding). Specifying the type of code, Book or VLE, will be explained in the Data Size section.

Table 1. BAM Protocol for ESCI Fixed Baud Rate Format

Password |Start Address | Data Size | Data |

4.1.2 ESCI Automatic Baud Rate Detection

The BAM protocol for ESCI automatic baud rate detection, shown in Table 2, has an additional Synchronization Byte field
before the Password field. This Synchronization Byte is used by the BAM hardware to calculate the unknown incoming data
baud rate transmitted by the Host system. The BAM uses this calculated baud rate and apply to the ESCI for subsequent data
communication.

Table 2. BAM Protocol for ESCI Automatic Baud Rate Format

Sync Byte | Password |Start Address |Data Size | Data

An additional pull down resistor is also required between the signal pin “EVTO” and “GND.” After installing this pull down
resistor, reset the EVB. Use a debugger to verify if the SIU_RSR [ABR] bit is set at address 0xC3F900F for MPC5634M. If
you are using a different device, please refer to your device Reference Manual for correct setting.

4.1.3 ESCI Synchronization Byte Field: 0x00

The Synchronization Byte must be used in automatic baud rate detection. The BAM requires the host to send a
synchronization byte of 0x00 prior to sending the Password. The BAM uses the Synchronization Byte to detect the incoming
data baud rate.

The BAM will not echo the Synchronization Byte.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 3

BAM Protocol for Controller Area Network Interface (CAN)

4.1.4 ESCI Password Field: 8 Bytes

The FLASH password is eight bytes long and is programmed by the factory into the internal shadow flash of the device. The
Public password, however, resides within the BAM and cannot be changed — user can only change the FLASH password. A
valid password must be always programmed in the shadow flash, regardless of which boot mode is used. For a password to
be valid, none of its four 16-bit half words must equal to 0x0000 or OxFFFF. Please see the specific device reference manual
for more detailed information.

The BAM module will receive and echo the password transmitted by the Host system and compare it with its FLASH or
Public password. If the password is a mismatch, the BAM module will terminate the transaction. If the echoed byte is
mismatched, the sender must terminate the transfer, reset the Qorivva device and restart the transfer.

NOTE
If the FLASH password is corrupted due to the reprogramming of the shadow FLASH,
the Qorivva device will be locked and all access to the Qorivva device will be denied.

4.1.5 ESCI Start Address Field: 32-Bits Word

The Start Address Field serves two purposes. First, it is the starting address at which the BAM will store the application
program from the host. Second, the BAM will jump to the memory location specified by this Start Address Field and
relinquish control to the code after the upload is completed.

4.1.6 ESCI Data Size Field: 32-Bits Word

The Data Size Field tells the BAM the size of application program in bytes. In addition, the most significant bit of this field
(VLE mode bit), if set, tells the BAM that the application program is in variable length encoded (VLE). If the MSB of this
field is clear, the application program is in BookE format.

4.1.7 ESCI Data Field: The Application Program

The Data Field contains application program to be uploaded by the Host system to the Qorivva device via the BAM. The size
of the application program is defined by the Data Size Field.

5 BAM Protocol for Controller Area Network Interface (CAN)

The BAM protocols for ESCI and CAN are similar if you examine how the data is arranged. The only difference is the
format of the hardware interface which is used. The ESCI is byte oriented whereas the CAN interface is block oriented.
Instead of sending data byte by byte using the ESCI, you can send a block of eight bytes of data over the CAN interface.

The BAM only implements standard frame transmission over CAN.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

4 Freescale Semiconductor, Inc.

BAM Protocol for Controller Area Network Interface (CAN)

5.1 CAN Automatic Baud Rate Protocol Detection Message

Format

The BAM protocol for CAN Automatic Baud Rate detection Message Format, shown in Table 3, is used when CAN
Automatic Baud Rate detection mode is configured. This format consists of a message ID field and a message size field.

Table 3. CAN Automatic Baud Rate Message Format

MSG ID

|MSG Size

5.2 CAN Message Format

The BAM Protocol for CAN Message Format, shown in Table 4, includes a Message ID field, a Message Size field and a
Data field. This CAN Message Format is used to encapsulate the Password Message, the Start Address and Data Size
Message and the Data Message. There are a total of seven message IDs. I will describe these IDs in detail in the Message ID
CAN Message ID: 0x00, 0x01,0x02,0x03,0x11,0x12 and 0x13.

Table 4. CAN Fixed Baud Rate Message Format

MSG ID MSG Size |Byte 0

| Byte 1

|Byte 3

| Byte 4 | Byte 5 |Byte 6 Byte 7

5.3 CAN Message ID: 0x00, 0x01,0x02,0x03,0x11,0x12 and 0x13

The BAM protocol for CAN has seven unique Message IDs. Six IDs serves as three pairs for transmit and echo and one
Message ID is used to inform the Qorivva device that a Synchronization Message is encapsulated for CAN automatic baud
rate detection. Please see the Message IDs as tabulated in Table 5.

Table 5. BAM Protocol for CAN Message ID

ID Description

0x00 Automatic Baud Rate Detection Message ID send by the host
0x11 Password Message ID send by the host

0x01 Password Message ID echo by the BAM

0x12 Start Address and Data Size Message ID send by the host
0x02 Start Address and Data Size Message ID echo by the BAM
0x13 Data Message ID send by the host

0x03 Data Message ID echo by the BAM

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc.

BAM Protocol for Controller Area Network Interface (CAN)

5.4 CAN Synchronization Message

The Synchronization Message, shown in Table 6, must be used in CAN Automatic Baud Rate detection. The BAM requires
the host to send a Synchronization Message with a message ID of 0x00 and a message size of 0x00 prior to sending the
Password Message. The BAM uses this message to detect the incoming data baud rate.

Table 6. BAM Protocol for CAN Synchronization Message
|MSG Size

|MSG ID

The Qorivva Device will not echo the Synchronization message.

5.5 CAN Password Message

Please refer to ESCI Password Field: 8 Bytes for FLASH and Public Password.

The Password Message, shown in Table 7, has a message ID of Ox11 and a message size of eight follows by the eight bytes
of password. For this example, the password is “FEEDFACECAFEBEEF.”

Table 7. BAM Protocol for CAN Password Message

MSG ID MSG Size |Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0x11 0x08 OxFE OxED OxFA 0xCE 0xCA OxFE OxBE OxEF
PASSWORD
Table 8. Qorivva Device Echoes CAN Password Message
MSG ID MSG Size |Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0x01 0x08 OxFE OxED OxFA 0xCE 0xCA OxFA O0xBE OXEF
PASSWORD

The Qorivva Device will echo the Password Message, shown in Table 8, with an ID of 0x01.

5.6 CAN Start Address and Data Size Message

The Start Address and Data Size Message, shown in Table 9, has a message ID of 0x12 and a message size of eight followed

by the Start Address on the first four bytes and the Data Size on the lower four bytes. For this example, the Start Address is
0x40000000 and the Data Size is 0x1400.

Table 9. BAM Protocol for CAN Start Address and Data Size Message

MSG ID MSG Size |Byte 0 Byte 1 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0x12 0x08 0x40 0x00 0x00 0x00 0x00 0x14 0x00
Address VLE + Data Size

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc.

BAM Qorivva Device Specific Application Program

In addition, the most significant bit of Date Size (MSB of Byte 4, the VLE mode bit) if set, tells the BAM that the application
program is in variable length encoded (VLE). If the VLE mode bit is clear, the application is in BookE format. For this
example, the application program is in BookE format.

Table 10. Qorivva Device Echoes Start Address and Data Size Message

MSG ID MSG Size |Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0x02 0x08 0x40 0x00 0x00 0x00 0x00 0x00 0x14 0x00
Address VLE + Data Size

The Qorivva Device will echo the Start Address and Data Size Message, shown in Table 10, with an ID of 0x02.

5.7 CAN Data Message

The Data Message, shown in Table 11, has a message ID of 0x13 and a message size of eight bytes or less is a target specific
application program that you want to send to the Target system. The size of the application program is defined in the Start
Address and Data Size message in the Date Size.

The Host application must send multiple data messages (If the defined data size is greater than eight bytes) up to the size
defined in the Data Size field.

Table 11. BAM Protocol for CAN Data Message

MSGID |MSG Size |Byte 0 |Byte 1 |Byte 2 |Byte 3 |Byte 4 |Byte 5 |Byte 6 |Byte 7
0x13 0x08 Qorivva Application Code

Table 12. Qorivva Device Echoes Data Message
MSGID |MSG Size |Byte 0 |Byte 1 |Byte 2 |Byte 3 |Byte 4 |Byte 5 |Byte 6 Byte 7
0x03 0x08 Qorivva Application Code

The Qorivva Device will echo the Data Message, shown in Table 12, with an ID of 0x03.

6 BAM Qorivva Device Specific Application Program

By now, you are familiar with the BAM Protocol formats over ESCI and CAN interfaces. We still need a BAM Qorivva
Device specific application program to be transferred to the Target system. This device specific application program must
have the following features as appended so that the uploaded application program can be successfully executed in the Target
system. Here are the features.

* The application program must execute from RAM

* The application program must NOT initialize RAM space occupied by the application program (This is like erasing the
application program)

» The application program must initialize all the RAM space allocated for data and stack immediately after the BAM
relinquished control to the application program.

» The application program image must be contiguous — Any space in between the fragments of codes must be filled with
bytes. The bytes content can be of any value.

* The application program must execute from the beginning of the RAM image.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 7

BAM Qorivva Device Specific Application Program

This application note explains how to build the BAM Qorivva Device Specific Application Program using Green Hills

MULTI Assembly and C programming language.

6.1 Building a RAM Application for BAM

Green Hills Compiler is used to illustrate this example. Create a “Standalone RAM” project using the project wizard with

“Startup Libraries” as shown in Figure 1.

Figure 1. Startup Libraries Option

Project Manager: Settings for Hello World (C)

Program Layout: | Link to and Execute out of RAM ¥ || Configuring a Standalone Program o
Libraries The settings in this dialog control how
%l_ your prograrm 15 inked and allow you to
- g-":::i“;ni“ ofon include aptional, customizable versions of
vanous libraries.
B Link to and Execute out of RAM
B Link to ROM and Execute out of
RAM
W
| <Back || New> || Finish | | Cancel

Once the project is created, modify the program to provide a simple blinking LED function. Then compile and run the

program and make sure it execute correctly.

6.2 Modify Linker File

Next, we are going to modify the linker file. Open the “standalone_ram.ld” linker file and modify the following section,
shown in Figure 3 and append two markers at the end of the linker file.

In the “MEMORY” section make the following changes.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc.

4
BAM Qorivva Device Specific Application Program

// 64KB of internal SRAM starting at 0x40000000

dram rswvdl : ORIGIN = 0x40000000, LENGTH = 0
dram reset : ORIGIN = ., LENGTH = 0
dram memory : ORIGIN = ., LENGTH = 64K-8K-16
heap and stack : ORIGIN = ., LENGTH = BEK
dram rsvd2 : ORIGIN = ., LENGTH = 16
Figure 2.

In the “DEFAULTS” section make the following changes.

DEFAULTS {
stack reserve = 4K
heap reserve = 4K
}

Figure 3. Memory Map

End of the linker file is appended by these two markers, shown in Figure 4. These two markers will provide the start address
and the ending address where the SRAM needs to be initialized.

__ram image heap ENDADDR (heap and stack);
__ram image_end = ENDADDR (.bss);

Figure 4. Memory Region Markers

After you have done all the above, compile the program and make sure it still executes as expected. If not, back track and
correct the error and repeat the process.

6.3 Modify the C Runtime File

Finally, we need to add a minimum initialization code to the CRT file “crt0.ppc” (C RunTime) resident in the “tgt\libstartup”
directory so that the RAM Application can execute successfully via the BAM upload. Open the “crt0.ppc” file with an editor
and locate the code fragment in this file as appended in Figure 5.

Once you have located the code fragment, insert the initialization code listed in Figure 6 between the “addic” opcode and the
macro “#endif /¥ PPC64 */” flow control statement.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 9

BAM Qorivva Device Specific Application Program

; initialize RAM if we're running from flash
#if defined(PPC64)
Lis rll, thighesta(__ _ghs board memory init)
ori rll, rll, %highera(__ghs board memory init)
sldi rll, rll, 32
oris rll, rll, %hiadj(_ ghs_board memory init)
addic. rll, rll, %lo(ghs board memory init)
felse
lis rll, %hiadj(__ghs board memory init)
addie. rl1l, rll, %1lo(__ ghs board memory init)
#endif /* PPC64 */

Figure 5. Code Fragment in crt0.ppc

Qorivva Boot Assist Module Application, Rev. 0, 01/2013
10 Freescale Semiconductor, Inc.

BAM Qorivva Device Specific Application Program

This inclusicon disables the watchdogs and adds system initialization

;
.
JEEEEXEEEEERE A A EE AT R I A EE LT ATk Xk
+*
r

Disable SWT and Core Watchdog
R L e e e

//software watchdog off

lis rlz, SWT_CREh
ori rl2, rl2, SWT_CREL
lwz rll, 0({rl2)
elrrewi rll, rll, 1
stw rll, 0({rl2)

//core watchdog off
1i r6,0=x00
mtspr 340,x6

SHER AR AR AR AR TR A RN R TR AR AR Rw
init SRAM
Fr v 9 o ok o o o o o o ko o o ok o

T T

lis r30,0x0000 // initializes ram space after the
lis r31l,0x0000 // application program image

lis rll,0x4000

ori rll,rll,%le(ram image end) #see linker file

sram_init:
stmw r30,0(rll)
addi rll,rll,8
andi. rl2,rll,OxFFFO
bne sram_init

Figure 6. Initialization Code

The initialization code disables the core and software watchdogs, enable the BTB (Branch Target Buffer), initializes the
portion of internal SRAM not occupied by the RAM Application code. We also need to define the “SWT_CR” at the
beginning of the “crt0.ppc” file as shown in Figure 7.

SWT CR .equ Ox£££38000 # SWT control register

Figure 7. Software Watchdog Control Register

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc.

11

BAM Qorivva Device Specific Application Program

6.4 Generate image file

A common question is if we can use the S-Record (ASCII-Hex-Space format) or ELF (Executable and Linkable Format) file
instead of a ram image file. It is possible to use, however, using S-Record or ELF files requires more complex software to
convert the application program into a contiguous RAM image file. Application program in S-Record and ELF file formats
are stored in sections and the sections may not be contiguous.

We are almost ready to test if the RAM Application works over BAM. Before we do that, we need the compiler to help us
generate a memory image of the RAM Application. Let me show you how to configure the compiler to produce a memory
image of your application program.

Go to the Project Window and right click at the “bamappl.prj: Program” and choose the “Set Build Options.” A window will
appear, click on the “Build Options in Category:” and choose the “Generate Additional Output” and change its “Value” to
“Memory Image File” as shown in Figure 8. When you have done that, click the “Done” button on the bottom right to close
the window. Recompile the project and the compiler will produce an additional file namely, “bamappl.mem.”

Figure 8. Generate RAM Image File

* Build Options for bamappl.gpj

Batic Oplions | A1 Opbons | Modified Dptions
Oiphicen Categorss: Budd Dphions in Categoey
B Taget A | Mame ks
Fraject Clutput Fie T Evecutable / Locsied Procrom] &
@ Optatior [Genote Addbonal Oubi | Memoemage Fle |
Debuggng Execitable Stipping off
® :-'ﬁ:pﬁ?;'j) Start Addvess Symbol M Erdry Symbe
robabfres Pl Append Comment 5 ection with LinkT ime Information
8 [‘i'_:" . Prepeocess Lirdeer Diectives Files
o - Linket "Warrirgs
Linkes Uphrrizations Faw Imnpert Fles
e Linkes Directive Files with Non-standard E stensions
L ices Output Analysi Additional Linkes Options [beginning of link: line]
Link-Time Check i Additional Linkes Optior:s [bedoee stait fils)
B Compder Disgnostics &) | fddtional Linkes Opfion: (amorg tflea] b
T T Y B
Documentation for Geperate Additional Qutput .
Creates the specified output type in addition to the project executable. The syntax — Forma t=name allows you to specify
the name of the file. Permitied seftings for this option are: 7
CommandLine | Documentation |

Some compilers like the Green Hills MULTI generate SPE code by default. If this is the case, you have two options to ensure
that your RAM Application works (Most of Qorivva devices support SPE, please refer to your device RM). One, enable your
device SPE feature with the appended code as shown in Figure 9.

Two, configure your compiler not to generate SPE codes as shown in Figure 10.

Figure 9. Enable SPE

Qorivva Boot Assist Module Application, Rev. 0, 01/2013
12 Freescale Semiconductor, Inc.

4
BAM Host Specific Application Program

PR
// Enable SFE

Jff***i**ti ok dk Rk drdrd ok o

mfmsr ré

oris

r6, r6, 0x0200

tmsr ré

Figure 10. Disable SPE Code Generation

* Build Options for BAMAppl.gpj

Basic Options | A1 Opbons | Modified Options

Bl Compdes Disgrostics
Varpng Message Format
1 LAl Messages
DroubleCheck [CACe+]

Olpticn Categores: Buid O ptions in Category
= La:n_.lut # | Hame Walue
& ﬁ';':;:[stion Addtional SDA, Base Registers
Died UE'I'_“;_ Generation of fxel Instructions
[—n Gereration of sl Ingtiuctions
&= FIF&D'DEE' - " Espargion of 500 swmwhs__a_w Infinsics
I;,;.;u;’t' : Expangion of o500 ev gr & Irkingics
= :I Ear Alow Use of SPE instructions

Abspayz L se Inwsdshwe i Inbermapt Suboutve Prologuee.'E plogues
Suppor for wery lange TOC sectons:

Fztice Pr

Support boe Viery Lange Switch S Labemerls

Target Frocessor

B Advanced
Targat Dplions
E Puogact Optons
Clphirrization O plices
B Debuggng Opbons w

AT e IR AR A

Documentation for Affow Use of SPE instructions =

This option is enabled by defaulf for processaors that support SPE (see Power Archifeciure Processor Yanants), It does not apply
1o other processors,

__CommandLine] Documentation |

W

Now we are ready to upload this application via the BAM to our Target system. If everything works, we should see four
LEDs blinking in binary counting order. Please see Appendix1 for the source code of this application program. For a copy of
this project, please contact your Freescale Sales Representative.

7 BAM Host Specific Application Program

At this stage, you have learned the BAM protocols over ESCI and CAN interfaces. You also learned how to create a BAM
Qorivva Specific Application Program and how to generate image file using the compiler. What we are short of is a delivery
system program, the BAM Host Specific Application Program.

The BAM Host Specific Application Program is an application program running in the host system that is capable of
uploading the Qorivva Device Specific application program to the Target system (Qorivva device) via the ESCI or CAN
interface using the BAM protocol.

Before we talk about the minimum implementation of the BAM Host Specific Application Program, let me show you how
the Host system and the Target system data transaction sequences over the ESCI and the CAN interfaces work so that we can
picture what is the minimum implementation we need for the BAM Host Specific Application Program.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 13

BAM Host Specific Application Program

These two sequences are given in two ladder diagrams, one for the ESCI and one for the CAN respectively.

7.1 ESCI and Host Data Transaction Sequence
Figure 11. ESCI Ladder Diagram

Qorivva Boot Assist Module Application, Rev. 0, 01/2013
14 Freescale Semiconductor, Inc.

BAM Host Specific Application Program

Qorivva
Device

Synchronizing
Phase

Dx00

Host
Computer

Password Transaction

OxFE

OxFE

OxED

O ELH

OxF i

DxFA

OxCE

(=CE

e A,

o A,

DxFE

OxFE

DxBE

{BE

OxEF

DxEF

Start Address Transaction

[0

L0

Cx00

D00

Lx 00

D00
D00

Lx00)

Data Size Transaction

LxB0

Lix B0

Lz 00

Lx00)

Ox14

Ozl

w00

Lz 00

Data Transaction

Byte 0
Biyta O

Byte M-1

Bryte N-1

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc.

15

A ————
BAM Host Specific Application Program

Figure 11 shows the transaction sequence between the Target system ESCI and the Host system RS232 port with the
following parameters and a detail explanation in Table 13.

Table 13. ESCI and Host Transaction Sequence

Description Value Remarks

Synchronization Byte 0x00 Host sends this byte only if automatic
baud rate detection is configured (See
4.1.3). If fixed baud rate is configured,
user must NOT send this byte.

The Qorivva Device will NOT echo

this byte.
Password OxFE, OXED, OxFA, After the Synchronization Byte (Only in
automatic baud rate detection mode),
0xCE, OxCA, OxFE, the Host will transmit the password byte
OxBE and OXEF by byte starting with OXFE and end with
OxEF.

The Qorivva Device will echo every
byte it received from the Host.

Start Address 0x40, 0x00, 0x00 and 0x00 After the Password, the Host will
transmit the Start Address starting with
0x40 and end with 0x00 (The Start
Address is 0x40000000).

The Qorivva Device will echo every
byte it received from the Host.

Data Size 0x80, 0x00, 0x14 and 0x00 After the Start Address, the Host will
transmit the Data Size starting with 0x80
and end with 0x00 (The Data Size is
0x80001400). The most significant bit
set on the Data Size indicates that the
application program is in VLE mode. The
size of the application program is
0x1400 or 5120 bytes.

The Qorivva Device will echo every
byte it received from the Host.

Data Byte 0...Byte N-1 After the Data Size, the Host will
transmit the Data, application program.
The size of the Data is defined in the
Data Size field.

The Qorivva Device will echo every
byte it received from the Host. If the
Qorivva Device has received the
number of bytes as defined in the
Data Size Field, the BAM wiill
relinquish control to the application
program by executing a jump
command to the memory location
defined by the Start Address Field.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

16 Freescale Semiconductor, Inc.

BAM Host Specific Application Program

7.2 CAN and Host Data Transaction Sequence
Figure 12. CAN Ladder Diagram

%Drwa Synchronizing Host
e Phase Computer
1D:0x00-3ync Message
Fassword Transaction
{0 0wl 1= Password Massag

100 0x01— Password Mesaage:

Start Address and Data
Size Transaction

L0 12— Start Address and Data Size Messags
D002 —Slarl Address and Data Size Message

Data Transaction

I0:0x1 3—Data Massage O
i0:0x03—Data Massage O

IC:0x13—Data Massaga M-1
I0:0x05—Data Message N-1 -

Figure 12 shows the transaction sequence between the CAN and a CAN tool connected to the Host computer with the
following parameters and a detail explanation in Table 14.

Table 14. CAN and Host Transaction Sequence

Description ID Size Data Remarks
Synchronization 0x00 0x00 - Host transmits this
Message Synchronization

Message only if
automatic baud rate
detection is configured
(See 4.2.4). If fixed
baud rate is configured,
user must NOT send
this Message.

The Qorivva Device
will not echo this
Message.

Table continues on the next page...

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 17

A ————
BAM Host Specific Application Program

Table 14. CAN and Host Transaction Sequence (continued)

Description ID Size Data Remarks
Password Message 0x11 0x08 OxFE, OxED, OxFA, After the
0xCE, 0xCA, OxFE, Synchronization
O0xBE and OxEF Message (Only in

automatic baud rate
detection mode), the
Host will transmit the
Password Message to
the Qorivva Device.

Device Echoes 0x01 0x08 OxFE, OXED, OxFA, The Qorivva Device will
O0xCE, 0xCA, OxFE, echo the Message it
OxBE and OxEF received from the Host.

Start Address and Data |0x12 0x08 0x40, 0x00, 0x00, 0x00, | After the Password

Size Message 0x80, 0x00, 0x14 and Message, the Host will
0x00 transmit the Start

Address and Data Size
Message to the Qorivva
Device (Start Address:
0x40000000, Data Size:
0x1400 and VLE

mode).

Device Echoes 0x02 0x08 0x40, 0x00, 0x00, 0x00, | The Qorivva Device will
0x80, 0x00, 0x14 and |echo the Message it
0x00 received from the Host.

Data Message 0x13 0x08 Byte 0...Byte 7 After the Start Address

and Data Size
Message, the Host will
transmit the Data of
size defined in the Data
Size field.

Device Echoes 0x03 0x08 Byte 0...Byte 7 The Qorivva Device will
echo the Message it
received from the Host.

This process will
repeat step 6 and 7
until all the data is
transmitted to and
received from the
Qorivva Device. If
the Qorivva Device
has received the
number of bytes as
defined in the Data
Size Field, the BAM
will relinquish control
to the application
program by
executing a jump
command to the
memory location
defined by the Start
Address Field.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

18 Freescale Semiconductor, Inc.

4
BAM Host Specific Application Program

7.3 Minimum Implementation of the Host Program

If we analyze these two ladder diagrams Figure 11 and Figure 12, it is clear that we only need three software routines to
perform the actual transfer of application program to the Target system. Additionally, we need other software constructs and
components to build this application. Let us look at the appended code fragment as shown in Figure 13.

In automatic baud rate detection mode, the WriteChar routine sends a synchronization byte to the BAM. This routine is
appropriate because it only transmits a byte. The WriteVerifyChar routine transmits the password, start address, and data
size. It reads the data from the RAM and verifies what it sends with the echoed byte, to ensure data integrity. If there is any
disparity, this method will terminate the session immediately. Finally, WriteVerifyFileChar, this routine is similar to the
WriteVerifyChar method with the exception that it reads the data from a file.

The routines shown in Figure 13 are applicable for transferring application program to the Target system via ESCI. If you
modify these routines so that it can load one to eight bytes of data, and encapsulates the data in a CAN message, you have a
delivery system over the CAN interface.

The BAM Host Specific Application Program has been created, using the above models, the Enhanced Serial Loader (eSL)
using Visual C++ Express 2010. The eSL is a BAM specific application program on the Host system that understands the
BAM Protocol. The eSL implements BAM protocol over ESCI, two CAN tools (iTAS and SysTech) and CAN tool using the
EVB CAN port (Software is implemented using Green Hills MULTT). The eSL also implements Qorivva BAM emulation for
testing BAM Host application. We will use the eSL as our Host program for this application note.

if (autobaudrate)

{

WriteChar{0);
Delay(0xOFFFFFF);
}

status = WriteVerifyChar(password, 8, verbosity, "State 1. Password "),
if (status !=0)

{

return status;

}

status = WriteVerifyChar(address, 4, verbosity, "Stale 2: Address ");
if (status = 0)

{

return status;

h

status = WiiteVerifyChar(byte_count, 4, verbosity,"State 3: Byle Count ™);
if (status !=0)

{

return stabus;

b

status = WriteVerifyFileChar{SRAM_FMNAME,verbosity,"State 4: SRAM Image");
if (status !=0)

{

refurn status;

}

Figure 13. Transfer SRAM Image Routine

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 19

BAM Host Specific Application Program

=+ C:\WINDOWS\system32\emd. exe

Freescale 2089

—iJ

[1-3] —¢
[start

[1-25%61] —h
adde] -p»

[haudrate] —p

A [ran.image] —=f

Parameters:

=1
-p
a

serial loader program

+5£5 in controller RAM

=h te in decimal asz define in BAM URH
=
»
- i

-
U

to the controlle
to be uploaded to the controlle
to 3
Fault BookE
= 1 , default
IBAM Format.
2: SysTech CAN tool
?: BAH Emulator
CANM baud »ate in Hex as
this prologue

fixed
1: EUB CANMBAH fo

3: iTAs CAH Tool

autobaudrs
mode

-B
h

51

define in BAM URM

Defanlt:

- 1 —¢ 1

—h 7688 —p FEEDCAFEFACEBEEF —a 4888

F:v{Mong*{FREESCALE STUFF><Application MHotesz“~{Mong>~BAH - A

2812,

Hong Sim

[passwod]
[flazh. imag

]

r+ SRAM
¥ FLASH

rmat .

HABE —r» eBCI.

image

H3?53%eSLRe leaze >

Figure 14. Enhanced Serial Loader Command Line Options

Figure 14 shows the command line option of eSL. For more information on eSL and a copy of eSL, please contact your

Freescale Sales Representative.

7.4 Test the BAM Specific Applications

Before we test our implementations, we need to know how to setup the system for test. Here are the steps you need for

different configuration, please see Table 15. This example uses the MPC5634M dev
Table 15. Test Setup

ice.

Configuration Description

Remarks

ESCI Connect the RS232 to the Host COM
port (or USB port if you are using a USB-
to-Serial cable) and Target system ESCI

0.

Connect power to the EVB

All ESCI configurations
BAM only supports ESCI 0

ESCI Fixed Baud Rate The BAM ESCI baud rate for the
MPC5634M is calculated using the
following equation: Baud Rate = fsys /

832

The EVB used in this application note
has an 8Mhz crystal, hence the baud
rate is 9600 with one start bit and one
stop bit.

Table continues on the next page...

Qorivva Boot Assist Module Application, Rev.

0, 01/2013

20

Freescale Semiconductor, Inc.

4
BAM Host Specific Application Program

Table 15. Test Setup (continued)

Description

Configuration Remarks

Rate ESCI Automatic Baud

Please see Table 5 for maximum and
minimum baud rate supported.

An additional pull down resistor is also
required between the signal pin “EVTO”
and “GND.” After installing this pull down
resistor, reset the EVB. Use a debugger
to verify if the SIU_RSR [ABR] bit is set.

eSL for ESCI eSL —c 4 —b 9600 —p Starts eSL for ESCI fixed baud rate
FEEDFACECAFEBEER — a 40000000 —
r bamappl.mem
eSL—x1-c4-—p
FEEDFACECAFEBEER — a
40000000 — r bamappl.mem
eSL for ESCI eSL —c 4 —b 9600 —p Starts eSL for ESCI fixed baud rate
FEEDFACECAFEBEER — a 40000000 —
r bamappl.mem
eSL—x1-c4—p
FEEDFACECAFEBEER — a
40000000 — r bamappl.mem
CAN Connect the CAN Tool to Host system | All CAN configurations

USB port and the Target system CAN A

port. BAM only supports CAN A

Connect power to the EVB

The BAM CAN baud rate for the The fixed baud rate for the CAN is
MPC5634M is calculated using the 200bits/s. Please see Table 6 for more
following equation: Baud Rate = fsys / 40| detail.

CAN Fixed Baud Rate

Please see Table 5 for maximum and
minimum baud rate supported.

CAN Automatic Baud Rate An additional pull down resistor is also
required between the signal pin “EVTO”
and “GND.” After installing this pull down
resistor, reset the EVB. Use a debugger

to verify if the SIU_RSR [ABR] bit is set.

eSL —c 4 -B 0307 —p
FEEDFACECAFEBEER - a 40000000 —
r bamappl.mem

eSL—x1-c4-p
FEEDFACECAFEBEER - a
40000000 — r bamappl.mem

Starts eSL for CAN fixed baud rate. The
— B is the SysTech CAN bit rate setting.
This will set the bit rate 200Kbit/s

eSL for CAN

Starts eSL for CAN automatic bit
rate

Table 16. Maximum and Minimum Detectable Baud Rates

fsys = fxtal [MHz]

Max baud rate for

Min CAN baud rate

Max baud rate for SCI

Min baud rate for SCI

CAN (fsys/8)[bit/s] | (fsys/(25 * 256) [bit/s] (fsys/160) [bit/s] (fsys/(16*2716) [bit/s]
8 1M 1250 50K 7.6
Qorivva Boot Assist Module Application, Rev. 0, 01/2013
Freescale Semiconductor, Inc. 21

A ————
BAM Host Specific Application Program

On CAN fixed baud rate mode, the BAM configures the Target system (Qorivva device, MPC5634M) baud rate to 200Kb/s
based on the equation provided in Table 16. This is correct; however, the actual configuration under the hood is a little more
complex. It is important to know this so that you can try to use the same setting to setup your CAN tool if possible for better
reception. The BAM divides the system clock frequency by 4 by setting the Prescaler Division Factor in the CAN control
register to achieve a 2 MHz CAN clock. This 2 MHz clock is further divided down to 200Kb/s as shown in Table 17.

Table 17. CAN Bit Timing for Fixed Baud Rate

SYNC_SEG TIME SEGMENT 1 TIME SEGMENT 2
1 Time Quanta 7 Time Quanta 2 Time Quanta
PROSEG=4+1 PSEG1=1+1 PSEG2=1+1

After you have setup the systems based on the configuration in Table 15, open a command Window in the Host system. This
application is built to run on Microsoft XP Windows Operating System. and Window 7. Click on the “Start” button on
bottom left of the status bar and choose the option “Run...” A window will pop up and type in “cmd” and enter. A command
window will appear. Start eSL with the following parameter as shown in Table 15. Power on the EVB and choose “2)
Transfer SRAM Image Now!”

Figure 15 shows eSL has successfully uploaded the RAM Application to the EVB via ESCI interface and Figure 16 shows
the upload via the CAN interface.

=0 F:\(Mong)\(FREESCALE STUFF)\Application Notes\Mong\BAM - AN3953\eSL\ReleaseleSL.exe [H[=] 3

i L Enhanced Serial Loadey for BAM.<CY Freescale Z2BO9-2012. MHong Sim 4|

SCI BAM Hode: J

Pazsword : FEEDFACECAFEBEEF
Start Address: 48000880

1> SHAM Image: bamappl.mem
2 Transfer SRAM Image Mow?
3) Good Bye Mow?

Please Choose 1 to 3
e3CI BAM Mode:
State 1: Password

State 2: g
3 e 3: Byte Count

5 ;
state 4: SHAM Image — [54B41]
Byte Count = 5484

Figure 15. Uploading the RAM Application to the EVB via the ESCI
NOTE

If you are using a USB-to-Serial cable, the data transfer will not go any faster even if you
increase the baud rate of the transfer (In Automatic Baud Rate Detection mode). This is
due to the slow USB host polling rate. Depending on the Operating System that you are
using, it can be as low as 8ms or 125Hz. There are ways to overcome this problem. One
of the ways to overcome this problem is to transfer a block of data equal to the size of the
USB buffer and read back the echoed block and compare for data integrity.

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

22 Freescale Semiconductor, Inc.

spial Loader

syszTech CAN BAM Mode:

for BAH.{C)» Fre

Password FEEDFACECAFEBEEF

Start Add: : 48888088

1> SRAA Image: bamappl.mem
2) Transfer SRAM Image Mow?
3 Good Bye How?

Please Choose 1 to 3 =

SysTech CAN BAM Mode:

Length and ULE

e — [H28@1

Byte Count : 5288

Summary

Figure 16. Uploading the RAM Application to the EVB via the CAN

8 Summary

Not all Qorivva devices support automatic baud rate detection and CAN interface. Also, in the MPC57XX Qorivva devices, a

similar module known as the Boot Assist Flash (BAF) also provides the same BAM protocol for ESCI and CAN.

If you have any question, please contact your local FAE or visit our website at freescale.com for more information.

9 Appendix 1: BAM Qorivva Specific Application Source

Code

MAIN.C

/*
* LICENSE:
* Copyright (c) 2012 Freescale
*
* Permission is hereby granted,
*
*
*
* copy, modify, merge, publish,
* sell copies of the Software,
*
* conditions:
*
*
*
* of the Software.
*
*
*
*

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Semiconductor

free of charge, to any person

obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,

distribute, sublicense, and/or
and to permit persons to whom the

Software is furnished to do so, subject to the following

The above copyright notice and this permission notice
shall be included in all copies or substantial portions

THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

Freescale Semiconductor, Inc.

23

https://www.freescale.com

A ————
Appendix 1: BAM Qorivva Specific Application Source Code

* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

* QUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

* DEALINGS IN THE SOFTWARE.

*

* Composed By: Sim, Mong Tee

* Dated : July 25, 2012

* Compiler : Green Hill Multi

*

* Objective : This application program is intended for Freescale customer

* who one way or the other would like to tap the power of the

* BAM feature presents in the Freescale PPC products line

*

* Addendum : This microcontroller specific program to be used

* in conjunction with the Serial Loader (VC++ Express) written
* by me. Application note for this application can be found at
* Freescale website or you can request from your area FAE

*

*/

#include "boardport.h"

/= =
// MAIN
/=== = e e s
void main(void)
{
uint32_t stmElapseTime = 0;
uint32_t stmStartTime = 0;
uint8 t cntLED = 0;
STM_init (STM_CLOCK) ; //setup the clock for the system time module
LED init () ; //init the GPIO that drives the LED
while (1)
{
while (stmElapseTime > (0.25*STM sec)) // set a quarter second
stmStartTime = STM read(); // start new time for next
LED_count (cntLED++) ; // LEDs count

stmElapseTime = 0;
cntLED &= 0x0F;// we only have 4 LEDs

}

stmElapseTime = STM elapse (stmStartTime) ;

}

MLED.C
#include "boardport.h"
#ifdef cplusplus

extern "C" {
#endif

void LED_init (void)

{

SIU.PCR[PLEDO] .R = GPIO OP; // init all the GPIO
SIU.PCR[PLED1] .R = GPIO OP; // that are connected to the
SIU.PCR[PLED2] .R = GPIO OP; // LEDs on the EVB
SIU.PCR[PLED3] .R = GPIO OP;

SIU.GPDO[PLEDO] .R = 1;

SIU.GPDO[PLED1] .R = 1;

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

24 Freescale Semiconductor, Inc.

4
Appendix 1: BAM Qorivva Specific Application Source Code

SIU.GPDO [PLED2] .R
SIU.GPDO[PLED3] .R = 1;

I}
=

/= e e o e e e e e
// LED_count function
/=== e e e
void LED_count (uint8_t state)
{
SIU.GPDO[PLEDO] .B.PDO = (state & 0x01) ? 0 1; // On or Off individual
SIU.GPDO[PLED1] .B.PDO = (state & 0x02) ? 0 1; // based on the value in
SIU.GPDO[PLED2] .B.PDO = (state & 0x04) ? 0 1; // state
SIU.GPDO [PLED3] .B.PDO = (state & 0x08) ? 0 1;
1
#ifdef _ cplusplus
!
#endif
STM.C
#include "boardport.h"
#ifdef cplusplus
extern "C" {
#endif
/]~ s
// STM_init
L i i
void STM init (uint32 t STM CR)
STM CR = 0x00000001 | (STM CR << 8); //do not stop in debug mode
//STM_CR = 0x00000003 | (STM CR << 8); //stop in debug mode
STM.CR.R = STM_CR;
!
/= = e e e
// STM_read
[mm e o
uint32 t STM read(void)
{
return STM.CNT.R; //read current counter value
}
f]~ s
[/ == e
// STM_elapse - Non-block function
T EEr T T EEEREE
uint32 t STM elapse(uint32 t BeginTime)
uint32 t CurrTime = 0;
uint32 t DiffTime = O0;

CurrTime = STM.CNT.R;
if (BeginTime > CurrTime)

{

DiffTime = (OxFFFFFFFF - BeginTime) + CurrTime; // If overflow
else
{

DiffTime = CurrTime - BeginTime; // within range

Qorivva Boot Assist Module Application, Rev. 0, 01/2013
Freescale Semiconductor, Inc. 25

A
Appendix 1: BAM Qorivva Specific Application Source Code

return DiffTime; // return the elapse time

#ifdef cplusplus

}

#endif

BOARDPORT . H

#ifndef _ BOARDPORT H_
#define _ BOARDPORT H_

#include <string.h>

ffm -

// System Clock setting resident in init.s

#define MHz 1000000
#define SYSCRYSTAL 8*MHz
#define SYSCLK SYSCRYSTAL
#define MPC5634M_EVB 1

#define MPC5674F EVB 0

#define MPC5643L_EVB 0

#define ESCI_PORT 0

#define CAN_PORT 0

#define PIT_MOD 0

#include "typedefs.h"
#include "typedefs UINT8.h"

#1if MONACO_EVB
#include "MPC5634M MLQB80.h"
#endif

#include "stm.h"
#include "mled.h"

#if ESCI_PORT
#include "serial.h"
#endif

#if CAN_PORT
#include "can.h"
#endif

#if PIT MOD
#include "pit.h"
#endif

#endif // _ BOARDPORT H_
MLED.H

#ifndef _ MLED H
#define _ MLED H
#include <stdint.h>
#if MPC5643L_EVB

#define GPIO_OP 0x028c //as output
#define GPIO IP 0x018c //as input

#define PLEDO052

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

26 Freescale Semiconductor, Inc.

4
Appendix 1: BAM Qorivva Specific Application Source Code

#end

#define
#define
#define

if

PLED153
PLED254
PLED355

#if MPC5674F EVB

#define GPIO_OP 0x028c //as output
#define GPIO_IP 0x018c //as input

#end

#define
#define
#define
#define

if

PLEDO0179
PLED1180
PLED2181
PLED3182

#if MPC5634M EVB

#define GPIO_OP 0x028c //as output
#define GPIO IP 0x018c //as input

#end

#def
#def
#def
#def

#def
#def

void
void
void
void

#end

STM.

#define
#define
#define
#define

if

PLED0188
PLED1189
PLED2190
PLED3191

ine DLEDO
ine DLED1
ine DLED2
ine DLED3

ine DLED ON
ine DLED OFF

LED_
LED_
LED_
LED_

if

H

init
count
toggle
onoroff

#ifndef = STM H
#define _ STM H

#include <stdint.h>

#def
#def
#def
#def
#def
#def

#def
#def

#def
#def

ine STM_CLOCK
ine STM_START
ine STM_ELAPSE
ine STM us
ine STM ms
ine STM sec

ine STM_VECT200
ine STM_VECT201

ine STM_IRQO
ine STM_IRQ1

wWwN RO

void) ;

uint8_ t state);

uint8_t whichLED) ;

uint8_t whichLED,uint8_ t ledState);

SYSCLK
1

0

1

1000
1000000

200
201

0
1

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

Freescale Semiconductor, Inc.

27

A
Appendix 1: BAM Qorivva Specific Application Source Code

#define STM_IRQ2 2
#define STM IRQ3 3
void STM init uint32_t STM_CR);

uint32_t STM read
uint32_t STM elapse

void) ;
uint32 t BeginTime) ;

void STM delay uint32_t delay);

void STM_clearCCR (uint32_t ch);

void STM_clearAllCCR (void) ;

void STM_ setCCR (uint32_t ch);

void STM_setAllCCR (void) ;

void STM_setCMP (uint32_t ch,uint32_t ticks);

void STM_setAl1lCMP (uint32_t chO,uint32_t chl,uint32_t ch2,uint32_t ch3);
void STM_setIRQ (uint32 t ch);

void STM_setAllIRQ (void) ;

void STM initISRO (uint32 t nextTriggero0) ;

void STM initISR1 (uint32 t nextTriggerl) ;

void STM_ initISR2 (uint32 t nextTrigger2);

void STM_initISR3 (uint32_t nextTrigger3) ;

void STM initISR123 (uint32 t nextTriggerl,uint32 t nextTrigger2,uint32 t
nextTrigger3l) ;

#endif // _STM H_

Qorivva Boot Assist Module Application, Rev. 0, 01/2013

28 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, EL516

2100 East Elliot Road

Tempe, Arizona 85284

+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

Document Number: AN4674
Rev. 0, 01/2013

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of

the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www .freescale.com or contact your Freescale

sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

2/

Z“ freescale

	Introduction
	BAM Prerequisite
	Programming Language Prerequisite
	BAM Protocol
	BAM Protocol for Enhanced Serial Communication Interface (ESCI)
	ESCI Fixed Baud Rate
	ESCI Automatic Baud Rate Detection
	ESCI Synchronization Byte Field: 0x00
	ESCI Password Field: 8 Bytes
	ESCI Start Address Field: 32-Bits Word
	ESCI Data Size Field: 32-Bits Word
	ESCI Data Field: The Application Program

	BAM Protocol for Controller Area Network Interface (CAN)
	CAN Automatic Baud Rate Protocol Detection Message Format
	CAN Message Format
	CAN Message ID: 0x00, 0x01,0x02,0x03,0x11,0x12 and 0x13
	CAN Synchronization Message
	CAN Password Message
	CAN Start Address and Data Size Message
	CAN Data Message

	BAM Qorivva Device Specific Application Program
	Building a RAM Application for BAM
	Modify Linker File
	Modify the C Runtime File
	Generate image file

	BAM Host Specific Application Program
	ESCI and Host Data Transaction Sequence
	CAN and Host Data Transaction Sequence
	Minimum Implementation of the Host Program
	Test the BAM Specific Applications

	Summary
	Appendix 1: BAM Qorivva Specific Application Source Code

