

NXP Semiconductors, 6501 William Cannon Drive West, Austin, Texas 78735
www.nxp.com

Optimizing FreeRTOS
Lab Hand Out

 Optimizing FreeRTOS Lab Hand Out Page 2 of 14

Contents

1 Lab Overview .. 3

2 Prerequisites ... 3

3 Using MCUXpresso IDE and Task Aware Debugging ... 3
3.1 Basic Debugging .. 3
3.2 FreeRTOS Task Aware Debugging ... 8

4 FreeRTOS Advanced ... 9
4.1 FreeRTOS Optimization ... 9
4.2 FreeRTOS with SystemView .. 11
4.3 FreeRTOS Compiler Optimization .. 14

 Optimizing FreeRTOS Lab Hand Out Page 3 of 14

1 Lab Overview

This lab will use a FRDM-K64F board to demonstrate FreeRTOS debugging techniques with
MCUXpresso IDE.

2 Prerequisites

The following items are needed to complete this hands-on lab. This has already been installed on your
computer:

• Hardware
o One FRDM-K64F

• Software
o MCUXpresso SDK for FRDM-K64F
o MCUXpresso IDE: http://nxp.com/mcuxpresso/ide
o Segger SystemView: https://www.segger.com/products/development-

tools/systemview/

3 Using MCUXpresso IDE and Task Aware Debugging

3.1 Basic Debugging

1. Open MCUXpresso IDE

2. Set the workspace directory to C:\MCUXpressoIDE_Lab (or your choice of other
new directory location) and click on OK.

http://nxp.com/mcuxpresso/ide
https://www.segger.com/products/development-tools/systemview/
https://www.segger.com/products/development-tools/systemview/

 Optimizing FreeRTOS Lab Hand Out Page 4 of 14

3. Open the Installed SDKs view within the MCUXpresso IDE

4. If the FRDM-K64F SDK is not in that view already, open the MCUXpresso SDK
folder on your desktop, and drag and drop the FRDM-K64F SDK .zip file into the
Installed SDKs view.
5. You will get a pop-up dialog that looks similar to below. Click on OK to continue
the import:

6. The installed SDK will appear in the Installed SDKs view as shown below:

 Optimizing FreeRTOS Lab Hand Out Page 5 of 14

7. Find the Quickstart Panel in the lower left hand corner

8. Then click on Import SDK examples(s)…

9. Click on the frdmk64f board to select that you want to import an example that can

run on that board, and then click on Next. Note there may be more boards listed on

your training laptop.

 Optimizing FreeRTOS Lab Hand Out Page 6 of 14

10. Select the “rtos_examples” category and then put a check next to

“freertos_generic” and click on Finish.

11. Click on the frdmk64f_freertos_generic name in the Project Explorer panel.

Verify it’s selected in the Quickstart panel and then click on “Build” in the

Quickstart Panel window to build the project.

12. You can see the status of the build in the Console tab.

13. Make sure the FRDM-K64F board is connected from your laptop to the micro USB

connection labeled “SDA USB”

 Optimizing FreeRTOS Lab Hand Out Page 7 of 14

14. Click on Debug in the Quickstart Panel.

15. MCUXpresso IDE will probe for connected boards and should find the MBED

CMSIS-DAP debug probe that is part of the integrated OpenSDA circuit on the

FRDM-K64F. In the dialog box that comes up, change the IDE Debug Mode to

“All-Stop” which allows for a thread aware debug view.

16. The firmware will be downloaded to the board and the debugger started.

17. Start the application by clicking the "Resume" button and see the messages in the

console. Use the other debug buttons to Pause, Step In, Step Out, and Step Over

code.

 Optimizing FreeRTOS Lab Hand Out Page 8 of 14

18. Press the “Pause” button and explore all the FreeRTOS tasks. Click on a function

(top of the thread) and debug it by stepping out or stepping over.

19. When finished, press the Terminate button to stop the debug session.

20. If needed, you can get back to the Develop view by clicking on the icon in the

upper right corner.

3.2 FreeRTOS Task Aware Debugging

1. Using the same freertos_generic project as the last section, start a debug session,

run the code, and then hit pause in the debugger.

2. Open the FreeRTOS Task List by going to FreeRTOS in the menu bar and select

Task List. Review the information that shows all the tasks currently running.

3. You can save the task data as a .csv file if desired by clicking on the floppy disk

icon.

4. View the FreeRTOS Queue List by going to FreeRTOS->Queue List

5. View the FreeRTOS Timer List to see all the RTOS timers being used by going to

FreeRTOS->Timer List

6. View the FreeRTOS Heap Usage to see the status of Heap and Memory allocation

by going to FreeRTOS->Heap Usage

7. When finished, press the terminate icon and wait for instructor. Do not proceed to

next section yet.

 Optimizing FreeRTOS Lab Hand Out Page 9 of 14

4 FreeRTOS Advanced

4.1 FreeRTOS Optimization

1. Import the FRDM-K64F_SDK_FreeRTOS project found on the desktop by

dragging the folder into the empty space in the Project Explorer view. This project

is designed to show off FreeRTOS features.

2. In the dialog box that comes up, select “Copy”

3. With the project now imported, build the project and make note of the initial code

and data size needed.

4. Change the libraries and semihosting/printf to disable and save code space

a. Use the RedLib library by opening the Project Settings category in the

project, and right clicking on the Libraries folder and selecting RedLib

(nohost).

b. Rebuild and check code size impact

 Optimizing FreeRTOS Lab Hand Out Page 10 of 14

5. For the rest of this lab, each specific item to change is associated with a TODO.

You can view a list of the TODOs by opening the Tasks view: Windows->Show

View->Other and then General->Tasks. You can double click on the items in the

list to jump to the specific source location.

6. These changes will all be done in the \source\FreeRTOSConfig.h file

7. TODO01: Disable ASSERTs for release version by changing the #if 1 on line 98

to #if 0. Recompile the project and make note of the code size change.

8. TODO02: Enable the Queue Registry by setting

configQUEUE_REGISTRY_SIZE on line 56 to 1 and verify by debugging the

project and using TAD to view the FreeRTOS Queues.

The next few steps will be used to optimize the stack size

9. TODO03: Enable the recording of the stack address in order to debug stack size

usage. On line 160 change configRECORD_STACK_HIGH_ADDRESS to 1

10. TOD04: Decrease the stack size for the IDLE task to save RAM. On line 47

change configMINIMAL_STACK_SIZE to 150.

11. TODO05: Reduce the stack for the TmrSvc task which controls the FreeRTOS

timers to save RAM. On line 95 change configTIMER_TASK_STACK_DEPTH

to 150

12. TODO06: Reduce the Timer queue length to save RAM. On line 94 change

configTIMER_QUEUE_LENGTH to 3.

13. Compile and Debug the project. Run for a while and then hit pause in the

debugger.

14. Look at the FreeRTOS->Task List view and note the stack usage. Remember that

the values put into the code are in 32-bit units.

 Optimizing FreeRTOS Lab Hand Out Page 11 of 14

15. TODO07: Now change the heap allocation scheme to “Allocate Only”. On line 64

change configFRTOS_MEMORY_SCHEME to 1.

16. TODO08: Enable Runtime stats by modifying line 83 to change

configGENERATE_RUN_TIME_STATS to 1.

17. Compile and run the project. View the Task List again to see which tasks are

running the most often.

18. There’s a performance issue in this code. Can you spot it? While the code is

running, hold down SW3, and then look at the Runtime statistics again.

19. This can be fixed. Add the following line in FreeRTOS_Timers.c on line 84 to add

a delay inside the while() loop that waits for SW3 to be unpressed. Run again and

checks the Runtime statistics.

vTaskDelay(pdMS_TO_TICKS(50));

20. When finished, hit the terminate icon to stop the debug session.

4.2 FreeRTOS with SystemView

1. SystemView requires the Segger debug interface. We can change the debug

interface on the OpenSDA circuit on the FRDM-K64F with the following steps:

a. Unplug the board

b. Press and hold the reset button on the board while plugging the board back

into the computer

c. The board will enumerate as MAINTENANCE on your computer

d. Copy OpenSDA\SEGGER_02_OpenSDA_FRDM-K64F.bin to drive

e. Unplug the USB cable and replug back in.

2. Inside of MCUXPresso IDE, hold down the shift key and then click on Debug

from the Quickstart menu. This will rescan for debug probes to find the new JLink

firmware.

3. It should find the JLink software. Click on OK.

 Optimizing FreeRTOS Lab Hand Out Page 12 of 14

4. You may get the following dialog box. Click on the box to not show the message

again and then click on Accept.

5. Terminate the debug session.

6. Go to Run->Debug Configurations from the menu bar at the top

7. Make sure to select the “FRDM-K64F_SDK_FreeRTOS JLink Debug”

configuration and then on the Debugger tab, scroll down to check “Select RTOS

plugin” so it is enabled. Hit Close to save.

8. Click on “Debug” from the Quickstart Window and click on the “Resume” button

to begin running the code in the debug session.

9. Launch SystemView

10. Press Start Recording

 Optimizing FreeRTOS Lab Hand Out Page 13 of 14

11. Specify the target device: MK64FN1M0XXX12 and hit OK.

12. It will record data. After a few seconds, press Stop Recording.

13. Explore the SystemView interface. Use the mouse wheel to zoom in and out of the

timeline, and the mouse to move the time.

14. You can see the list of events in the Events window. Click on an event to see it in

the Timeline view.

15. View the messages sent to the terminal in the Terminal window. These are

generated by a Segger API used in the code.

16. View the run count, statck size, task frequency, and more in the Contexts

window.

17. TODO09: Reduce the tick frequency so don’t wakeup so often. On line 45 change

configTICK_RATE_HZ to 200.

18. Compile and record the system again like done previously. You should now see

reduced number of ticks.

19. TODO10: Use tickless mode. On line 43 change configUSE_TICKLESS_IDLE

to 1.

20. Compile and run the code again and see a greatly reduced number of interrupts.

21. When finished experimenting with SystemViewer, put OpenSDA back into

bootloader mode (holding down reset) and load

OpenSDA\DAPLINK_k20dx_frdmk64f_if_crc_legacy_0x5000.bin on it.

 Optimizing FreeRTOS Lab Hand Out Page 14 of 14

4.3 FreeRTOS Compiler Optimization
This section is last because these compiler optimizations can impact debugging.

22. Increase the optimization level used by the compiler by opening Project Settings-

>Options and right click to select Edit Options.

23. Inside the Optimization category, change the Optimization level to -Os and then

recompile. Note the code size changes.

24. Enable Link-Time optimization by enabling it for both the compiler and linker.

Open up the Project Settings again, and

a. Under MCU C Compiler->Optimization select “Enable Link-Time

optimization (-flto)”.

b. Under MCU Linker->General, select “Enable Link-time Optimization (-

flto)” and set the optimization level to -Os.

25. Compile and compare code sizes.

