
EXTERNAL USE

DUAL-CORE

LPC MCU KEY FEATURES

BASIC
CONCEPTS

1

EXTERNAL USE2

• Needed when single MCU is insufficient

• Asymmetric: Main MCU and co processing MCU (co-MCU)
− Main MCU handles main functions and algorithm operation

− Co MCU handles I/O, data transfer, peripherals, misc

• Communication: bus or dual-port RAM

• Sync: External pin IRQ

• Cons
− PCB area and BOM cost

− May need two suites of tool chain

− Poorer steability

• Distributed system with multiple MCUs
− Communication via RS-485, CAN, etc.

− Nodes in principle are independent, don’t covered here.

Prototype: Dual-MCU systems

MCU A MCU B

Dual-port
RAM

External IRQ A>B

External IRQ B>A

EXTERNAL USE3

• Single MCU with two CPU cores: master core and slave core

• Shares similar design objectives and using model

• Shares similar developing model

− Two projects

− Develop and Debug independently

− Debug concurrently

• Master core has extra works

− Bring up system

− Setup dual-core control hardware and start slave core

− (Optional) Integrate the image binary data of slave core.

• Two cores share power supply, clock and reset, may affects each other.

• Allocate on-chip resource and dispatch job carefully.

From dual-MCU to asymmetric dual-core

M4 M0+

Shared
RAM

IRQ & Mailbox

H/W Mutex

EXTERNAL USE4

M4 vs. M0/M0+

4

Cortex
M4F

Cortex
M0/M0+

Thumb only
No hardware divide
0.9 DMIPS/MHz

+

Thumb 2
DSP +FPU
1.25 DMIPS/MHz

EXTERNAL USE5

5

Case of asymmetric dual-core：LPC541xx & LPC43xx

The slave core takes the responsibilities of misc tasks, relief the master core to concentrate on
computation intensive tasks.

+

Processing, computation

Math and algorithm + = Solution
Real time control

Peripherals

Data transfer

Cortex-M0/M0+
100MHz (541xx)
204MHz (43xx)

Cortex-M4F
100MHz (541xx)
204 MHz (43xx)

5

EXTERNAL USE6

Architectural requirement to support dual-core

• Multiple blocks of SRAM

− Code and data for slave core

− Shared data

− Parallel data flow

• Multi-layer AHB matrix

− Slave core get access of resources through AHB matrix.

• (Enhanced in LPC541xx) Inter-core communication, synchronization, and mutex.

• Debug facilities

− LPC43xx: 2 JTAG scan chains: one for M4, the other for M0+, must use JTAG to debug
M0

− LPC541xx: Multi-drop SWD DAP, use SWD to debug both core (Same debug port, select
different Access Port for different core).

6

EXTERNAL USE7

DUAL-CORE USING
MODELS AND
ADVANTAGE

EXTERNAL USE8

• Extra die cost to implement secondary core is almost OK to ignore.

• M4 usually leads to faster speed and/or lower energy (see later).

• Slave core requires extra overhead:

− RAM space for data and/or code

− Very large bus bandwidth for instruction fetch: 48MHz M0+ can requires 96MB/s

− Software complexity for inter-core communication, synchronization, mutual exclusion.

• Do NOT use slave core just for using it.

Warm hints: Slave core is not must to use

8

EXTERNAL USE9

• In most cases, M0/M0+ is suitable to act as slave core

 M4 usually leads to faster speed and/or lower energy (see later).

• Avoid math intensive task to M0/M0+, including integer division, DSP, FP.

− M4 may be several to dozens time faster than M0/M0+ w/ dedicated instructions.

• What is Suitable for M0/M0+:

 Handling high frequency IRQ or tough real-time constraints in complex systems.

 Irregular data manipulation and movement (beyond normal DMA)

 non-standard data/communication interface, bus, or protocols.

 Simulate/enhance standard interfaces (UART/SPI/I2S/I2C)

 In some cases, get lower energy consumption.

 Above conditions often meet together: e.g., High data rate leads to high frequency IRQ

Overview of slave core using models

9

EXTERNAL USE10

• IRQ overhead

− ISR entrance: 12 (M4) or 24 (M0/M0+) clocks

− ISR execution: Dozens of clocks or more

− ISR exit: 12 (M4) or 24 (M0/M0+) clocks
• Note: Cortex-M has “tail-chaining” mechanism to shorten back-to-back IRQ latency.

• When to use slave core:

− Insufficient master core horse power budget

− master core has long critical sections to miss deadline of some real time constraints.

• Slave core: Handles IRQ and processing related data buffers

• Examples:

− Software QEI decoder.

Slave core handles high frequency IRQ

10

EXTERNAL USE11

Slave core acts as "smart" DMA

• Some data transfer can’t be handled by DMA:

− Irregular (non-linear) address generation and increment: 2D graphics window operation

− Irregular data width: non 8-bit/16-bit/32-bit,

− Very short and/or precise delays (such as dozens of clocks) are required to meet timing
constraints.

− Special time-out constraints:

 E.g., UART RX on LPC5411x with high baudrate, can use slave core to add time-out .

• Slave core to handle

− some bit-field manipulation (E.g., Split/join data bits)

− Manipulate communication ports, GPIO or SGPIO (LPC43xx) to transmit or receive data

11

EXTERNAL USE12

Slave core to implement data/communication interfaces

• Non standard communication ports

− E.g.: Camera interface,

− SCT and SGPIO (LPC43xx only) may help in many cases

• Simulate more or enhanced standard communication ports

• (LPC4300) M0 with SGPIO can simulate many interfaces/buses

− SGPIO can do many sorts of serial<->parallel conversion with its shift register array.

− SGPIO IRQ need to be handled by M0.

12

EXTERNAL USE13

• In some cases, satisfy some requirements otherwise will need CPLD/FPGA

− Most of which are GPIO related operations

• High speed, accurate executor

− GPIO operation

• Run some high real-time protocols

− Mainly for various field bus specifications.

Slave core handles misc non-computational tasks

13

EXTERNAL USE14

Use M0+ to get lower energy consumption

• Conditions that makes M0+ to save energy:
 Clock frequency is high (typically 48MHz+), or CPU

can’t sleep due to some strict performance constraints,
such as high IRQ rate, accurate timing, etc.

• On LPC5410x, M0+ is as low as 55% power of M4 when
CPU MHz is > 48MHz

 M4 and M0+ can run in parallel under active mode.

 M0+ code does not involve math and M4 only stuffs:

• integer DIV (and MUL on LPC5410x, 32 times slower than
M4)

• DSP, SIMD, and floating point.

• Other M4 advantages: bit-field manipulation, bitmap based
allocator helpers (CLZ, RBIT), high bandwidth data transfer,
high frequency IRQ handling (not for this sake).

• M0+ uA/MHz is lower than M4, but usually cost
longer time to complete same task, power * time
(energy) is not must be lower.
 M0 has weaker instruction set and single bus master.

• Be aware, CPU is not the only power sink
 IRC/FRO/PLL, regulator, flash, leakage, 700uA+

14

Overhead power

M0+ power

Overhead power

M4 power

time

power

time

power

Energy = power * time ---- AREA of rectangle

Energy rectangle
comparison

Energy rectangle show case

IRC/FRO/PLL,
on-chip regulators,
Flash, leakage…
Almost same for M4
and M0+

EXTERNAL USE15

RESOURCE
ALLOCATION

EXTERNAL USE16

• Resource types

− Dedicated memory for code & data

− Shared RAM

− On-chip peripheral partition

Resource allocation

16

EXTERNAL USE17

• M4 (Harvard architecture) has 3 master interfaces:

− I-Code：Fetch instruction from bottom 512MB space

− D-Code：Access data from bottom 512MB space

− System：Access most remaining area for both instruction and data

• M0 has only 1 master interface

• On-chip RAM are partitioned to multiple blocks at different AHB slave ports.

• Take advantage of I and D buses on M4 core:

• Whenever feasible, use a dedicated SRAM block for shared data.

Memory map considerations

17

EXTERNAL USE18

MemoryAHB Matrix in LPC54102

• M4 and M0+ are both AHB masters

• M4: I-Code and D-Code bus is
optimized to special address range.

• Both cores have full access to
peripherals and memories

• Bus prioritization is configurable
according to system needs:

1
8

System
FIFO

EXTERNAL USE19

Case study:AHB Matrix in LPC54114

Memory

High speed AHB peripherals

APB peripherals

Bus masters

EXTERNAL USE20

LPC4300架构-总线视角

20
Case study: AHB matrix in LPC43xx

EXTERNAL USE21

Slave core memory allocation strategies

21

(Rare) Slave core code
execute in flash, data in

one block of RAM

• Pros: Saves SRAM from
copying slave code

• Cons:
• Very poor performance if both

core run simultaneously.
• Flash consumes extra power.

• Suitable area: M4 is slave, or
slave code size is big.

(Mainstream) Slave core
has both code and data

in the same SRAM
block

• Pros:
• Better performance,
• lower power.

• Cons: Extra RAM required to
store slave code.

• Suitable area: M0/M0+ is slave
and code size is not very big.

EXTERNAL USE22

Memory allocation examples on LPC541xx

• Example 1: M0+ is slave, and
32kB SRAM2 is for both code and
data of M0+. Shared data can be
put in any SRAM blocks.

22

Cortex-M0+Cortex-M4FDMA

64K SRAM0

64K SRAM1

32K SRAMX

32K SRAM2

EXTERNAL USE23

DUAL-CORE
DEBUG INTERFACE

EXTERNAL USE24

Dual-core debug overview

24

• Each core has its project, single project can be debugged as before.

• Debug architecture:

− LPC541xx uses ARM’s “Multi-drop SWD” technology to implement dual-core debug facility.

 Multi-drop SWD is supported by Cortex-M CoreSight technologies introduced by ARM.

− LPC43xx attaches both M4 and M0 inJTAG scan chain, and M4 can be debugged by SWD
too.

• User can debug one project at a given time.

• In some cases, two projects for both core can be debugged simultaneously.

EXTERNAL USE25

• The DAP can act as a bus master and can allow memory access to Advanced
High-performance Bus (AHB) and Advanced Peripheral Bus (APB) even while the
core is running.

• The busses are connected to Memory Access Ports (MEM-AP) of the DAP.

• M4 and M0+ each has its own access port.

• On LPC541xx, only SWD can be used to debug either core (JTAG isn’t supported).

Debug Access Port Structure (LPC541xx)

25

Serial
wire

Debug
port

(SW-DP)

Debug
Interface
Hardware

Memory Access Ports
(MAP)

Cortex-M4

Cortex-M0+

ISP

SWD
pins

A
H

B
A

P
B

Memory

UART

:

EXTERNAL USE26

(LPC4300) Dual-core JTAG scan chain

26

M0
TMS

TRSTn

TCK

TDI

M4
TDOTDO

Keil debugger:
M4 M0

DBGEN = 1

LPC4300 takes another approach: Use JTAG scan chain to attach 2nd core.
This makes on LPC4300, only JTAG can be used to debug M0.

EXTERNAL USE27

LPC541XX
DUAL-CORE

IMPLEMENTATION

EXTERNAL USE28

• Cortex-M4:

− Memory protection Unit (MPU)

− Single precision FPU

− 3 bit interrupt priority levels

− SysTick timer

− VTOR register

− Sleep mode power saving + extended
modes

− SWD with 8 breakpoints, 4 data
watchpoints

LPC541xx Cortex-M4/M0+ Implementation Details

28

• Cortex-M0+:

− Multiply support in hardware

− LPC5410x: 32 clocks per MUL

− LPC5411x: 1 clock per MUL

− SysTick timer

− VTOR register

− Sleep mode power saving + extended
modes

− SWD with 4 breakpoints and 2 data
watchpoints

EXTERNAL USE29

LPC541xx System control : Dual-core basic setup and control

• Core state control (SYSCON->CPUCTRL):
 Determine which core is master

 Gating the clock of current SLAVE core

• Can’t gate clock of current master core

 Holding SLAVE core in reset

• Can’t reset master core in this way

 Determine which core can initiate low power
mode enter sequence.

• Startup parameters for slave core:
 Initial stack top of slave (MSP initial value)

(SYSCON->CPSTACK)

 Reset vector of slave (vector 0) (SYSCON-
>CPBOOT)

 Startup code uses these 2 registers to startup
slave core.

• status of both core (SYSCON->CPSTAT)

29

EXTERNAL USE30

LPC541xx Mailbox: Helper peripheral for inter-core operations

• IRQ to each other core

− Both cores’ NVIC has the “Mailbox IRQ”

− Writing non-zero to MAILBOX->IRQ0
sets pending mailbox IRQ on M0

− Writing non-zero to MAILBOX->IRQ1
sets pending mailbox IRQ on M4

− Value of IRQ0/1 is interpreted by user.

 Both are 32 bit value.

 Often used as flags or address (pointer).

30

• Hardware mutual exclusion (spin
lock): MAILBOX->MUTEX register:

− Read: return current value and
automatically clear to 0 within the
same access.

− Write non 0 to restore

Up to 32 flags

Owner CPU writes 1 to
MUTEX to unlock it

Read MUTEX and
auto lock if unlocked

…
Repeat pooling until
get the unlocked value

EXTERNAL USE31

Related API

• void Chip_CPU_CM0Boot(uint32_t *coentry, uint32_t *costackptr);

 Setup M0+ boot parameters (reset vector and initial stack top) and reset M0

• Void Chip_MBOX_SetValue(LPC_MBOX_T *pMBOX, uint32_t cpu_id, uint32_t mboxData);

 Write mailbox IRQ0/1 registers, non-0 value triggers mailbox IRQ to opponent.

• uint32_t Chip_MBOX_GetValue(LPC_MBOX_T *pMBOX, uint32_t cpu_id);

• void Chip_MBOX_SetMutex(LPC_MBOX_T *pMBOX);

 Set MUTEX to 1 to unlock the shared resource.

• uint32_t Chip_MBOX_GetMutex(LPC_MBOX_T *pMBOX);

 Read MUTEX and AUTOMATICALLY lock.

 Usually used in a while loop to implement a spin lock:

• while (Chip_MBOX_GetMutex(LPC_MBOX) == 0) {}

31

EXTERNAL USE32

LPC541XX
DUAL CORE
BOOTSTRAP

EXTERNAL USE33

Boot sequence

• Both cores startup after chip leaves reset

• Both cores fetch reset vector from flash address 0

• The initial reset vector (startup code) is shared by both cores

− If startup code is only for M4, M0 will soon hard fault due to invalid instruction.

− Hand written for M0+ instruction set

• Boot code jobs

− Identify the current core: What is it, M4 or M0+

− Check which core is master

− Do master boot or slave boot according to the core and master settings

33

EXTERNAL USE34

• Startup code used by both M4
and M0+

• Note: In startup sequence, a non-
zero of slave boot address
implies current core is slave

LPC541xx: Shared startup sequence (LPCXPresso)

Start

Get CPU ID

Current
CPU is M4?

Slave boot
address is 0?

Safely enter
WFI

Is M4 the
master?

Slave boot
address is 0?

Is M0 the
master?

Load slave stack
pointer

Jump to slave
boot address

Jump to slave
boot address

N

NY

N

YContinue normal
boot

Y

Y

N N

EXTERNAL USE35

• How to check if current CPU is master?

 Put master settings bit to R4 (1=M4 master)

 Put CPU ID bit to R5 (1=M4)

 If R4 == R5 then I am the master.

LPC541xx: Shared startup sequence (KEIL/IAR)

35

Start

Get CPU ID

Current CPU
is master?

Load slave
boot address

Slave boot
address is 0?

Safely enter
WFI

Continue normal
boot

Load slave stack
pointer

Jump to slave
boot address

Y

Y

N

N

EXTERNAL USE36

ADVANCED
INTER-CORE
OPERATIONS

EXTERNAL USE37

• Share the same RAM range between two cores.

• User code define and interpret the data structure

• Define the “shared data” struct and put in a “.h” file.

− Both projects need to include this header.

• Both project define exactly one instance of this struct

− Must make sure the address of the shared object is manually set

− Need to configure linker to put the shared data to designated place.

− (LPC541xx): Can use IRQ0/1 registers to pass the address of shared data.

• Code can

− poll the shared data periodically, or

− send IRQ to the other when the code update some fields in the shared data.

• Don’t forget “volatile” keyword to ensure compiler always access true variable.

Shared data implementation

37

EXTERNAL USE38

• Each item in pool is a message

− Message items have fixed length.

− Item has 3 status: New, Idle, Preprocessed

• Sender traverses the pool to scan idle item
 Write message data to idle item and update item to “new”

• Receiver side:

− ISR traverses the pool to scan new items, and do first step processing.

 If ISR can process it completely, update the item status to “idle” again.

 If ISR can’t do all job, mark a “new” item to “preprocessed”

− RTOS can then dispatch preprocessed items to tasks

• Drawbacks：

− Message items can’t be too many to make traverse time too long.

− Risk: Insufficient items when messages are flooding.

Extension of mailbox: Software Message pool

38

N N I

I I P

EXTERNAL USE39

• For shared ring buffer/queue structures, enforce below constraints:

− Only sender is allowed to modify write index

− Only receiver is allowed to modify read index

• For message pool:

− Only sender is allowed to change “idle” state to “new” state

− Only receiver is allowed to change “new” state to “preprocessed” or “idle” state.

• When pointers are involved：Only one core is allowed to modify pointer

− The other core can set some flags to ask pointer owner to modify pointer

• Note: LPC4300 does not support hardware MUTEX, above are only choices.

Further Mutual exclusion besides hardware MUTEX

39

EXTERNAL USE40

EXTERNAL USE41

EXTERNAL USE42

EXTERNAL USE43

EXTERNAL USE44

