

Flash Memory and MCG

Flash memory. Multipurpose clock generator. Serial protocol.

Introduction

Flash is a non-volatile memory technology that allows data to be

stored when power to the K70 is removed. The Multipurpose

Clock Generator (MCG) module is responsible for the setting up

of various system-wide clocks.

Objectives

1. To write a hardware abstraction layer (HAL) for Flash memory.

2. To use “Processor Expert” to safely transition the bus clock

from an internal source to an external source when booting.

3. To expand the implementation of the Tower serial protocol.

Equipment

 1 TWR-K70F120M-KIT – UTS

 1 USB cable – UTS

 Freescale Kinetis Design Studio

Memory Overview

There are two types of memory on board the K70 microcontroller – random

access memory (RAM) and non-volatile memory (NVM). The type of RAM

used is static RAM, which means it is made up of flip-flops and does not need

to be refreshed (as opposed to dynamic RAM or DRAM, which stores bits of

information in capacitors with sensing transistors – eventually the charge on

the capacitor leaks away and the DRAM needs to be refreshed). RAM can be

read and written to at any time – it is the place where variables are stored, as

well as the stack and the heap.

Non-volatile memory
is implemented with
Flash technology

EEPROM is
emulated with Flash

Flash requires a
special procedure
when written to

The NVM is based on Flash technology. Flash is a memory technology that

allows for bulk erasure, random writing, fast read access, and dense

implementation (small silicon area). There are two styles of Flash m e m o r y

used in the K70 family of MCUs. The first is called “Program flash memory”

and consists of large blocks of memory – it normally holds the program code

and constants. The second style is referred to as “FlexNVM”. The FlexNVM

memory has the capability to emulate electrically erasable programmable read-

only memory (EEPROM). EEPROM refers to a now out-dated memory

technology, so its name is a carry-over from previous generations of

microcontrollers. FlexNVM has a built-in filing system and provides a high-

endurance, byte-writeable, non-volatile memory that is specifically intended to

hold non-volatile variables such as modes of program operation, flags,

calibration constants, user options, etc.

In the MCU used on the Tower board (the MK70FN1M0VMJ12), we only

have “Program flash memory”. Therefore, we will store our non-volatile

variables in a Flash block that we know will not be used by our program (our

program is small so it leaves plenty of “Program flash” available for data).

The Flash can be read just like normal RAM – no special procedure is needed.

However, unlike RAM, when writing to the Flash a special procedure is

required. Writing to the Flash requires various tasks to be carried out under

certain timing constraints – if the tasks are not carried out in strict order, at

strict voltages, then damage to the silicon can occur. Some of the tasks

n e e d e d

Command Interface

Flash Status

Flash Configuration

Flash security

Flash option

Flash Common Command

Object Registers

(12 Registers)

Program flash

4 x 256 KiB blocks

Block 3 FCCOBB

Block 0

Block 1

Block 2

To write to the memory are: applying a high programming voltage to a

particular row; selecting a particular cell; pulsing the memory etc. All these

tasks are carried out by an on-chip state machine that hides the complexity of

this writing process. All we have to do is interact with a few control registers to

be able to write to the Flash.

Programming Model of the Flash

A programming model of the Flash is shown below:

Programming model
of the Flash

FSTAT

FCNFG

FSEC

FOPT

FCCOB0

Figure L2.1

The Flash command interface consists of several registers that enable the Flash

to be erased and written. In summary, they are:

 FSTAT – a status register to indicate the state-machine status.

 FCNFG – a configuration register to allow interrupts to be generated

under certain conditions.

 FSEC – a read-only security register used to indicate the state of the

built-in security features such as mass erase enable/disable.

 FOPT – a read-only register used to indicate the Flash options applied

at boot time, such as whether to boot into low-power mode.

 FCCOB0-B – twelve registers that hold the Flash interface’s command,

address, data and other parameters associated with a particular Flash

operation.

A complete description of the Flash memory module can be found in Chapter

30 of Freescale’s K70 Sub-Family Reference Manual.

Address

0x0000_0000

0x0003_FFFF

0x0004_0000

0x0007_FFFF

0x0008_0000

0x000B_FFFF

0x000C_0000

0x000F_FFFF

Flash memory

Bank
1

Bank
2

Using the Program Flash for Data Storage

Our device has four 256 KiB Flash blocks labelled Block0-3. You cannot read

from a Flash block while it is being erased or written. However, the internal

architecture of the K70 allows it to operate (i.e. read instructions from) one

“bank” of Flash memory (Blocks0-1) while programming the other “bank”

(Blocks2-3). We can therefore use Blocks2-3 as “data flash”.

The Flash memory is mapped into the MCU 32-bit address space as follows:

Figure L2.2

All K70 parts have “Program flash memory” in the range 0x0000_0000 to

0x0007_FFFF. The memory starting at address 0x0000_0000, which is in

Block0, is actually a “vector table” that is used by the Nested Vectored

Interrupt Controller (NVIC) to get the initial stack pointer, initial program

counter, and interrupt service routine addresses. Storage for our program, and

KDS’s startup code, then follows the vector table and resides in Block 0. Since

we will execute code from Block0, we have chosen to use Flash Block2 in the

other “bank” to store our non-volatile data.

Block 0

Block 1

Block 2

Block 3

Address Block 2 Flash

0x0008_0000

0x0008_0FFF

0x0008_1000

0x0008_1FFF

0x0008_2000

0x000B_F000

0x000B_FFFF

Inside each block, the Flash memory is further divided into sectors, which is

the smallest unit that can be erased. Our device has 4 KiB sectors:

Flash memory is
organised into
erasable units called
sectors

Sector 0

Sector 1

Sector 63

Figure L2.3

One aspect of Flash technology that should be remembered is that it must be

Erased before it is written to. Failure to do so may damage the Flash array.

This means that if we want to change just 1 byte in a 4 KiB sector, the entire

sector contents must be read into a RAM buffer, and the 1 byte changed in the

RAM buffer. Then the Flash sector must be erased, turning all 0’s into 1’s.

Finally, we must write the entire new 4 KiB sector from the RAM buffer to the

Flash sector.

That’s why Freescale’s other K70 part has FlexNVM which emulates single-

byte access non-volatile data storage!

Another complicating factor in using Program flash to store data is that the

smallest unit of data we can write to the Flash array is 8 bytes, which is

c a l l e d a phrase. The phrase must be aligned on an 8-byte address, i.e.

0x0008_0000, 0x0008_0010, 0x0008_0018, etc.

Flash memory must
be erased before it
is written to!

Phrases are aligned
to 8-byte boundaries

absolute address

Flash
Block 2
Sector 0

16-bit address offset
from Block 2 address

0x0008_0000

0x0008_0001

phrase

0x0008_0007

0x0008_0FFF 0x0FFF

To ease the burden of operating the Program flash memory as a data storage

area, we will further restrict ourselves to only operating in the first “phrase” of

sector 0 of Flash Block2:

Figure L2.4

The Tower Serial Communication Protocol supports commands to program

bytes into the Flash memory and to read bytes from the Flash memory. One of

the parameters in the packet is used as the address offset into our 8-byte storage

area. i.e. we can only program and read bytes with an offset between 0 and 7.

Careful reading of the Tower Serial Communication Protocol reveals that if the

PC sends a packet to program a byte into Flash at address offset 8, then the

Tower firmware is to treat this as a command to erase the entire sector, thus

erasing all bytes in our phrase.

Software Modularity

We will write a Flash memory hardware abstraction layer (HAL) that is

modular. In particular, the HAL will make public functions available for

writing data to the Flash, and for bulk erasing. It will also be responsible for

allocating Flash memory to non-volatile variables required by the user.

0x0000

0x0001

0x0007

Byte 0

Byte 1

Byte 7

Byte 4095

Software Requirements

1. The software is to incorporate all the features of Lab 1.

2. The Tower has a 50 MHz external clock which is connected to the

EXTAL0 pin of the MCU. Use Processor Expert to configure the CPU

clock to the following:

Clock Frequency

Core / system clock 50 MHz

Bus clock 25 MHz

FlexBus clock 10 MHz

Flash clock 12.5 MHz

Hint: The clock mode is Bypassed Low Power External (BLPE).

3. The baud rate is to be set to 115200 baud.

4. A HAL is to be written for the Flash for erase and write operations. The

write operations to be supported are 8-bit unsigned bytes at any address,

16-bit unsigned words at an even address, and 32-bit unsigned long words

on an address evenly divisible by 4.

5. The HAL should support the allocation of Flash memory at the user’s

request.

6. Extra commands of the Tower serial protocol to be implemented are:

Tower to PC PC to Tower

0x07 Flash – Program byte

0x08 Flash – Read byte 0x08 Flash – Read byte

0x0D Tower Mode 0x0D Tower Mode (get & set)

7. The Tower response to a “0x04 Special – Get startup values” packet should

be the transmission of 4 packets:

 0x04 Special – Startup

 0x09 Special – Version number

 0x0B Tower Number

 0x0D Tower Mode

Upon power up, the Tower should send the same 4 packets as above.

8. The Tower number and mode are to be stored in Flash. If an

unprogrammed Tower number or mode are detected on startup (i.e. the

Flash has been erased so that the data is 0xFFFF), the application should

program the Tower number to the last four digits of your student number

and the Tower mode to 1.

9. If the Tower board is successful in starting up (i.e. Flash is initialized

successfully, UART is initialized successfully, etc.) then the orange LED

“D12” should be turned on.

