

Freescale Semiconductor

KSDK SPI Master-Slave with FRDM-K64F
By: Technical Information Center

1 Introduction

The Kinetis software development kit (SDK) is an extensive

suite of robust peripheral drivers, stacks, middleware and

example applications designed to simplify and accelerate

application development on any Kinetis MCU.

This document describes the use of the dSPI module,

present on most Kinetis devices, using the KSDK drivers. It

is based on a simple SPI Master-Slave configuration

example.

For more information about KSDK visit:

www.freescale.com/KSDK

Content

1 Introduction

2 Serial Peripheral Interface.

3 SPI configuration example.

4 SPI Master-Slave example.

5 References.

6 Example Main Code.

http://www.freescale.com/KSDK

KSDK SPI Master and Slave example using the FRDM-K64F

2 Freescale Semiconductor

2 Serial Peripheral Interface.

The serial peripheral interface (SPI) module provides a synchronous serial bus for communication between an

MCU and an external peripheral device.

The module supports different configurations for instance changing the polarity or the state of the lines when

the bus is idle among others. For a better understanding of the characteristics and operation of the module

please refer to the specific Kinetis device reference manual.

2.1 SPI signals.
The SPI peripheral has different signals that are connected when using either Master or Slave mode, the next

table presents such signals.

Table 1. SPI signals

3 SPI configuration example.

This section considers SPI configuration examples “FRDM-K64_SPI_MASTER_KSDK_example” and “FRDM-

K64_SPI_SLAVE_KSDK_example” developed in KDS IDE. The next sections will discuss the philosophy of the

examples showing the configuration code.

3.1 Configure SPI pins.
The KSDK includes board support files for each supported hardware platform. These files are located in the

<install_dir>/boards, look for the board folder; each folder contains similar information related to the specific

board. The pin_mux folder contains functions to configure the pins present on the board for each peripheral.

The configure_spi_pins function initializes the pin signal for the peripheral instances present on the board.

In the example the SPI0 is being used by calling:

configure_spi_pins(HW_SPI0);

The next signals are configured:

SPI0 Alternative 2

PTD0 SPI0_PCS0 (Chip Select)

KSDK SPI Master and Slave example using the FRDM-K64F
3 Freescale Semiconductor

PTD1 SPI0_SCK (Serial Clock)

PTD2 SPI0_SOUT (Serial Data Out)

PTD3 SPI0_SIN (Serial Data In)

The same SPI configuration is used for the master and slave modes.

3.2 SPI IRQ Handler.
The SPI KSDK driver implements just one ISR callback for master and slave modes. The IRQ handler is included

in the fsl_dspi_irq.c file; it can be found in: <install_dir> \KSDK_1.1.0\platform\drivers\src\dspi.

The handler implements a different algorithm depending on the mode that is being used (master or slave).

3.3 SPI Master Configuration.
Here the SPI master configuration is discussed: the necessary structure configurations and the drivers needed.

 Driver Support: Including the SPI support header file is necessary whenever using the drivers. Include

the file:

#include "fsl_dspi_master_driver.h"

 Master User Configuration structure: Creating a user configuration structure allows the user to set the

common parameters for the SPI peripheral. This structure is passed to the DSPI_DRV_MasterInit

function. A basic user configuration includes:

 dspi_master_user_config_t userConfig;

Create a structure for the user configuration.

 userConfig.isChipSelectContinuous = false;

Select if the PCSn (Chip Select) signal is returned to their inactive state between transfers or if

it keeps asserted. (SPIx_PUSHR[CONT] RM)

 userConfig.isSckContinuous = false;

It disables or enables the continuous operations of the SCK (Serial Clock) signal.

(SPIx_MCR[CONT_SCKE] RM)

 userConfig.pcsPolarity = kDspiPcs_ActiveLow;

Select if the Active value of the PCSx is low or high. (SPIx_MCR[PCSIS] RM)

 userConfig.whichCtar = kDspiCtar0;

Select which SPI CTARx is being used. For master opration it can be CTAR0 or CTAR1. (Search

“Number of CTARs” in RM).

NOTE:

The notation RM in implies that more

information about the register can be found in

the device specific reference manual

KSDK SPI Master and Slave example using the FRDM-K64F

4 Freescale Semiconductor

 userConfig.whichPcs = kDspiPcs0;

Select the device specific chip select. In this case the PCS0 (PTD0) is used. (SPIx_PUSHR[PCS]

RM).

 Master Bus Configuration structure: Creating a data structure for the bus configuration allows the

user to properly set the parameters to allow the communication.

 dspi_device_t spiDevice;

Create a structure for the SPI device bus settings.

 spiDevice.dataBusConfig.bitsPerFrame = 8;

Configure the bits sent per frame through the bus. It allows a max number of 16 for master

mode and 32 for slave mode. (SPIx_CTARn[FMSZ] RM).

 spiDevice.dataBusConfig.clkPhase = kDspiClockPhase_SecondEdge;

Select when the data is captured, if leading edge or the second edge. (SPIx_CTARn[CPHA] RM).

 spiDevice.dataBusConfig.clkPolarity = kDspiClockPolarity_ActiveHigh;

Select the inactive values of the SCK line selecting low or high state. (SPIx_CTARn[CPOL] RM).

 spiDevice.dataBusConfig.direction = kDspiMsbFirst;

Select whether the LSB or MSB of the frame is transferred first. (SPIx_CTARn[LSBFE] RM).

 spiDevice.bitsPerSec = 50000;

Select the bits per seconds transmitted. This selection sets the proper baudrate value for the

peripheral.

 Master Configuration Drivers: As seen above there are two configurations done by the master:

configuration of the peripheral and configuration of the bus. Next are listed the two driver functions

needed to complete the process.

 DSPI_DRV_MasterInit(HW_SPI0, &dspiMasterState, &userConfig);

The driver sets the SPI module with the parameters configured in the user configuration

structure.

Parameters:

Instance select the SPI instance, in this case SPI0 is used.

dSPIstate pointer to a data state structure. It needs to be created by the user to allocate

memory for it.

userConfig pointer to the user configuration structure mentioned before.

 DSPI_DRV_MasterConfigureBus(HW_SPI0, &spiDevice, &calculatedBaudRate);

Configure the SPI port physical parameters to access a device on the bus.

KSDK SPI Master and Slave example using the FRDM-K64F
5 Freescale Semiconductor

Parameters:

Instance select the SPI instance, in this case SPI0 is used.

device pointer to the bus configuration structure.

calculatedBaudRate pointer to the variable where the Calculated Baud Rate value will be

stored. The user can check the value to determine if the desired value is close enough to the

one set by the driver.

3.4 SPI Master Transfer.
The SPI KSDK driver includes blocking and non blocking functions to implement the data transfers. In this

example the blocking function was used.

 DSPI_DRV_MasterTransferBlocking(HW_SPI0,

 NULL,

&spiSourceBuffer,

&spiSinkBuffer,

1,

1000);

Sends the data contained in the source buffer and stores the incoming data in the sink buffer

returning a specific error value.

Parameters:

Instance select the SPI instance, in this case SPI0 is used.

device pointer to the bus configuration structure. It can be set to NULL if the bus

configuration was done before.

sendBuffer Pointer to the source buffer.

receiveBuffer Pointer to the sink buffer

transferByteCount Number of bytes that will be transmitted.

 timeout Value handled by the OSA that determines how long the function will block the

continuity of the code. It can be set to OSA_WAIT_FOREVER to indicate that function will be

blocking until a returned error code.

3.5 SPI Slave Configuration.
The SPI Slave configuration is very similar to the master configuration.

 Slave User Configuration structure: For the SPI Slave configuration it is only necessary to set the user

configuration structure using the same parameters as in master configuration.

 dspi_slave_user_config_t slaveUserConfig;

KSDK SPI Master and Slave example using the FRDM-K64F

6 Freescale Semiconductor

Create a structure for the user configuration.

An extra parameter in the user configuration for the slave can be set:

 slaveUserConfig.dummyPattern = DSPI_DEFAULT_DUMMY_PATTERN;

Select the value that will be send by the slave when the transmit buffer does not have any

data.

 Slave Configuration Driver: The slave user configuration has to be passed to the initialization driver to

complete the process.

 DSPI_DRV_SlaveInit(HW_SPI0, &dspiSlaveState, &slaveUserConfig);

The driver sets the SPI module with the parameters configured in the user configuration

structure.

Parameters:

Instance select the SPI instance, in this case SPI0 is used.

dSPIstate pointer to a data state structure. It needs to be created by the user to allocate

memory for it.

slaveConfig pointer to the user configuration structure mentioned before.

3.6 SPI Slave Transfer.
As in master mode the slave mode drivers include blocking and non blocking transfer functions. The structure

of the function is very similar to the master transfer function.

 DSPI_DRV_SlaveTransferBlocking(HW_SPI0,

 NULL,

&spiSourceBuffer,

&spiSinkBuffer,

1,

OSA_WAIT_FOREVER);

Stores the incoming data in the sink buffer and sends the data contained in the source buffer

returning a specific error value.

Parameters:

Instance select the SPI instance, in this case SPI0 is used.

sendBuffer Pointer to the source buffer.

receiveBuffer Pointer to the sink buffer

transferByteCount Number of bytes that will be transmitted.

KSDK SPI Master and Slave example using the FRDM-K64F
7 Freescale Semiconductor

 timeout Value handled by the OSA that determinates how long the function will block the

continuity of the code. It can be set to OSA_WAIT_FOREVER to indicate that function will be

blocking until a returned error code.

4 SPI Master-Slave example.

To test the code two FRDM-K64Fs are used. The philosophy of the example is the next:

The Master board is configured to send one of three possible messages to the slave device every time SW2 is

pressed, confirming the master is calling the transfer function the blue led is toggled. The possible values are

0x52 (R), 0x47 (G) or 0x42 (B) and are sent in that order.

The Slave board is receiving the data from the master; if it receives R it will turn on the red led and is the same

process for G or B. Every time the slave receives data it writes to the data buffer a byte that will be sent in the

next transfer.

The Boards configuration is showed in the image below.

Figure 1. Boards Configuration

4.1 Running the Example.
Once one board is running the master code and the other one is running the slave code and both of them are

correctly wired the procedure is the following:

KSDK SPI Master and Slave example using the FRDM-K64F

8 Freescale Semiconductor

1. Open a Terminal software (e.g Teraterm) enabling the communication with the COMx port of the

master board and set the communication properties to:

 115200 buadrate.

 8 bit data.

 No parity.

 1 stop bit.

2. Run master board and run the slave board, the next is shown in the terminal (COMx port of

Master board):

3. Run the slave board, you will see all the RGB led on for a second and then off. It indicates the

program is running.

4. Press SW2 in master board and see the blue led of master board being toggled. The slave board

will receive the message and turn the corresponding led. This is the message of the terminal of the

master board.

The terminal shows the sent message and the received data. Here is image of the signals viewed

on a logic analyzer.

KSDK SPI Master and Slave example using the FRDM-K64F
9 Freescale Semiconductor

5. Press again the SW2 and a different message will be sent.

6. See the RGB led of the slave board changing de color according to the received message

5 References.

 K64 Reference Manual

 Getting Started with Kinetis SDK (KSDK): <install_dir>\KSDK_1.1.0\doc

 Writing my first KSDK Application in KDS – Hello World and Toggle LED with Interrupt.

http://cache.freescale.com/files/microcontrollers/doc/ref_manual/K64P144M120SF5RM.pdf?fasp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
https://community.freescale.com/docs/DOC-103288

KSDK SPI Master and Slave example using the FRDM-K64F

10 Freescale Semiconductor

6 Example Main Code.

6.1 Master main code

#include "fsl_device_registers.h"
#include "fsl_os_abstraction.h"
#include "fsl_dspi_master_driver.h"
#include "board.h"

#define RED 0x52
#define GREEN 0x47
#define BLUE 0x42

bool pushflag = false;
uint8_t spiSourceBuffer = RED;
uint8_t spiSinkBuffer;

uint8_t RGBdataOut[3] = {RED, GREEN, BLUE};
uint8_t RGBcount = 0;
int main(void)
{
 /* Write your code here */

hardware_init();
 dbg_uart_init();
 OSA_Init();

 GPIO_DRV_Init(switchPins, ledPins);

printf("SPI master example, press SW2 to send 0x52(RED), 0x47 (GREEN) or 0x42(BLUE)

\n\r");

configure_spi_pins(HW_SPI0);
 dspi_master_state_t dspiMasterState; // simply allocate memory for this
 // configure the members of the user config //
 dspi_master_user_config_t userConfig;
 userConfig.isChipSelectContinuous = false;
 userConfig.isSckContinuous = false;
 userConfig.pcsPolarity = kDspiPcs_ActiveLow;
 userConfig.whichCtar = kDspiCtar0;
 userConfig.whichPcs = kDspiPcs0; //Selects the Chip select
 // init the DSPI module //
 DSPI_DRV_MasterInit(HW_SPI0, &dspiMasterState, &userConfig);

// Define bus configuration.
 uint32_t calculatedBaudRate;
 dspi_device_t spiDevice;
 spiDevice.dataBusConfig.bitsPerFrame = 8;
 spiDevice.dataBusConfig.clkPhase = kDspiClockPhase_SecondEdge;
 spiDevice.dataBusConfig.clkPolarity = kDspiClockPolarity_ActiveHigh;
 spiDevice.dataBusConfig.direction = kDspiMsbFirst;
 spiDevice.bitsPerSec = 50000;
 // configure the SPI bus //
 DSPI_DRV_MasterConfigureBus(HW_SPI0, &spiDevice, &calculatedBaudRate);

KSDK SPI Master and Slave example using the FRDM-K64F
11 Freescale Semiconductor

6.2 Slave main code

 for (;;) {

 if(GPIO_DRV_ReadPinInput(kGpioSW1) == 0) //is switch pressed?
 {
 pushflag = true;
 }
 OSA_TimeDelay(250);
 if(pushflag)
 {
 pushflag = false;
 GPIO_DRV_TogglePinOutput(BOARD_GPIO_LED_BLUE);
 printf ("Sending 0x%x \n\r",spiSourceBuffer & 0xFF);
 //SEND DATA
 dspi_status_t Error = DSPI_DRV_MasterTransferBlocking(HW_SPI0,

NULL,
 &spiSourceBuffer,
 &spiSinkBuffer,
 1,
 1000);
 if (Error == kStatus_DSPI_Success)
 {
 printf ("Transmission succeed \n\r");
 printf ("Received data 0x%x \n\n\r",spiSinkBuffer & 0xFF);
 RGBcount++;
 if(RGBcount > 2){RGBcount = 0;}
 spiSourceBuffer = RGBdataOut[RGBcount];
 }
 }
 }
 return 0;
}

#include "fsl_device_registers.h"
#include "fsl_os_abstraction.h"
#include "fsl_dspi_slave_driver.h"
#include "fsl_dspi_hal.h"
#include "board.h"

/*RGB values*/
#define RED 0x52
#define GREEN 0x47
#define BLUE 0x42

#define RED_LED 0
#define GREEN_LED 1
#define BLUE_LED 2
#define ALL_ON 3
#define ALL_OFF 4

void Turn_Led (uint8_t Led);

uint8_t spiSourceBuffer = 0xAA;
uint8_t spiSinkBuffer;

KSDK SPI Master and Slave example using the FRDM-K64F

12 Freescale Semiconductor

int main(void)
{

 /* Write your code here */
 // declare which module instance you want to use
 hardware_init();
 dbg_uart_init();
 OSA_Init();

 GPIO_DRV_Init(switchPins, ledPins);

 Turn_Led (ALL_ON);
 OSA_TimeDelay(1000);
 Turn_Led (ALL_OFF);

 configure_spi_pins(HW_SPI0);

 dspi_slave_state_t dspiSlaveState;
 dspi_slave_user_config_t slaveUserConfig;
 slaveUserConfig.dataConfig.clkPhase = kDspiClockPhase_SecondEdge;
 slaveUserConfig.dataConfig.clkPolarity = kDspiClockPolarity_ActiveHigh;
 slaveUserConfig.dataConfig.bitsPerFrame = 8;
 slaveUserConfig.dataConfig.direction = kDspiMsbFirst;

 slaveUserConfig.dummyPattern = DSPI_DEFAULT_DUMMY_PATTERN;

 DSPI_DRV_SlaveInit(HW_SPI0, &dspiSlaveState, &slaveUserConfig);

 for (;;) {

 dspi_status_t Error = DSPI_DRV_SlaveTransferBlocking(HW_SPI0,
 &spiSourceBuffer,
 &spiSinkBuffer,
 1,
 OSA_WAIT_FOREVER);
 if (Error == kStatus_DSPI_Success)
 {

 switch(spiSinkBuffer)
 {

 case((uint8_t)RED):
 Turn_Led (RED_LED);
 spiSourceBuffer = 0xA1;
 break;
 case((uint8_t)GREEN):
 Turn_Led (GREEN_LED);
 spiSourceBuffer = 0xB1;
 break;
 case((uint8_t)BLUE):
 Turn_Led (BLUE_LED);
 spiSourceBuffer = 0xC1;
 break;
 case((uint8_t)0xFF):
 Turn_Led (ALL_ON);
 break;

 }
 }

 }
 return 0;
}

KSDK SPI Master and Slave example using the FRDM-K64F
13 Freescale Semiconductor

void Turn_Led (uint8_t Led)
{
 switch(Led)

{
 case 0:
 GPIO_DRV_ClearPinOutput(BOARD_GPIO_LED_RED);
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_GREEN);
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_BLUE);
 break;
 case 1:
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_RED);
 GPIO_DRV_ClearPinOutput(BOARD_GPIO_LED_GREEN);
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_BLUE);
 break;
 case 2:
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_RED);
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_GREEN);
 GPIO_DRV_ClearPinOutput(BOARD_GPIO_LED_BLUE);
 break;
 case 3:
 GPIO_DRV_ClearPinOutput(BOARD_GPIO_LED_RED);
 GPIO_DRV_ClearPinOutput(BOARD_GPIO_LED_GREEN);
 GPIO_DRV_ClearPinOutput(BOARD_GPIO_LED_BLUE);
 break;
 case 4:
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_RED);
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_GREEN);
 GPIO_DRV_SetPinOutput(BOARD_GPIO_LED_BLUE);
 break;
 }
}

