

Freescale Semiconductor

Writing my first KSDK Application in KDS

Hello World and Toggle LED with GPIO Interrupt

By: Technical Information Center

This document explains briefly how to create a Hello World project and toggle a LED using GPIO Interrupts.

KSDK1.2 and KDS3.0 are used in this example.

Writing my first KSDK Application in KDS

2 Freescale Semiconductor

1 Requirements – DO NOT Skip

1.1 Install KDS (Kinetis Design Studio), you can download from www.freescale.com/kds

1.2 Install KSDK (Kinetis Software Development Kit), you can download from www.freescale.com/ksdk

1.3 Install ‘KSDK_1.2.0_Eclipse_Update’. You can find the update file in

‘C:\Freescale\KSDK_1.2.0\tools\eclipse_update’. The instructions to install the file are described in

‘C:\Freescale\KSDK_1.2.0\doc\Getting Started with Kinetis SDK (KSDK) v.1.2.pdf’

1.4 It is necessary to build KSDK Platform Driver Library (libksdk_platform.a)

Open ‘Getting Started with Kinetis SDK (KSDK) v.1.2.pdf’ located in ‘C:\Freescale\KSDK_1.2.0\doc’

and go to chapter ‘5.3 Build the platform library’.

Writing my first KSDK Application in KDS

3 Freescale Semiconductor

2 Create KDS project using KSDK

2.1 Go to menu File > New > Kinetis Design Studio Project.

2.2 Write a name for your project and click ‘Next’.

2.3 Select your target

Writing my f

4

2.4 Select ‘KSDK 1.2.0’ to include KSDK support and

click ‘Finish’.

Writing my first KSDK Application in KDS

Freescale Semiconductor

to include KSDK support and be sure that the SDK Absolute Path is correct. Then

Freescale Semiconductor

be sure that the SDK Absolute Path is correct. Then

Writing my first KSDK Application in KDS

5 Freescale Semiconductor

3 Develop the application

3.1 Right click over ‘Sources’ folder and select New > Folder to create a new folder inside ‘Sources’

folder.

3.2 Name this folder ‘Board’ and click ‘Finish’.

3.3 Go to C:\Freescale\KSDK_1.2.0\examples\<board> and copy all the source files in this folder to the

folder ‘Board’ that was created in the project.

• board.c

• board.h

• gpio_pins.c

• gpio_pins.h

• pin_mux.c

• pin_mux.h

Writing my f

6

• board.c/h: The header file contains board

terminal configuration, push buttons, LEDs and other

and oscillator initialization functions

• gpio_pins.c/h: Definitions used by the KSDK GPIO driver for the platform’s GPIO pins. These include

push buttons and LEDs, but can include other items such as interrup

example.

• pin_mux.c/h: Contains peripheral

the hardware_init() function or individually by the demo application.

NOTE: For more information please refer to

which is included in KSDK1.2.0 installation path

3.4 Create another folder inside

C:\Freescale\KSDK_1.2.0\platform

then go to C:\Freescale\KSDK_1.1

• fsl_debug_console.c/h: Provides initialization and basic functionality for the

connected to the debug interface.

NOTE: After copying ‘fsl_debug_console.c’

‘Yes’ and continue.

Writing my first KSDK Application in KDS

Freescale Semiconductor

The header file contains board-specific configuration macros for things such as debug

terminal configuration, push buttons, LEDs and other board-specific items. The C file contains clock

and oscillator initialization functions

Definitions used by the KSDK GPIO driver for the platform’s GPIO pins. These include

push buttons and LEDs, but can include other items such as interrupt pins for external sensors, for

Contains peripheral-specific pin mux configurations. These functions can be called by

hardware_init() function or individually by the demo application.

For more information please refer to ‘Getting Started with Kinetis SDK (KSDK) v.1.2.pdf

.0 installation path C:\Freescale\KSDK_1.2.0\doc.

Create another folder inside ‘Sources’ folder and name it ‘Utilities’

platform\utilities\inc and copy ‘fsl_debug_console.h’

KSDK_1.1.0\platform\utilities\src and copy ‘fsl_debug_console.c’

Provides initialization and basic functionality for the UART module that is

connected to the debug interface.

l_debug_console.c’ to utilities folder the prompt below may appear, in this case click

Freescale Semiconductor

specific configuration macros for things such as debug

specific items. The C file contains clock

Definitions used by the KSDK GPIO driver for the platform’s GPIO pins. These include

t pins for external sensors, for

specific pin mux configurations. These functions can be called by

Getting Started with Kinetis SDK (KSDK) v.1.2.pdf’ document

‘Utilities’, then go to

‘fsl_debug_console.h’ to folder ‘Utilities’,

‘fsl_debug_console.c’ too.

UART module that is

to utilities folder the prompt below may appear, in this case click

Writing my f

7

Now your project’s source folders tree must look as shown below.

Writing my first KSDK Application in KDS

Freescale Semiconductor

Now your project’s source folders tree must look as shown below.

Freescale Semiconductor

Writing my f

8

3.5 Go to menu Project > Properties C/C++ Build > Settings > Cross ARM C Compiler > Includes

to ‘Include paths (-I)’ the path

cause problems when copy-pasting.

Writing my first KSDK Application in KDS

Freescale Semiconductor

menu Project > Properties C/C++ Build > Settings > Cross ARM C Compiler > Includes

the path “../Sources/Board”. DO NOT COPY-PASTE this line because

pasting.

Freescale Semiconductor

menu Project > Properties C/C++ Build > Settings > Cross ARM C Compiler > Includes and add

this line because quotes

Writing my f

9

3.6 Repeat the same process in step 3.5

compiler Includes settings must look as shown below.

Writing my first KSDK Application in KDS

Freescale Semiconductor

s in step 3.5 for the folder ‘Utilities’, then click ‘Apply’

compiler Includes settings must look as shown below.

Freescale Semiconductor

‘Apply’ and ‘Ok’. The

Writing my f

10

3.7 Go to menu Project > Properties C/C++ Build > Settings > Cross ARM C Compiler > Includes

to ‘Include paths (-I)’ the path

3.8 Repeat the same process in step 3.11

C:\Freescale\KSDK1.2.0\platform

C:\Freescale\KSDK1.2.0\platform

Writing my first KSDK Application in KDS

Freescale Semiconductor

menu Project > Properties C/C++ Build > Settings > Cross ARM C Compiler > Includes

the path C:\Freescale\KSDK1.2.0\platform\osa\inc.

at the same process in step 3.11 for 3 more paths,

platform\drivers\inc, C:\Freescale\KSDK1.2.0\system\

platform\hal\inc.

Freescale Semiconductor

menu Project > Properties C/C++ Build > Settings > Cross ARM C Compiler > Includes and add

\inc and

Writing my f

11

3.9 Go to menu Project > Properties C/C++ Build > Settings > Cross ARM C++ Linker >

click the ‘+’ to add in ‘Libraries

‘Library search path’ add “C:\

NOTE: At this point ‘libksdk_platform‘must be built, please refer to step

Platform Driver Library (libksdk_platform.a

Alternately you can go to menu Project > Properties C/C++ Build > Settings > Cross ARM C++ Linker >

Miscellaneous and click the ‘+’ and then

located in the next path: C:\Freescale\KSDK_1.2

libksdk_platform.a.

Writing my first KSDK Application in KDS

Freescale Semiconductor

menu Project > Properties C/C++ Build > Settings > Cross ARM C++ Linker >

‘Libraries (-l)’ ‘ksdk_platform’ (without “lib” and without “.a”)

\Freescale\KSDK_1.2.0\lib\ksdk_platform_lib\kds\

‘must be built, please refer to step 1.4 - It is necessary to

libksdk_platform.a)’ on this document.

menu Project > Properties C/C++ Build > Settings > Cross ARM C++ Linker >

and then ‘File System’ button to add in ‘Other objects’ ‘libksdk_platform.a

KSDK_1.2.0\lib\ksdk_platform_lib\kds\K64F12\debug

Freescale Semiconductor

menu Project > Properties C/C++ Build > Settings > Cross ARM C++ Linker > Libraries and

(without “lib” and without “.a”). Then in

\K64F12\debug”

It is necessary to build KSDK

menu Project > Properties C/C++ Build > Settings > Cross ARM C++ Linker >

libksdk_platform.a’

ebug\

Writing my f

12

NOTE: If the file does not exist you need to build KSDK platform library. Please refer to step

to build KSDK Platform Driver Library (libksdk_platform.a

Writing my first KSDK Application in KDS

Freescale Semiconductor

If the file does not exist you need to build KSDK platform library. Please refer to step

libksdk_platform.a)’ on this document.

Freescale Semiconductor

If the file does not exist you need to build KSDK platform library. Please refer to step 1.5 - It is necessary

Writing my first KSDK Application in KDS

13 Freescale Semiconductor

3.10 Erase the content of ‘main.c’ and replace it with the code below.

#include "fsl_device_registers.h"

#include "board.h"
#include "pin_mux.h"

#include "fsl_clock_manager.h"

#include "fsl_debug_console.h"

#include <stdio.h>

#define GPIO_INTERRUPT 1 //Set value to 1 for interrupt, 0 for polling

int main(void)

{

 /* enable clock for PORTs */
 CLOCK_SYS_EnablePortClock(PORTA_IDX);

 CLOCK_SYS_EnablePortClock(PORTB_IDX);

 CLOCK_SYS_EnablePortClock(PORTC_IDX);

 CLOCK_SYS_EnablePortClock(PORTE_IDX);

 /* Init board clock */
 BOARD_ClockInit();

 dbg_uart_init();

 printf("\nHello World! \r\n");

 printf("\nPress SW2 to Toggle LED. \r\n");

#if GPIO_INTERRUPT

 // Configure pin (sw1) interrupt if GPIO_INTERRUPT is set

 switchPins[0].config.interrupt = kPortIntFallingEdge;

#endif

 // Initializes GPIO driver
 GPIO_DRV_Init(switchPins, ledPins);

 while(1)

 {

#if !GPIO_INTERRUPT
 // Poll (sw2) if GPIO_INTERRUPT is not set

 if(GPIO_DRV_ReadPinInput(kGpioSW2) == 0)

 {

 GPIO_SW_DELAY;

 GPIO_DRV_TogglePinOutput(BOARD_GPIO_LED_BLUE);

 }
#endif

 }

 return 0;

}

#if GPIO_INTERRUPT

// Define PORTC_IRQHandler (sw2) if GPIO_INTERRUPT is set

void PORTC_IRQHandler()

{

 GPIO_DRV_ClearPinIntFlag (kGpioSW2); // Clear IRQ flag

 GPIO_DRV_TogglePinOutput(BOARD_GPIO_LED_BLUE); // Toggle blue LED
 GPIO_SW_DELAY;

}

#endif

/*EOF*/

Writing my first KSDK Application in KDS

14 Freescale Semiconductor

• dbg_uart_init(): Is defined in ‘hardware_init.c’ and it sets up the UART port which is connected to the

debug interface as well as the pins required by the UART.

• switchPins[0].config.interrupt = kPortIntFallingEdge: In ‘gpio_pins.c’ several structures for GPIO

configuration are defined and initialized, these structures provide fields to configure a friendly name

for the GPIO, pullup, pulldown, interrupt, slewrate, open drain among other functionalities. The types

of these structures are ‘gpio_input_pin_user_config_t’ and ‘gpio_output_pin_user_config_t’ and it is

necessary to define a structure for each GPIO pin that is going to be configured. In the case of the LEDs

and push buttons there are 2 arrays of structures are defined; switchPins and ledPins. This instruction

reconfigures the interrupt field of kGpioSW2 to enable falling edge interrupt if GPIO_INTERRUPT macro

is set. You can find more details about the GPIO structures and types in ‘Kinetis SDK v.1.2.0 API

Reference Manual’ which is located in KSDK installation path C:\Freescale\KSDK_1.2.0\doc.

• GPIO_DRV_Init(): This function is part of the GPIO driver, it receives the 2 GPIO arrays of structures to

initialize the GPIO driver with these parameters. For more information please see ‘Kinetis SDK v.1.1

API Reference Manual’ which is located in KSDK installation path C:\Freescale\KSDK_1.1.0\doc\Kinetis

SDK v.1.1 API Reference Manual.

• PORTC_IRQHandler(): In ‘gpio_pins.h’ an enum is declared to associate the GPIO friendly name with a

pin, here kGpioSW2 is associated to PTC6. As you can see in ‘FRDM-K64F Freedom Module User’s

Guide’ SW2 in FRDM-K64F board is connected to PTC6.

NOTE: If you are using a different board the pin number may be different.

 You can find the user’s guides of the freedom and tower boards as well as the schematics in

www.freescale.com/freedom and www.freescale.com/tower.

• GPIO_DRV_ClearPinIntFlag(), GPIO_DRV_TogglePinOutput(): These are also functions of the GPIO

driver which clear the interrupt flag and toggle the GPIO value.

3.11 Add the following code into ‘board.h’ to generate a delay for the push button debounce. DO NOT

ERASE anything in this file.

#define GPIO_SW_DELAY \

 do \

 { \

 int32_t i; \

 for (i = 0; i < 0x1FFFFF; i++) \

 { \

 __asm("nop"); \

 } \

 } while (0)

Writing my first KSDK Application in KDS

15 Freescale Semiconductor

3.12 Build your application, go to menu Project > Build Project. Alternately click the hammer button.

Writing my first KSDK Application in KDS

16 Freescale Semiconductor

4 Debug the application

4.1 Go to menu Run > Debug Configurations…

4.2 Select the ‘Debug Configuration’ that matches your connection type, in this example P&E Micro

connection is used, if you don’t know which your connection type is or you want to change your

connection type see ‘Appendix C’ at the end this document. Once you double click the appropriate

‘Debug Configuration’, the connection settings will appear. In ‘Debugger’ tab select the right

‘Interface’, ‘Port’ and ‘Device Name’, then click ‘Apply’ and ‘Debug’.

Writing my f

17

4.3 Open a terminal, select the appropriate port and set baudrate to 115200.

4.4 Run the application, you will see

SW2.

Writing my first KSDK Application in KDS

Freescale Semiconductor

Open a terminal, select the appropriate port and set baudrate to 115200.

Run the application, you will see “Hello World” in terminal and blue LED will toggle when pressing

Freescale Semiconductor

ED will toggle when pressing

Writing my f

18

 APPENDIX A: Install KDS Software Updates

See chapter 5.2 Install Eclipse update of

installation path.

C:\Freescale\KSDK_1.1.0\doc\Getting Started with Kinetis SDK (KSDK).pdf

APPENDIX B: Verify KSDK_PATH

Go to ‘Control Panel > System and S

Variables…’.

1.1 If the variable does not exists click

variable. The path must be where KSDK is installed. The default path is

If the variable exists but it does not point to your KSDK i

correct it.

Writing my first KSDK Application in KDS

Freescale Semiconductor

: Install KDS Software Updates

of ‘Getting Started with Kinetis SDK (KSDK)’ document located

Getting Started with Kinetis SDK (KSDK).pdf

APPENDIX B: Verify KSDK_PATH

Security > System > Advanced system settings’

If the variable does not exists click ‘New’ button under ‘System variables’ to create ‘KSDK_PATH’

must be where KSDK is installed. The default path is ‘C:\Freescale

If the variable exists but it does not point to your KSDK installation folder click

Freescale Semiconductor

document located in KSDK

 and ‘Environment

to create ‘KSDK_PATH’

Freescale\KSDK_1.1.0’.

nstallation folder click ‘Edit’ button to

Writing my first KSDK Application in KDS

19 Freescale Semiconductor

IMPORTANT NOTE: If you installed more than one KSDK or MQX for KSDK versions you must be sure that

KSDK_PATH variable is pointing to the correct installation.

Writing my f

20

APPENDIX C: Connection Types

- KDS works with devices which support Open

- You can find Open SDA User’s Guide here:

http://www.freescale.com/files/32bit/doc/user_guide/OPENSDAUG.pdf

- You can learn more about Open

https://community.freescale.com/docs/DOC

Identify your Connection Type

To find out which your connection type is you must connec

Device Manager, here you can see the connection used by your device. You can see how to open Windows

device manager in the link below:

http://windows.microsoft.com/en-us/windows/open

MBED Connection

Please note that this connection is not supported in KDS yet.

Writing my first KSDK Application in KDS

Freescale Semiconductor

with devices which support OpenSDAv2 connection.

You can find Open SDA User’s Guide here:

http://www.freescale.com/files/32bit/doc/user_guide/OPENSDAUG.pdf

 SDA in the following link:

https://community.freescale.com/docs/DOC-100720

o find out which your connection type is you must connect your device to your computer and go to Windows

Device Manager, here you can see the connection used by your device. You can see how to open Windows

us/windows/open-device-manager#1TC=windows-7

this connection is not supported in KDS yet.

Freescale Semiconductor

t your device to your computer and go to Windows

Device Manager, here you can see the connection used by your device. You can see how to open Windows

Writing my first KSDK Application in KDS

21 Freescale Semiconductor

Segger J-link connection

Writing my first KSDK Application in KDS

22 Freescale Semiconductor

P&E Micro Connection

Writing my first KSDK Application in KDS

23 Freescale Semiconductor

Switching or updating your connection firmware

You can download different versions of OpenSDA form our partners’ web sites.

MBED

1) Go to http://mbed.org/platforms/

2) Select your platform

3) Click on the ‘Step by step firmware update instructions’ link

4) Save the latest firmware and follow the instructions to do the update

Writing my first KSDK Application in KDS

24 Freescale Semiconductor

P&E Micro

1) Go to http://www.pemicro.com/opensda/

2) Download ‘Open SDA Firmware’ and optionally ‘Windows USB Drivers’

3) Extract the content on the .zip file and follow steps in ‘Updating the OpenSDA Firmware.pdf’

Writing my first KSDK Application in KDS

25 Freescale Semiconductor

Segger

1) Go to http://www.segger.com/opensda.html

2) Download the required firmware

3) Unzip the content of the .zip file and use the binary file to update the firware. Steps to update the

firware are shown in Open SDA User’s Guide mentioned at the beginning of this appendix.

Writing my first KSDK Application in KDS

26 Freescale Semiconductor

Other useful links

CMSIS DAP

https://mbed.org/handbook/CMSIS-DAP

Binary Files for the mbed Bootloader with Eclipse and GNU ARM Eclipse Plugins

http://mcuoneclipse.com/2014/04/20/binary-files-for-the-mbed-bootloader-with-eclipse-and-gnu-arm-

eclipse-plugins/

Segger J-Link Firmware for OpenSDAv2

http://mcuoneclipse.com/2014/04/27/segger-j-link-firmware-for-opensdav2/

FRDM-K22F: Debugging with Segger J-Link OpenSDAv2.1 Firmware

https://community.freescale.com/docs/DOC-101790

FRDM-K22F: Debugging with P&E OpenSDAv2.1 Firmware

https://community.freescale.com/docs/DOC-101792

OpenSDA Update Instructions for Freescale Freedom Development Boards for Windows 8.1 and Linux

http://www.element14.com/community/docs/DOC-65460/l/opensda-update-instructions-for-freescale-

freedom-development-boards-for-windows-81-and-linux

P&E Eclipse Update Site for GNU ARM Eclipse Plugins

http://mcuoneclipse.com/2014/09/11/pe-eclipse-update-site-for-gnu-arm-eclipse-plugins/

