Porting Kboot to FRDM-K64

After we released the "Kinetis Bootloader to Update Multiple Devices in a Network for
Cortex-M4" (Kinetis Bootloader to Update Multiple Devices in a Network for Cortex-
M4), many customers want to port it to FRDM-K64 board, so here I share it.

I mainly change these points when porting:

1. The OpenSDA on board cannot meet the bootloader transmit speed requirements, so
one external USB-UART board is required. In my bootloader project, I select the UART1.

#define BOOT_UART_BASEIUARTI BASE PTR I [/ UART used for bogtloader. PTC3 is Rx
- #define PIN_INIT_AS_UART PORT_PCR_REG(PORTC_BASE _PTR, 3)] = PORT_PCR_MUX(3) | PORT_PCR_PE_MASK;\

PORT_PCR_REG(PORTC_BASE_PTR, 4)| = PORT_PCR_MUX(3);

2. The sector size of MK64FN1MOVLL12 is 4Kbytes, so the minimum size of flash
erase sector is 4K, | configure the MCU_Identification (About the meaning of

MCU_Idendification, please refer to Kinetis Bootloader to Update Multiple Devices in a
Network for Cortex-M4) :

[£] bootloader.c #2
}dentType;

@ _ attribute_ ((section(".init")))const IdentType MCU_Identification = {BL_M4, ['MKG4FNL1ME"|"1.8",|ex1068) eX88, @xolecoes,) FC, FF};

3. I also change the RELOCATED_VECTORS :

https://community.nxp.com/docs/DOC-328365
https://community.nxp.com/docs/DOC-328365
https://community.nxp.com/docs/DOC-328365
https://community.nxp.com/docs/DOC-328365

[h] FROM_KB4F_cfg.h 52

i /
#define RELOCATED VECTORS Bx5080 I // Start address of relocated interrutp vector table

4. In flash program of of MK64FN1IMOVLL12, the size is 8 bytes in a program flash
block or a data flash block, so when program, | use the function of
FLASH_ProgramSectionByPhrases():

[£] bootloader.c 5%

case'l": // receive 'W' command, extract app burning code, program flash. then send confirm frame to UART
Boot_ReadAddress();
burn_data_length = sci_buffer[8];
for(j=8,1i=9;j<burn_data_length;j++,iH) // extract the prepared writing data from sci buff[] to S19buffer[]

s19buffer[j] = sci buffer[i];

}
iF(!tfLASH_Pr‘DgramSectiDnByPhr‘ases (address.complete, (LWord*)sl9buffer, burn_data_length/Si))

5. About the “BOOT_PIN_ENABLE_GPIO”, because all buttons on FRDM-K64 are
non-maskable interrupt signal, so | choose the PTB20(J4-9 on frdm-k64) as enable boot
pin. Connect it to GND(the below picture) when reset, it can run into bootloader mode, if
disconnect it, the board will run into user application.

PTB20-GND

6. In this project, I use the FEI mode, if you need PEE or other modes, please configure it
by yourself:

(1)Write the clock configuration code in the function “Boot_Init_Clock()”(This function
code on my project is the configure for frdm-k22, please do not use it):

[£] bootloader.c 52

// SCOPE: Bogtleoader application system function
// DESCRIPTIONM: Inif the sytem clock. Here it uses PEE with external 8M crystal, C

- void|Boot_Init _Clock()

(2)Enable the definition “USE_INTERNAL_CLOCK":

[r] FRDM_K64F_cfg.h 52
I //#define USE EXTERNAL CLOCK I
#define USE INTERMAL CLOCK

7. In application project, change AppIDC:

] bl_communication.c 52

Byte buff_index = @; Jf receive buffer index for sci_buffer[]

Byte test_alice = @;
#define AppIDC *(LkWord *)(@x288300088 - 3)
const Byte station_number = 1;

=

