

Freescale Semiconductor

Getting started with CDE in Kinetis

Design Studio

By: Carlos Mendoza / Technical Information Center

Getting started with CDE in Kinetis Design Studio
2 Freescale Semiconductor

About this document

This document introduces the usage of Component Development Environment (CDE) by creating a

software component that will use the Kinetis Software Development Kit (KSDK) drivers to control a 16x2

LCD.

The code provided on the below document will be used as starting point for the creation of the

component:

Driving 16x2 LCD using KSDK drivers: https://community.freescale.com/docs/DOC-329190

Software versions

The steps described in this document are valid for the following versions of the software tools:

 KDS v3.0.0

 KSDK v1.3.0

The links to download the software can be found on the Appendix A.

Contents
1. Glossary ... 3

2. Overview and concepts ... 4

2.1 Processor Expert Software .. 4

2.1.1 Embedded Components .. 4

3. Creating a new embedded component .. 5

3.1 Adding properties ... 7

3.2 Adding a method ... 11

3.3 Adding inherited components .. 21

4. Testing component. .. 27

Appendix A - References ... 36

https://community.freescale.com/docs/DOC-329190

Getting started with CDE in Kinetis Design Studio
3 Freescale Semiconductor

1. Glossary

CDE Component Development Environment: Eclipse plug-in tool that provides a graphical interface

to create, edit, and package embedded components.

KDS Kinetis Design Studio: Integrated Development Environment (IDE) software for Kinetis MCUs.

KSDK Kinetis Software Development Kit: Set of peripheral drivers, stacks and middleware layers for

Kinetis microcontrollers.

Getting started with CDE in Kinetis Design Studio
4 Freescale Semiconductor

2. Overview and concepts

2.1 Processor Expert Software

Processor Expert Software is a development system to create, configure, optimize, migrate, and deliver
software components that generate source code for Freescale silicon. Processor Expert software covers
Freescale's S08/RS08, S12(X), ColdFire, ColdFire+, Kinetis, DSC 56800/E, QorIQ and some other Power
Architecture® processors. Processor Expert software is available as part of the CodeWarrior tool suite or
as an Eclipse-based plug-in feature for installation into an independent Eclipse environment.

You can find more information about processor Expert on the following link:

http://mcuoneclipse.com/2015/10/18/overview-processor-expert/

2.1.1 Embedded Components

An embedded component is a software entity that exposes a specific set of methods, properties, and
events providing an abstraction for peripheral I/O and CPUs. An embedded component may also
encapsulate/package a software stack or RTOS adapter.

2.1.1.1 Terminology

- Properties- The initialization state and features supported at runtime by the component; the
properties can only be defined at design time.

- Methods- These are the functions exposed by the component, available at runtime and are used
to set and read the component state or implement behavior.

- Events- These are callback functions exposed by the component to attend to asynchronous
events such as interrupts.

- Driver- A driver contains the source code of all methods and events generated by a component.
Every component, except the CPU, has a driver associated with it.

- Inheritance- The process that allows using and/or redefining methods and events of another
component.

- Interfaces- Defines the methods and events needed by a new component that uses the
interface.

http://mcuoneclipse.com/2015/10/18/overview-processor-expert/

Getting started with CDE in Kinetis Design Studio
5 Freescale Semiconductor

3. Creating a new embedded component

- In order to start creating a new component create a new Embedded Component project in KDS,

to do this go to menu File > New > Embedded Component:

- Give a name to your project and click on Next:

- Give a name to the component, for this example choose the Component type to be Software

Component, the drivers placement to be inside the component and click on Finish:

Getting started with CDE in Kinetis Design Studio
6 Freescale Semiconductor

- The next step is to fill the component’s general information. In the Header tab set a brief

description of the component, the author, select an Icon or choose a custom one, specify the

Origin Repository where the component will be distributed, in this case it will be

MyComponents:

- On the Options tab, leave everything as is except for the Component Level, change this option

to High.

Getting started with CDE in Kinetis Design Studio
7 Freescale Semiconductor

- And for the Help and Compiler tab leave everything as is.

3.1 Adding properties

- The component will have 3 read-only properties: LCD Type, Number of lines and Characters per

line.

- To add these properties, right-click on the Properties in the Component editor and select Add

Property option:

- The Properties editor will open, on the Basic Settings change the Property Type to String and

set the Name, Symbol and Hint for the “LCD Type” property:

Getting started with CDE in Kinetis Design Studio
8 Freescale Semiconductor

- On the Advanced Settings tab and enable the Read Only option and set the value for the

property, in this case Generic will be the value for the LCD Type property.

- The same steps apply for the Number of lines property:

Getting started with CDE in Kinetis Design Studio
9 Freescale Semiconductor

- 2 will be the value for the Number of lines property.

- And for the Characters per line property:

Getting started with CDE in Kinetis Design Studio
10 Freescale Semiconductor

- 16 will be the value for the Characters per line property.

Getting started with CDE in Kinetis Design Studio
11 Freescale Semiconductor

3.2 Adding a method

The document “Driving 16x2 LCD using KSDK drivers” (https://community.freescale.com/docs/DOC-

329190) uses the lcd_init function to print a message on the LCD:

 So add this function as a method in the component.

- To do this make a right click on Methods and click on Add Method:

https://community.freescale.com/docs/DOC-329190
https://community.freescale.com/docs/DOC-329190

Getting started with CDE in Kinetis Design Studio
12 Freescale Semiconductor

- The Method editor will open, on the Basic Settings set the Name and Hint for the “lcd_init”

method:

- Go to the Source tab and locate the section pointed below:

Getting started with CDE in Kinetis Design Studio
13 Freescale Semiconductor

- Then add the following code on that section:

Getting started with CDE in Kinetis Design Studio
14 Freescale Semiconductor

LCD_Pin_Enable(); // Enable pins

 delay(100); //Display initialization

 SetUp();

 instruction(0x80); //First line
 text((unsigned char *)&upper_line[0]);

 instruction(0xC0); //Second line
 text((unsigned char *)&lower_line[0]);

 instruction(0x0F); //Cursor on blinking
}

//---

void enable(void){
 LCD_ENABLE_ON;
 delay(4);
 LCD_ENABLE_OFF;
}

//---

void SetUp(){
 unsigned char a = 0;

 while(initLCD[a])
 {
 instruction(initLCD[a]);
 a++;
 }
}

//---

void instruction(unsigned char x){
 LCD_RS_OFF;

 lcd_data(x&0xF0);
 enable();

 lcd_data((x<<4)&0xF0);
 enable();
}

Getting started with CDE in Kinetis Design Studio
15 Freescale Semiconductor

//---

void lcd_data(unsigned char x){
 //Bit 7
 if (x&0x80) {
 LCD_D7_ON;
 }
 else {
 LCD_D7_OFF;
 }

 //Bit 6
 if (x&0x40) {
 LCD_D6_ON;
 }
 else {
 LCD_D6_OFF;
 }

 //Bit 5
 if (x&0x20) {
 LCD_D5_ON;
 }
 else {
 LCD_D5_OFF;
 }

 //Bit 4
 if (x&0x10) {
 LCD_D4_ON;
 }
 else {
 LCD_D4_OFF;
 }
}

//---

void text (unsigned char *b){
 while(*b)
 {
 info(*b);
 b++;
 }
}

Getting started with CDE in Kinetis Design Studio
16 Freescale Semiconductor

Note: The first and last Curly braces were intentionally left out, these will be added automatically.

- The result should be as follows:

//---

void info(unsigned char x)
{
 if (x == 'ñ') x = 238;

 LCD_RS_ON;

 lcd_data(x&0xF0);
 enable();

 lcd_data((x<<4)&0xF0);
 enable();
}

//---

void LCD_Pin_Enable(void){
 LCD_ENABLE_EN;
 LCD_RS_EN;
 LCD_D7_EN;
 LCD_D6_EN;
 LCD_D5_EN;
 LCD_D4_EN;
}

//---

void delay(unsigned long time){
 while (count <= time){}
 count = 0;

Getting started with CDE in Kinetis Design Studio
17 Freescale Semiconductor

- The next step is to add the necessary includes, macros, variable definitions and function

prototypes needed by the method, all this needs to be added on the following file:

Getting started with CDE in Kinetis Design Studio
18 Freescale Semiconductor

- Double click on it and the editor will open, the includes will be added in the following section:

Code:

- The macro definitions and function prototypes will be added in the following section:

#include "board.h"
#include "lcdPins.h"

Getting started with CDE in Kinetis Design Studio
19 Freescale Semiconductor

Code:

Getting started with CDE in Kinetis Design Studio
20 Freescale Semiconductor

- Finally the variable definitions will be added in the following section:

/* lcd mapping */
#define LCD_ENABLE_EN (GPIO_DRV_OutputPinInit(&lcdPins[0])) /*!< Enable target LCD Enable */
#define LCD_RS_EN (GPIO_DRV_OutputPinInit(&lcdPins[1])) /*!< Enable target LCD RS */
#define LCD_D7_EN (GPIO_DRV_OutputPinInit(&lcdPins[2])) /*!< Enable target LCD D7*/
#define LCD_D6_EN (GPIO_DRV_OutputPinInit(&lcdPins[3])) /*!< Enable target LCD D6*/
#define LCD_D5_EN (GPIO_DRV_OutputPinInit(&lcdPins[4])) /*!< Enable target LCD D5*/
#define LCD_D4_EN (GPIO_DRV_OutputPinInit(&lcdPins[5])) /*!< Enable target LCD D4*/

#define LCD_ENABLE_OFF (GPIO_DRV_WritePinOutput(lcdPins[0].pinName, 0)) /*!< Turn off target LCD
Enable */
#define LCD_RS_OFF (GPIO_DRV_WritePinOutput(lcdPins[1].pinName, 0)) /*!< Turn off target LCD RS */
#define LCD_D7_OFF (GPIO_DRV_WritePinOutput(lcdPins[2].pinName, 0)) /*!< Turn off target LCD D7*/
#define LCD_D6_OFF (GPIO_DRV_WritePinOutput(lcdPins[3].pinName, 0)) /*!< Turn off target LCD D6*/
#define LCD_D5_OFF (GPIO_DRV_WritePinOutput(lcdPins[4].pinName, 0)) /*!< Turn off target LCD D5*/
#define LCD_D4_OFF (GPIO_DRV_WritePinOutput(lcdPins[5].pinName, 0)) /*!< Turn off target LCD D4*/

#define LCD_ENABLE_ON (GPIO_DRV_WritePinOutput(lcdPins[0].pinName, 1)) /*!< Turn on target LCD
Enable */
#define LCD_RS_ON (GPIO_DRV_WritePinOutput(lcdPins[1].pinName, 1)) /*!< Turn on target LCD RS */
#define LCD_D7_ON (GPIO_DRV_WritePinOutput(lcdPins[2].pinName, 1)) /*!< Turn on target LCD D7 */
#define LCD_D6_ON (GPIO_DRV_WritePinOutput(lcdPins[3].pinName, 1)) /*!< Turn on target LCD D6 */
#define LCD_D5_ON (GPIO_DRV_WritePinOutput(lcdPins[4].pinName, 1)) /*!< Turn on target LCD D5 */
#define LCD_D4_ON (GPIO_DRV_WritePinOutput(lcdPins[5].pinName, 1)) /*!< Turn on target LCD D4 */

/* Function Prototypes */
void delay(unsigned long time);
void LCD_Pin_Enable(void);
void enable(void);
void lcd_init();
void SetUp ();
void instruction (unsigned char x);
void lcd_data(unsigned char x);
void text (unsigned char *b);
void info(unsigned char x);

Getting started with CDE in Kinetis Design Studio
21 Freescale Semiconductor

Code:

3.3 Adding inherited components

The fsl_gpio and fsl_pit components are needed for the LCD_KSDK component to work, so these need

to be inherited.

- Make a right click on the LCD_KSDK component and select Inherit Component…:

- The Inheritance Wizard will open, change the repository to KSDK 1.3.0 and choose the fsl_gpio

component:

const unsigned char upper_line[] = "K64F 16x2 LCD";
const unsigned char lower_line[] = "Using PEx KSDK";

const unsigned char initLCD[8]={0x02, 0x28, 0x0C,0x06,0x01,0x00};
volatile long count;

Getting started with CDE in Kinetis Design Studio
22 Freescale Semiconductor

- On the next step, select the Shared usage of components methods and events option, click on

Next:

Getting started with CDE in Kinetis Design Studio
23 Freescale Semiconductor

- On the following window nothing changes, click on Next:

- On the Multiple Inheritance window select Inherit another component and click on Next:

Getting started with CDE in Kinetis Design Studio
24 Freescale Semiconductor

- And follow the same process as above only this time select the fsl_pit component:

Getting started with CDE in Kinetis Design Studio
25 Freescale Semiconductor

- This time, on the Multiple Inheritance window, select Continue without inheriting another

component and click on Next:

Getting started with CDE in Kinetis Design Studio
26 Freescale Semiconductor

- And click on Finish:

- Save the changes and the component will be deployed to the My Components repository:

Getting started with CDE in Kinetis Design Studio
27 Freescale Semiconductor

4. Testing component.

To test the component create a new KSDK project with Processor Expert enabled.

- Go to menu File> New> Kinetis Project:

- The new project wizard will open, give a name to the project:

- Select the board or processor to be used, for this example the FRDM-K64F board was used:

Getting started with CDE in Kinetis Design Studio
28 Freescale Semiconductor

- Select the KSDK version 1.3 and enable the Processor Expert option:

Getting started with CDE in Kinetis Design Studio
29 Freescale Semiconductor

- Now go to the Components library, select the repository named My Components and add the

LCD_KSDK component to the project:

- The below dialogs will show up indicating that shared components need to be created, the

fsl_gpio and the fsl_pit components:

Getting started with CDE in Kinetis Design Studio
30 Freescale Semiconductor

- These components will be located inside the Referenced_Components folder:

Getting started with CDE in Kinetis Design Studio
31 Freescale Semiconductor

- Now the fsl_gpio component needs to be modified, these are the needed changes:

o Change the component name to lcdPins, this is how the LCD_KSDK component will

recognize it.

o Disable the Input pins.

o Change the “Output configuration 0” name to lcdPins.

o Change the “Output pins number” of the “Output configuration 0” from 1 to 6.

o Disable the Auto initialization.

o Assign the 6 pins to be used to control the LCD, here is an example of the pins used in

the FRDM-K64F:

Output configuration 0 Function Pin

Pin 0 Enable PTD1

Pin 1 RS PTD3

Pin 2 D7 PTC5

Pin 3 D6 PTC7

Pin 4 D5 PTC0

Pin 5 D4 PTC9

o Disable the Open drain option for the pins.

o Change the Slew rate option to fast for the pins.

Getting started with CDE in Kinetis Design Studio
32 Freescale Semiconductor

Getting started with CDE in Kinetis Design Studio
33 Freescale Semiconductor

- For the fsl_pit component these are the needed changes:

o Change the Period to 1 ms.

- Now click on the Generate code button:

Getting started with CDE in Kinetis Design Studio
34 Freescale Semiconductor

- Add the following function call to the lcd_init method on the main.c file from the source folder:

- Edit the events.c file from the source folder as following:

int main(void)
/*lint -restore Enable MISRA rule (6.3) checking. */
{
 /* Write your local variable definition here */

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/
 /* Write your code here */
 /* For example: for(;;) { } */
 LCD_KSDK1_lcd_init();
 /*** Don't write any code pass this line, or it will be deleted during code
generation. ***/
 /*** RTOS startup code. Macro PEX_RTOS_START is defined by the RTOS component. DON'T
MODIFY THIS CODE!!! ***/
 #ifdef PEX_RTOS_START
 PEX_RTOS_START(); /* Startup of the selected RTOS. Macro is
defined by the RTOS component. */
 #endif
 /*** End of RTOS startup code. ***/
 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/
 for(;;){}
 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/
} /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/

/* User includes (#include below this line is not maintained by Processor Expert) */
extern volatile long count;
volatile bool pitIsrFlag[2] = {false};

#ifdef pitTimer1_IDX
/*
** ===
** Interrupt handler : pitTimer1_IRQHandler
**
** Description :
** User interrupt service routine.
** Parameters : None
** Returns : Nothing
** ===
*/
void pitTimer1_IRQHandler(void)
{
 /* Clear interrupt flag.*/
 PIT_HAL_ClearIntFlag(g_pitBase[pitTimer1_IDX], pitTimer1_CHANNEL);
 pitIsrFlag[0] = true;
 count++;
}

Getting started with CDE in Kinetis Design Studio
35 Freescale Semiconductor

- Finally compile and run the code, the following message will be printed on the LCD:

Getting started with CDE in Kinetis Design Studio
36 Freescale Semiconductor

Appendix A - References

- Driving 16x2 LCD using KSDK drivers:

https://community.freescale.com/docs/

- Tutorial: Creating a Processor Expert Component for an Accelerometer:

http://mcuoneclipse.com/2013/03/31/tutorial-creating-a-processor-expert-component-for-an-

accelerometer/

- KDS webpage:

www.freescale.com/kds

- KSDK webpage:

www.freescale.com/ksdk

- Kinetis Design Studio videos:

 Installation of KDS and Kinetis SDK: https://community.freescale.com/videos/3281

 Installation of OpenSDA Firmware: https://community.freescale.com/videos/3282

 Debugging with KDS: https://community.freescale.com/videos/3283

 Building the KSDK demo applications: https://community.freescale.com/videos/3378

https://community.freescale.com/docs/DOC-104433
http://mcuoneclipse.com/2013/03/31/tutorial-creating-a-processor-expert-component-for-an-accelerometer/
http://mcuoneclipse.com/2013/03/31/tutorial-creating-a-processor-expert-component-for-an-accelerometer/
http://www.freescale.com/kds
http://www.freescale.com/ksdk
https://community.freescale.com/videos/3281
https://community.freescale.com/videos/3282
https://community.freescale.com/videos/3283
https://community.freescale.com/videos/3378

