Porting Kinetis Interrupt from
CodeWarrior to KDS

By Jennie Zhang

Recently | received two cases from Kinetis users. They both meet problem when porting
Kinetis Interrupt project from CodeWarrior 10.x to KDS. There is a document
KDS_Porting_Guide.pdf under KDS install folder which covers this topic. However | know
many customers still have difficulty even they follow the document steps. This scenario
is normal; because users’ projects are various, we can’t expect one porting document
solve all kinds of problem of individuals. For me, honestly, | seldom use this porting
guide to port my project. | prefer porting my project all by hand. Thus | can know my
project changes from up to bottom. Thus even if | meet problem later, | can still position
it easily and quickly.

For the reason of time, in this article, | will focus on how to port Kinetis Interrupt from
CodeWarrior to KDS by hand.

Some NVIC register definition name and file structure are different in CodeWarrior and
KDS. One big difference is that KDS uses core file from ARM limited directly. |
summarized the difference as below table. It’s good to know the basic difference before
we start the porting.

CodeWarrior KDS
NVIC Where MCU header file. ARM Core file.
Register Eg: Eg: core_cm4,
Definition : MK60N512VMD100.h | core_cmOplus.h
Written by NXP(former ARM Limited
Freescale)
Sample of usage NVICISERx = 0x01 NVIC->ISER[x] = 0x01
Packaged in
NVIC_EnablelRQ(n)
Vector Table | Where Kinetis_sysinit.c Startup_MK60D10.S
Definition: Language Using C Assembly
Interrupt handler Defined by user Defined by KDS.
name Eg, PORTA _IRQHandler
Allow user modify.

1. Review basic Kinetis NVIC knowledge.

General steps for enabling an interrupt on NVIC:

1) Enable the peripheral to be used

2) Set the proper bit on the NVICSERx to enable the interrupt on the NVIC

3) Clear any pending interrupt by writing to the NVICCPRx to avoid any spurious

interrupt

4) Configure the interrupt priority by writing to the NVICIPn

5) Write the ISR

6) Enable global interrupts

Here, there are two indexes “x” ”"n” suffixed. Remember what are they? If not, see

below example.

This Figl is extracted from Interrupt Vector Assignment Table list from K60 user manual.

Port A pin detect interrupt is highlighted. This interrupt IRQ number is 87. Thus we set n
= 87. NVIC non-IPR register number is 2, we set x = 2

Here is a formula for the relation of x and n: x = n/32. Also take previous example:
87/32=2, BINGO!

Fig. 1 Interrupt Vector Assignment

Address Vector IRQ" NVIC NVIC Source module Source description

non-IPR IPR

register | register

number | number

2 3

Ox0000_0198 102 BB 2 21 — —_
0w0000_018C 103 a7 2 oa | Port control module | Pin detect (Port A)
00000_01AD 104 88 2 22 Port control module | Pin detect (Port B)
Ox0000_01A4 106 89 2 22 Port control module |Pin detect (Port C)
0x0000_0108 108 90 2 Ee Pt rantenl madula | Dindetsrg (Do M

2. interrupt initialization:

CodeWarrior vs. KDS

CodeWarrior

KDS

NVICISER | Interrupt Set NVIC_EnablelRQ(n) Enable External Interrupt :

X Enable Register Enable a device-specific
interrupt in the NVIC interrupt
controller

NVICICER | Interrupt Clear NVIC_DisablelRQ(n) Disable External Interrupt :

X Enable Register Disables a device-specific
interrupt in the NVIC interrupt
controller

NVICICPR | Interrupt Clear NVIC_ClearPendinglRQ(n | Clear Pending Interrupt :

X Pending Register) Clears the pending bit of an
external interrupt

NVICISPR | Interrupt Set NVIC_GetPendinglRQ(n) | Get Pending Interrupt :

X Pending Register Read the pending register in the
NVIC and returns the pending
bit for the specified interrupt

NVIC_SetPendinglRQ(n) Set Pending Interrupt :
Sets the pending bit of an
external interrupt

NVICIABR | Interrupt Active bit | NVIC_GetActive(n) Get Active Interrupt :

X Register Get Active Interrupt: reads the
active register in NVIC and
returns the active bit.

NVICIPn Interrupt Priority NVIC_SetPriority(n,priorit | Set Interrupt Priority:

Register

y)

Sets the priority of an interrupt.

» Example: Set up the PORTA interrupt:

1) Locate the interrupt vector that you want on the Interrupt Vector

2)

Assignment Table list from the Kinetis device used. See Fig.1. Port A pin

detect interrupt is highlighted.

From the Figl, we can know: n =87. x = 2. So as example NVICISERx is
NVICISER2 in this case.

Enable PORTA interrupt:

87%32 =23

* CodeWarrior: NVICISER2 |=(1<<23);

* KDS: NVIC_EnablelRQ(87);

3) Clear any pending interrupts :
* CodeWarrior: NVICICPR2 | =(1<<23);
* KDS: NVIC_ClearPendinglRQ(87);

4) Set the interrupt priority. Just the 4 most significant bits are used.

e CodeWarrior: NVICIP87 = 0x80;
» KDS: NVIC_SetPriority(87, 8);

3. Porting Kinetis interrupt project from CodeWarrior to KDS

Enclosed CodeWarrior demo code test_interrupt_cw.zip based on board TWR-
K60N512.
Function: press SW1, it triggers PORTA interrupt then toggles led E1.

Porting steps:

1)

2)

3)

Under KDS, create a new project named test_interrupt_kds, no processor expert,

no sdk supported.

Copy main(),ConfigureClocks(),Gpiolnitk60(),OnPortEvent() from CodeWarrior to

KDS project.

Under KDS, Change NVIC initialization code from CodeWarrior style to KDS style.

// Enable PortA interrupt

JINVICISERZ [=(1<<23); [J/Enable PORTA interrupts
JINWICICPR2 |=(1<<23); //Clear any pending interrupts c:nx’
//NVICIPS7 = @xB8; //Set Ineprupt priority as 8

NVIC_EnableIRQ({57);
NVIC ClearPendingIRQ(87);
NVIC_SetPriority(87, 8); /

| |
| |
|

- m AN

|
wd

4) Under KDS, Change interrupt handler function name from OnPortEvent to

PORTA_IRQHandler() which is KDS style handler name.

.long SWI_IRQHandler /* software interruptj
.long Reservedlll IRQHandler /* Reserved interruptj GPIOA_PTOR = Bx@20@8888;
.long]

[8) startup_MKBOD10.5 32

i

.long ENET_Receive_IRQHandler /* Ethernet MAC receive*/

.long ENET_Error_IRQHandler /* Ethernet MAC error and miscelaneous®/
.long Reserved35_IRQHandler /* Reserved interrupt*/

.long SDHC_TRQHandler /* Secured digital host controller®/
.long DAC@_IRQHandler /* Digital-to-analog converter @*/

.long DAC1_IRQHandler /* Digital-to-analog converter 1%/

.long TSI@ IRQHandler /* T5I8 Interrupt®/

.long MCG_IRQHandler /* Multipurpose clock generator®/

.long LPTMRE_IRQHandler /* Low power timer in -

.long Reserved1®2_IRQHandler /* Reserved interruptj main.c i

.long PORTA_IRQHandler /* Port A interrupt*/

.long PORTB_IRQHandler /* Port B interrupt®/| = void PORTA_IRQHandler(void)
.long PORTC_IRQHandler /* Port C interr {

}

ndler

/* Reserved interrug
ndler g

Reservedl12 IRQHal

= int main(void)

.long PORTD_IRQHandler /* Port D interr // clear ISR state

_long PORTE IRQHandler /* Port E interrupt*/ unsigned int State = (uint32_t)(PORT_ISFR_REG(PORTA_BASE_PTR)
.long Reserved188_IRQHandler /* Reserved interrupt] & (uint32_t)exeeeseoeel);

.long Reserved189_IRQHandler /* Reserved interrupt] PORT_ISFR_REG(PORTA_BASE_PTR) = State;

// Toggle LED

Then build the KDS project and download program. We will see there is no error and

porting is done successfully.

