
USB DFU boot loader for MCUs 
By Paolo Alcantara 
RTAC Americas 
Mexico 2012 
 
 
 
1. Introduction 
 
MCU firmware upgrade on the field without using an external programming tool is a 
necessary feature these days. For Freescale MCUs supporting a USB device controller, 
the USB device firmware update (DFU) class is the solution. The USB DFU bootloader 
only requires a PC and a USB cable. The following document demonstrates how DFU 
fits in an embedded device and gives examples of implementation using a PC with 
Windows OS. 
 
1.1 Scope 
 
The following document presents information about USB DFU class implementation in 
Freescale MCUs such as S08 (JM60), ColdFire+ (51JF), ColdFire (MCF52259) and 
Kinetis K and L family (K20, K40, K60, K70 and KL25). Necessary steps to run an 
MQX RTOS application or a bare metal software considering DFU can be found in the 
following sections. Details on how it can be ported to other platforms are also included. 
 
 
1.2 Audience description 

 
This document is intended to be used by all software development engineers, test 
engineers, and anyone else who is implementing a USB DFU class or wants to use it as a 
final solution. 
 
 
2. Bootloader Overview 
 

USB device firmware update (DFU) bootloader provides an easy and reliable way to load 
new user applications to devices having preloaded the USB DFU bootloader. After 
loaded, the new user application is be able to run in the MCU. The USB DFU bootloader 
requires an application running on a PC (USB DFU PC application). The DFU PC 
application supports loading the firmware to the device by using specific requests as 
stated in the USB DFU specification class.  

 

The USB DFU bootloader is able to enumerate in two ways: 

- USB composite device mode: also know as run time mode. It’s formed of a DFU 
device plus another USB device class. For this implementation, human interface 



device (HID) mouse device is used to avoid increasing the bootloader memory 
size. The MCU must be in the following conditions prior to enter to this mode: 

o MCU doesn’t contain a valid firmware image or doesn’t contain firmware. 

o An external action is applied to MCU such as pressing a button during a 
reset event. This is dependant of the USB DFU bootloader 
implementation. 

- DFU device mode: used when DFU is ready to upload or download firmware 
images by a request made from the USB DFU PC Application. Prior to this mode, 
the MCU was in USB composite device mode. 

 
2.1 Bootloader Example Overview: ColdFire V2 

A bootloader is a small application that is used to load new user applications to devices. 
Therefore, the bootloader needs to be able to run in both, the user application and 
bootloader mode. As an example, Figure 1 describes the memory map of the ColdFire V2 
bootloader implementation. 

Exception table 

Protected 

Stack 

RAM available  

Boot Loader USB BDTs and buffers 

Re-directed exception table in RAM 

Reserved 

User Application 

Boot Loader  

Flash protection and security register 

0x0000_0000 to 0x0000_03FF 

0x0000_0400 to 0x0000_0417 

0x0000_0420 to 0x0000_7FFF 

0x0000_8000 to 0x0007_FFFF 

0x0008_0000 to 0x1FFF_FFFF 

0x2000_0000 to 0x2000_03FF 

0x2000_0400 to 0x2000_05FF 

0x2000_0600 to 0x2000_F7FF 

0x2000_F800 to 0x2000_FFFF 

 
Figure 1 Cold Fire V2 Boot loader Memory Map 

After reset, the device attempts to run the user application. If the user application is not 
found or corrupted, the device automatically runs into bootloader mode. In case the 
application is valid and user wants to run bootloader program, external intervention is 



required such as pressing a specific key at reset time to force the device entering to 
bootloader mode.  

 

The bootloader exception table is in flash memory area and used when bootloader runs, 
so the bootloader cannot update its exception table when loading a new user application. 
If the user application requires using interrupts, the user application exception table must 
be redirected to RAM. 

The bootloader parses the user application image and flashes the image to flash memory 
at user application area, as shown in Figure 1. 

As shown in Figure 1, the bootloader holds the flash memory region from 0x0000_0000 
to 0x0000_7FFF (32KB). This flash memory region needs to be program-protected to 
prevent corrupting the bootloader. The rest of flash memory, from 0x0000_8000 to 
0x0007_FFFF (480 KB) is for user application. After redirecting to RAM, the interrupt 
and exception table are in area from 0x2000_0000 to 0x2000_03FF (1 KB) of RAM 
memory. 

While the user application is running, it can use the whole RAM memory; regardless of 
RAM space needed by the bootloader. Note exception table space at RAM must not be 
considered for user application’s data space (data nor bss sections) by using the linker 
file. 

 

The following table shows the space required by the DFU bootloader for each 
architecture: 

 

 

Table 1: DFU bootloader memory footprint 

Architecture Bootloader Flash memory required 

CFV1, ColdFire+ 40KB 

CFV2 36KB 

Kinetis K and L family 40KB 

S08 ~21KB 

 
 
3. Bootloader Architecture and boot sequence 
 

The following section provides an overview of USB DFU bootloader architecture and its 
software flow. 



3.1 Architecture overview 
The architecture of USB DFU bootloader is shown in the following figure: 

USB Device Controller 

USB Device Driver 

Flash Driver 

Boot Loader Driver 

USB DFU Device Class 

DFU PC Host 

Boot Loader Application 

USB DFU Boot Loader 

 
Figure 2: USB DFU bootloader architecture 

 

The architecture of USB DFU bootloader contains the following functional blocks: 

• Bootloader application: control the loading process. It uses specific requests in 
DFU class to receive and send firmware image files. Then uses the bootloader 
driver to load user application’s files to and from the flash memory of the device. 

• Bootloader driver: parse firmware image files and flash them to flash memory. 
The bootloader driver supports parsing image files in: CodeWarrior binary, S19 
and raw binary file formats. 

• Flash driver: support functions to erase, read and write flash memory. 

• USB DFU device class: contains the API specified in DFU class. 



• USB device driver and USB device controller: communicate with the USB host 
(PC) through USB standard. 

 

The USB DFU PC application supports features to download and upload firmware to and 
from the device.  

 

3.2 Boot loader sequence 
The bootloader is used to load an application that performs the product’s main function. 
At reset, the bootloader is executed and does some simple check to see if the application 
or bootloader mode can start. Once it’s in DFU bootloader mode, it’s able to receive 
requests from USB DFU PC application. If the received request is to download firmware, 
the DFU bootloader accumulates the data in a buffer. When the buffer is full, it starts 
parsing the buffer and downloads it to user application region. Go to Figure 1 for details. 
 
The flow of USB DFU bootloader is shown in the following flow chart: 
 



 
 

Figure 3: USB DFU bootloader sequence 
 
 
4. Develop Application with bootloader 
 
The following section describes how to modify user applications to be used by the USB 
DFU bootloader. 

4.1 Linker Files modifications: 
Normally, an application will be located at the beginning of flash memory. However, the 
bootloader needs a flash memory space, and then the user application must be placed in 
the rest of flash memory. Go to Figure 1 for details. 
 



Due to this reason, the user application linker file must be modified to locate application 
at a specific memory region. 
 
The next sub sections explain linker file changes needed for ColdFire V1, ColdFire+, 
ColdFire V2-4, Kinetis and S08 MCUs. 

4.1.1 CFV1 Linker File: ColdFire V1 and ColdFire+ 
 
A normal CFV1 linker file is shown as follows: 

 
# Sample Linker Command File for CodeWarrior for ColdFire MCF51JM128 
 
# Memory ranges 
 
MEMORY { 
   code        (RX)  : ORIGIN = 0x00000410, LENGTH = 0x0001FBF0 
   userram     (RWX) : ORIGIN = 0x00800000, LENGTH = 0x00004000 
} 

 
To run with the USB DFU bootloader, the user application must indicate that flash 
memory area starts at address 0x0000_A000. The modified linker file is as follows: 
 
# Sample Linker Command File for CodeWarrior for ColdFire MCF51JM128 
 
# Memory ranges 
 
MEMORY { 
   code        (RX)  : ORIGIN = 0x0000A410, LENGTH = 0x00017BF0 
   userram     (RWX) : ORIGIN = 0x00800000, LENGTH = 0x00004000 
} 

4.1.2 CFV2 Linker File: ColdFire V2-4 
A normal CFV2 linker file is shown as follows: 

 
# Sample Linker Command File for CodeWarrior for ColdFire 
 
KEEP_SECTION {.vectortable} 
 
# Memory ranges  
 
MEMORY { 
   vectorrom   (RX)  : ORIGIN = 0x00000000, LENGTH = 0x00000400 
   cfmprotrom  (RX)  : ORIGIN = 0x00000400, LENGTH = 0x00000020    
   code        (RX)  : ORIGIN = 0x00000500, LENGTH = 0x0007FB00 
   vectorram   (RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400 
   userram     (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00005C00 
} 

 
To run with the USB DFU bootloader, the user application must indicate that flash 
memory area starts at address 0x0000_9000. The modified linker file is as follows: 

 



# Sample Linker Command File for CodeWarrior for ColdFire 
 
KEEP_SECTION {.vectortable} 
 
# Memory ranges  
 
MEMORY { 
   vectorrom   (RX)  : ORIGIN = 0x00009000, LENGTH = 0x00000400 
   cfmprotrom  (RX)  : ORIGIN = 0x00009400, LENGTH = 0x00000020    
   code        (RX)  : ORIGIN = 0x00009500, LENGTH = 0x00077B00 
   vectorram   (RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400 
   userram     (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00005C00 
} 

  

4.1.3 Kinetis K and L family Linker File 
 
A normal Kinetis linker file is shown as follows: 
 
MEMORY 
{ 
   vectorrom   (RX): ORIGIN = 0x00000000, LENGTH = 0x00000400   
   cfmprotrom  (RX): ORIGIN = 0x00000400, LENGTH = 0x00000020   
   rom         (RX): ORIGIN = 0x00000420, LENGTH = 0x0001FBE0  # Code + 
Const data 
   ram         (RW): ORIGIN = 0x00800000, LENGTH = 0x00004000  # SRAM - 
RW data 
} 
 
To run with the USB DFU bootloader, the user application must indicate that flash 
memory area starts at address 0x0000_A000. The modified linker file is as follows: 
 
MEMORY 
{ 
   vectorrom   (RX): ORIGIN = 0x0000A000, LENGTH = 0x00000400   
   cfmprotrom  (RX): ORIGIN = 0x0000A400, LENGTH = 0x00000020   
   rom         (RX): ORIGIN = 0x0000A420, LENGTH = 0x00017BE0  # Code + 
Const data 
   ram         (RW): ORIGIN = 0x00800000, LENGTH = 0x00004000  # SRAM - 
RW data 
} 

4.1.4 S08 Linker File 
 
A normal S08 linker file is shown as follows: 
 

 

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in 
PLACEMENT below. */ 

    Z_RAM                    =  READ_WRITE   0x00B0 TO 0x00FF; 

    RAM                      =  READ_WRITE   0x0100 TO 0x10AF; 



    RAM1                     =  READ_WRITE   0x1860 TO 0x195F; 

    ROM                      =  READ_ONLY    0x1960 TO 0xFFAD; 

    ROM1                     =  READ_ONLY    0x10B0 TO 0x17FF; 

    ROM2                     =  READ_ONLY    0xFFC0 TO 0xFFC3; 

 
To run with the USB DFU bootloader, the user application must indicate that flash 
memory area ends at address 0xABA5. The modified linker file is as follows: 
 

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in 
PLACEMENT below. */ 

     

    // Application Segments 

    Z_RAM                    =  READ_WRITE   0x00B0 TO 0x00FF; 

    RAM             =  READ_WRITE   0x0110 TO 0x10AF; 

    RAM1         =  READ_WRITE   0x1860 TO 0x195F; 

    ROM                      =  READ_ONLY    0x1960 TO 0xABA5; 

    ROM1                     =  READ_ONLY    0x10B0 TO 0x17FF; 

    ROM2                     =  READ_ONLY    0xFFC0 TO 0xFFC3; 

Note: 
 
Note that for CFV1, CFV2, ColdFire+ and Kinetis K and L family linker files, the start of 
the user application data space matches with the start of MCU RAM. During exception 
table relocation, explained on Section 4.2, the declared RAM exception table space is 
reserved by the compiler, and then no other data (.data nor .bss) shares this space. 

4.2 Exception Table redirection 
 

The exception vectors are located by default in flash memory area and used by the 
bootloader, so the bootloader cannot update it when loading new user applications.  

If the user application needs interrupts, then the exception table must be redirected to 
RAM, except for S08 MCUs. 

The procedure to redirect exception table to RAM is different for each MCU.  

The following section describes how the exception table is redirected in a MQX and a 
bare metal user application. 

4.2.1 MQX user Application 
The MQX RTOS can redirect the exception table to RAM by using the C-language macro 
MQX_ROM_VECTORS contained in userconfig.h. 



 

The following example source code shows how to assign the value of 0 to the 
MQX_ROM_VECTORS macro. 

#define MQX_ROM_VECTORS      0 //1=ROM (default), 0=RAM vector 

Note: 
MQX RTOS only supports ColdFire, ColdFire+ and Kinetis MCUs. An 8-bit MCU must 

use a bare metal application instead. 

 

4.2.2 Bare metal user application 
 
Following sections describe how to redirect exception table to RAM for ColdFire V1, 
ColdFire+, ColdFire V2-4, Kinetis K and L family and S08 MCUs. 

4.2.2.1 CFV1 MCU: ColdFire V1 and ColdFire+ 
CFV1 MCU has a CPU-register named Vector Base Register (VBR) containing the base 
address of the exception vector table. This register can be used to relocate the exception 
table from its default position in the flash memory (address 0x0000_0000) to the base of 
the RAM (0x0080_0000). 
 
Declaring an interrupt service routine (ISR) inside the application source code is different 
when using a bootloader. 
 
The exception table redirection procedure can be summarized as follows: 
 

1. Declare an exception table within the user application code area and assign ISRs 
at this space. 

2. Reserve an exception table space at user application data area (must be at start of 
RAM space) 

3. At runtime, copy the declared exception table to the reserved exception table 
space. 

4. Write to VBR with the address of the reserved exception table which is the start 
of RAM space. 

 
The new exception table must be declared as shown in the following lines in gray. To add 
a new ISR, the address vector of the dummy_ISR must be replaced with the name of the 
new ISR. The address of this new exception table must be part of user application code 
space. For this example is declared at address 0x0000_A000. Look at Figure 1 for details. 
The new exception table in the user application is declared as follows: 
 
void  (* const RAM_Vector[])()@0x0000A000=  
{ 
(pFun)&dummy_ISR,             // vector_0  INITSP 
(pFun)&dummy_ISR,             // vector_1  INITPC 



…… 
(pFun)&dummy_ISR,             // vector_67 Vspi1 
(pFun)&dummy_ISR,             // vector_68 Vspi2  
(pFun)&dummy_ISR,             // vector_69 Vusb 
(pFun)&dummy_ISR,             // vector_70 VReserved70 
(pFun)&dummy_ISR,             // vector_71 Vtpm1ch0 
(pFun)&dummy_ISR,             // vector_72 Vtpm1ch1 
(pFun)&dummy_ISR,             // vector_73 Vtpm1ch2 
…… 
} 
 
 
Next the declared exception table (RAM_Vector) must be copied to the base of RAM at 
runtime. The following source code does this task. 
 
pdst=(dword)&New_RAM_vector;//0x00800000;//RAM base address 
psrc=(dword)&RAM_vector; 
   
for (i=0;i<111;i++,pdst++,psrc++)//112 exceptions 
  { 
    *pdst=*psrc; 
  } 
 
Finally the following software is used to redirect exception table to RAM with address 
0x0080_0000. 
 
 
asm (move.l  #0x00800000,d0); 
asm (movec  d0,vbr); 

 

4.2.2.2 CFV2 MCU: ColdFire V2-4 
 
Similar to CFV1, the exception table must be copied from user application space to RAM 
at runtime. The following source code shows the initialize_exceptions function 
which copy from user application space (FLASH) to RAM base address. 
 
void initialize_exceptions(void) 
{ 
 /* 
  * Memory map definitions from linker command files used by 
mcf5xxx_startup 
  */ 
 
 register uint32 n; 
     
 /*  
     * Copy the vector table to RAM  
     */ 
 if (__VECTOR_RAM != (unsigned long*)_vect) 
 { 
  for (n = 0; n < 256; n++) 



   __VECTOR_RAM[n] = (unsigned long)_vect[n]; 
 } 
 mcf5xxx_wr_vbr((unsigned long)__VECTOR_RAM); 
} 
 
 
Using CFV2 version, Freescale USB Stack with PHDC v3.0 also supports 
initialize_exceptions function to copy interrupt exception table to specified area in 
RAM. 
 
void initialize_exceptions(void); 
 
The initialize_exceptions function copies interrupt vector table to RAM area at 
__VECTOR_RAM address. This address need to be defined at linker file. 

If using USB Stack with PHDC v3.0 as the user application project template, the 
initialize_exceptions function is called at startup by default. 

 
 



 
4.2.2.3 Kinetis K and L family MCU 
For Kinetis MCU, the SCB_VTOR register contains the base address of the exception 
table. To redirect exception table, the exception table must be copied to RAM. Then 
SCB_VTOR must be written with the value of the copied address. 
 
The following steps explain in more detail how the redirection must be performed in 
Kinetis. 

1. Declare a ROM area to store the exception table (linker file) 
  

  .interrupts : 
  { 
    ___VECTOR_ROM = .; 
    * (.vectortable) 
    . = ALIGN (0x4); 

  } > interrupts 

2. Copy exception table from default user application code space to RAM base address 
 

extern uint_32 ___VECTOR_RAM[]; 
extern uint_32 ___VECTOR_ROM[];            //Get vector table in ROM 
 
uint_32 i,n; 
/* Copy the vector table to RAM */ 
if (___VECTOR_RAM != ___VECTOR_ROM) 
{ 

for (n = 0; n < 0x410; n++) 
 ___VECTOR_RAM[n] = ___VECTOR_ROM[n]; 
} 
/* Point the VTOR to the new copy of the vector table */ 
SCB_VTOR = (uint_32)___VECTOR_RAM; 

4.2.2.4 S08 MCU 
The MC9S08 core cannot re-direct the exception table to the RAM like ColdFire or 
Kinetis. Instead, the bootloader points to the exception table of the application at a re-
directed exception table in the user application space. 
The re-directed exception table is stored at a specific address. The user application must 
declare a function pointer to the exception table at the specific address to implement 
interrupts. 
For the DFU bootloader, the array UserJumpVectors is the function pointer to the 
exception table, and it starts at address VectorAddressTableAddress, which is 0xABA6 
according to S08 specifications.  
 

// User Interrupt Jump Vector Table 



volatile const Addr UserJumpVectors[InterruptVectorsNum]@ 
VectorAddressTableAddress = {  

    Dummy_ISR,                 //  0 - Reset 

    Dummy_ISR,                 //  1 - SWI 

    IRQ_ISR,                   //  2 - IRQ 

    Dummy_ISR,                 //  3 - Low Voltage Detect 

    Dummy_ISR,                 //  4 - MCG Loss of Lock 

    Dummy_ISR,                 //  5 - SPI1 

    Dummy_ISR,                 //  6 - SPI2 

    USB_ISR,                   //  7 - USB Status 

    Dummy_ISR,                 //  8 - Reserved 

    Dummy_ISR,                 //  9 - TPM1 Channel0 

    Dummy_ISR,                 //  10 - TPM1 Channel1 

    Dummy_ISR,                 //  11 - TPM1 Channel2 

    Dummy_ISR,                 //  12 - TPM1 Channel3 

    Dummy_ISR,                 //  13 - TPM1 Channel4 

    Dummy_ISR,                 //  14 - TPM1 Channel5 

    Dummy_ISR,                 //  15 - TPM1 Overflow 

    Dummy_ISR,                 //  16 - TPM2 Channel0 

    Dummy_ISR,                 //  17 - TPM2 Channel1 

    Dummy_ISR,                 //  18 - TPM2 Overflow 

    Dummy_ISR,                 //  19 - TPM1 SCI1 Error 

    Dummy_ISR,                 //  20 - TPM1 SCI1 Receive 

    Dummy_ISR,                 //  21 - TPM1 SCI1 Transmit 

    Dummy_ISR,                 //  22 - TPM1 SCI2 Error 

    Dummy_ISR,                 //  23 - TPM1 SCI2 Receive 

    Dummy_ISR,                 //  24 - TPM1 SCI2 Transmit 

    Kbi_ISR,                   //  25 - TPM1 KBI 

    Dummy_ISR,                 //  26 - TPM1 ADC Conversion 

    Dummy_ISR,                 //  27 - TPM1 ACMP 

    Dummy_ISR,                 //  28 - IIC 

    Timer_ISR,                 //  29 - RTC 

}; 

 
The Addr is function pointer type as follows: 
 

typedef void (* Addr)(void); 

 



The bootloader uses the array BootIntVectors in the file Redirect_Vectors_S08.c to load 
the interrupt vector table in the bootloader flash.  
 

volatile const Addr BootISRTable[InterruptVectorsNum] = {  

    Dummy_ISR,                 //  0 - Reset 

    Dummy_ISR,                 //  1 - SWI 

    Dummy_ISR,                 //  2 - IRQ 

    Dummy_ISR,                 //  3 - Low Voltage Detect 

    Dummy_ISR,                 //  4 - MCG Loss of Lock 

    Dummy_ISR,                 //  5 - SPI1 

    Dummy_ISR,                 //  6 - SPI2 

    USB_ISR,                   //  7 - USB Status 

    Dummy_ISR,                 //  8 - Reserved 

    Dummy_ISR,                 //  9 - TPM1 Channel0 

    Dummy_ISR,                 //  10 - TPM1 Channel1 

    Dummy_ISR,                 //  11 - TPM1 Channel2 

    Dummy_ISR,                 //  12 - TPM1 Channel3 

    Dummy_ISR,                 //  13 - TPM1 Channel4 

    Dummy_ISR,                 //  14 - TPM1 Channel5 

    Dummy_ISR,                 //  15 - TPM1 Overflow 

    Dummy_ISR,                 //  16 - TPM2 Channel0 

    Dummy_ISR,                 //  17 - TPM2 Channel1 

    Dummy_ISR,                 //  18 - TPM2 Overflow 

    Dummy_ISR,                 //  19 - TPM1 SCI1 Error 

    Dummy_ISR,                 //  20 - TPM1 SCI1 Receive 

    Dummy_ISR,                 //  21 - TPM1 SCI1 Transmit 

    Dummy_ISR,                 //  22 - TPM1 SCI2 Error 

    Dummy_ISR,                 //  23 - TPM1 SCI2 Receive 

    Dummy_ISR,                 //  24 - TPM1 SCI2 Transmit 

    Dummy_ISR,                 //  25 - TPM1 KBI 

    Dummy_ISR,                 //  26 - TPM1 ADC Conversion 

    Dummy_ISR,                 //  27 - TPM1 ACMP 

    Dummy_ISR,                 //  28 - IIC 

    Dummy_ISR,                 //  29 - RTC 

}; 

 
The file Redirect_Vectors_S08.c contains functions to determine whether to call interrupt 
functions of bootloader or user application. When an interrupt occurs, the associated 



interrupt function in file Redirect_Vectors_S08.c is called, and then the function 
determines whether to call interrupt function of bootloader or user application. 
 

extern uint_8 boot_mode; 

/* VectorNumber_Vswi */ 

interrupt VectorNumber_Vswi vector1(void) 

{ 

    if(boot_mode == BOOT_MODE) 

    { 

         BootISRTable[VectorNumber_Vswi](); 

    } 

    else 

    { 

         AppISRTable[VectorNumber_Vswi](); 

    } 

} 

 
For a new application, the files Bootloader.h and Vectortable.c must be added to the 
application project, and then load the array UserJumpVectors in Vectortable.c with the 
proper application ISRs. 
 
 
5. Bootloader Example: boot MQX 
 

The following section explains how to use the USB DFU bootloader with a MQX boot 
example. The example use M52259EVB board and CodeWarrior version 7.2. 

5.1 Preparing the Setup 
The DFU bootloader requires a software and hardware configuration. The following 2 
sections describe the steps to run the bootloader example in MQX. 

5.1.1 Software Setting up 
The following software is required to run the DFU application: 

• DFU PC host application 

• CodeWarrior version 7.2 

• Serial terminal 

5.1.2 Hardware Setting up 
The following hardware is required: 



• A PC running Windows XP, Windows Vista or Windows 7 in 32-bit or 64-bit 
edition. 

• A M52259EVB board and +5V power supply. 

• Two USB cables: USB 2.0 A-B and USB 2.0 A to miniB 

• A DB9 cable or USB2SER converter 

The hardware must be configured as follows:  
1. Connect the power supply to the board 
2. Connect the USB debug port of the board to the PC using the USB 2.0 A-B 

cable. 
3. Connect MCF52259EVB COM1 port to the PC with a DB9 cable or using a 

USB2SER converter 
4. Turn board power on. 

5.2 Preparing firmware image file 
 
The following steps must be followed to generate a valid MQX image for USB DFU 
bootloader 
 

1. Set  MQX_ROM_VECTORS to 0  in user_config.h file to use exception table 
from RAM 

 
#define MQX_ROM_VECTORS      0  

 
2. Build libraries of MQX by running Freescale MQX 

3.7.0\config\m52259evb\cwcf72\build_m52259evb_libs.mcp projects. If using 
CW10.x, build each library individually (bsp_m52259evb, psp_m52259evb, etc) 
as listed in next figure. 

 



 
Figure 4: Build MQX libraries 

 
3. Create an MQX application. As a test for this section, project “Freescale MQX 

3.7.0\mfs\examples\mfs_usb” is used. 
 
4. Select “Flash Debug” or “Flash Release” target 
 



 
Figure 5: MQX example 

 
5. Modify intflash.lcf linker file to move code section (vectorrom, cfmprotrom 

and rom memory segments) to user application region of USB DFU 
bootloader. User application region starts at 0x0000_9000. 

vectorrom   (RX): ORIGIN = 0x00009000, LENGTH = 0x00000400 
cfmprotrom  (RX): ORIGIN = 0x00009400, LENGTH = 0x00000020 
rom         (RX): ORIGIN = 0x00009420, LENGTH = 0x00075BE0 # Code+Const 
data 

 
6. Configure project to generate s19 and binary image files. These are valid files 

formats for the USB DFU PC application. 



Figure 6: options to generate s19 and binary firmware image 
 

7. Build user application. After build process, m52259evb folder contains two 
valid file formats:   

• intflash_d.elf.S19 
• intflash_d.elf.bin 

 

 
Figure 7: firmware image files 

 
 
Generated s19 file has the start address at 0x0000_9000 

 
8. The s19 and binary files from previous step will be used on Section 5.5. 



5.3 Building the Application  
1. Open USB DFU bootloader project for the M52259EVB platform on CodeWarrior 

version 7.2 IDE and build it. The mcp file is found in the following path: 
\Source\Device\app\dfu_bootloader\codewarrior\cfv2usbm52259 
 
Or using CW10.1: Source\Device\app\dfu_bootloader\cw10\cfv2usbm52259 
 

2. Load the project to MCF52259 flash memory by using CodeWarrior Flash 
Programmer utility. 

5.4 Running the Application 
 
The following section describes how to install the USB DFU bootloader device in the PC 
running Windows OS. 
 
The test firmware used in section 5.2 uses the serial terminal to communicate with the 
user. Open a Serial Console at 115.2Kbps 8-N-1 No flow control. 

5.4.1 Driver installation 
The following steps describe how to install the USB DFU bootloader device driver. The 
USB DFU PC Application uses WinUSB 2.0. WinUSB is a generic USB driver provided 
by Microsoft. 
 
1. Reset the M52259EVB and connect to the PC by using USB 2.0 A to miniB cable. 

Direct connection of the USB cable to the PC’s USB port is strongly advised. 
Windows starts asking for the USB driver to use with the new device. Found New 
Hardware Window appears as shown in next figure. 

 

 
Figure 8: Find New Hardware Callout 

 



 
Figure 9: Found New Hardware Window 

 
2. Select “Install from a list or specific location (Advanced)” option and click on the 

Next button. The next figure shows the current message shown by Windows. Select 
“Don’t search, I will choose the driver to install” option and click Next. 

 

 
Figure 10: Search and Installation Options 

 



3. Hardware Type Window appears. Select “Show All Devices” option, and click Next 
button. Select “Have Disk…” button as soon as “Select device driver window” 
appears. The following 2 figures show this step. 

 

 
Figure 11: Hardware Type Window 

 

 
Figure 12: Select device driver window 

 
4. Navigate to the INF file located at \DFU_winusb_driver and choose 

DFU_Device_Runtime.inf file. Click Open and then click Next to install the USB 
driver. 



 
Figure 13: selecting the driver 

 
5. Once the driver is installed, Windows recognizes it is a composite device made of a 
DFU class and HID mouse, as explained in Section 2. 
 
To verify the USB installation, open the Windows device manager. The “Device 
firmware upgrade” (DFU) and “USB Human Interface Device” entries are displayed 
by the device manager in Figure 14. 

 

 
Figure 14: DFU device and Human Interface Device in Device manager 
 

6. Open USB DFU PC application. The PC application automatically recognizes the 
run-time mode (USB composite device) is running as shown in Figure 15. Click 
“Enter DFU mode” button to switch the device to DFU mode. 
 



 
Figure 15: device firmware upgrade - runtime mode 

 
7. Unplug and plug the USB cable to get a USB bus reset; the M52259EVB USB 

device will enter in DFU mode. 
 
8. Once DFU mode is entered, Windows OS will ask for driver again. Follow step 2 to 
step 4 from this section to install the USB DFU driver. This time DFU_Device.inf is 
selected as shown in next figure. 

 



 
Figure 16: Install driver for DFU Mode 

 
9. Once driver for DFU mode is installed successfully, USB DFU device bootloader 
is in DFU mode and ready to use. USB DFU PC application is shown as follows:  
 

 
Figure 17: DFU device demo in DFU mode 

 
Note: 

The use of a USB hub or docking station for the USB DFU device bootloader is not 
recommended. 



 

5.5 Downloading firmware 
The following steps must be followed to download the firmware through the USB DFU 
bootloader. 
 
1. At this point, Section 5.4 must be completed. Using the USB DFU PC Application, 

select a firmware image file for download to the device as shown in Figure 6-21. The 
files generated at Section 5.3 can be used for this step. 

 

 
Figure 18: Choosing firmware file 

2. When a S19 file is selected, the content of the firmware file is displayed in ASCII and 
hexadecimal (HEX) format. If a CodeWarrior binary format is selected, the content of 
the firmware is only displayed in hexadecimal (HEX) format as shown in next figure. 



 
Figure 19: Content of the firmware is displayed 

 
3. Click “Download Firmware” button. The firmware will be downloaded to the 

device. 



 
 

 
Figure 20: Firmware is downloaded 

 
4. Once the download firmware process is completed, the USB DFU PC Application 

shows the final status of the download process. 



 
Figure 21: download is completed 

 
5. As an additional verify process, a log file contains the events occurred during the 

download process 
 



 
Figure 22: content of log file 

6. Press reset key on board to run the user application. The serial terminal shows a menu 
sent by MQX user application. 

 

 
Figure 23: user application running 

 
 

NOTE 
If the USB cable is unplugged during the download process, 
The USB DFU PC application will ask to continue the 
download process whenever the USB cable is re-plugged as 
shown in Figure 24. 



 

 
Figure 24: resuming download 

 

5.6 Uploading firmware 
 
To return to USB device bootloader mode, a special sequence must be followed. The 
USB DFU PC application can upload the firmware image running in the USB DFU 
device bootloader by using the “Upload” feature. When the USB DFU device bootloader 
contains a valid user application, it automatically starts the user application and doesn’t 
start the USB DFU functionality.  
 
The following steps explain how to return to USB device bootloader mode and upload an 
embedded firmware: 
 
1. Keep pressing the M52259EVB SW1 key and then press the reset button. The 

M52259EVB returns to bootloader mode (run time mode). 



2. Click “Enter DFU mode” button on the DFU demo application, unplug and plug 
again the USB cable; the device will enter DFU mode. 

3. Click “upload firmware” button on USB DFU PC application. The application asks 
for a file name. Type a file name and click save button. The upload process starts. 
The PC application notifies when the upload process is complete. 

 

 
Figure 25: Save the upload firmware file 

 
4. When the upload process is completed, the PC application displays the result. During 

the process, the data received is displayed in two text boxes as shown in next figure.  
 



 
Figure 26: Upload firmware completed 

 
 
 
6. Port the bootloader to other platforms 
 
The following section explains how to develop new USB DFU bootloader applications in 
other platforms. The USB DFU bootloader is developed over the “Freescale USB Stack 
with PHDC v3.0” software. 

6.1 USB DFU bootloader file structure 
The following figure shows the folder structure of the DFU source code: 
 



 

 
Figure 27: USB DFU bootloader File Structure 

 
o DFU_PC_Demo: contains the USB DFU PC application 
o DFU_winusb_driver: USB drivers needed by Windows OS. 
o image_files: contains examples firmware image files for MC9S08JM60, 

MCF51JM128, MCF52259 and K60 MCUs. 
o Source: contains USB DFU bootloader source code 

• Folder dfu_bootloader contains the following folders: 
 codewarrior:  contains CodeWarrior v6.3 and v7.2 projects 
 cw10: contains CodeWarrior 10.2 projects. 
 iar_ew: contains IAR projects. 
 flash_driver: contains flash driver for supported MCUs. 

The following files are part of the dfu_bootloader folder: 
 Boot_loader_task.c: contains bootloader general tasks. 
 Boot_loader_task.h: includes function prototypes. 
 Bootloader.h: includes memory map definitions for ported boards to DFU 

bootloader. 
 dfu_mouse.c: contains DFU application + mouse functionality. 
 dfu_mouse.h: contains DFU parameters definitions. 
 Loader.c: contains functions to parse and load firmware image to MCU flash 

memory. 
 Redirect_Vectors_S08.c: contains bootloader interrupts for MC9S08JM60 

(S08 MCU). 
 usb_descriptor.c: contains USB descriptor structures and functions. 
 usb_descriptor.h: contains USB descriptor parameters. 
 user_config.h: contains user configurations. 



6.2 Creating new projects 
Perform following steps for creating new USB DFU bootloader projects: 
1. Create a new project under  

Source\Device\app\dfu_bootloader\codewarrior or  
Source\Device\app\dfu_bootloader\cw10 
 

 
Figure 28: create a new project folder 

 
2. Create a project with file structure like bootloader project for M52259EVB. Use 

cfv2usbm52259 project as a CodeWarrior template. 



 
 

Figure 29: M52259 boot loader project 
3. Add files to project: 

• Flash driver source code: 
 flash.c: CFV1 and ColdFire+ flash driver 
 flash_cfv2.c: CFV2 flash driver 
 flash_FTFL: Kinetis K and L flash driver 
 flash_hcs: S08 flash driver 
 flash_NAND.c: NAND flash driver. 

• USB classes (DFU and HID classes) source code 
• USB device driver source code 
• dfu_mouse.c, dfu_mouse.h, Boot_loader_task.c, Boot_loader_task.h, 

Loader.c, Bootloader.h, usb_descriptor.c, usb_descriptor.h and necessary 
files specific to boards. 

4. Modify Boot_loader_task.c file for the specific board willing to implement DFU 
bootloader. 

5. Modify memory map which indicate application region for the platform in 
Bootloader.h file as shown below: 



#if (defined __MCF52259_H__) 

#define MIN_RAM1_ADDRESS        0x20000000 

#define MAX_RAM1_ADDRESS        0x2000FFFF 

#define MIN_FLASH1_ADDRESS      0x00000000 

#define MAX_FLASH1_ADDRESS      0x0007FFFF 

#define IMAGE_ADDR              ((uint_32_ptr)0x9000) 

#define ERASE_SECTOR_SIZE       (0x1000)  /* 4K bytes*/ 

#define FIRMWARE_SIZE_ADD      (0x0007FFF0 ) 

#elif (defined _MCF51JM128_H) 

#define MIN_RAM1_ADDRESS        0x00800000 

#define MAX_RAM1_ADDRESS        0x00803FFF 

#define MIN_FLASH1_ADDRESS      0x00000000 

#define MAX_FLASH1_ADDRESS      0x0001FFFF 

#define IMAGE_ADDR              ((uint_32_ptr)0x0A000) 

#define ERASE_SECTOR_SIZE       (0x0400)  /* 1K bytes*/ 

#define FIRMWARE_SIZE_ADD      (0x0001FFF0 ) 

#elif (defined MCU_MK60N512VMD100) 

#define MIN_RAM1_ADDRESS        0x1FFF0000 

#define MAX_RAM1_ADDRESS        0x20010000 

#define MIN_FLASH1_ADDRESS      0x00000000 

#define MAX_FLASH1_ADDRESS      0x0007FFFF 

#define IMAGE_ADDR              ((uint_32_ptr)0xA000) 

#define ERASE_SECTOR_SIZE       (0x800)  /* 2K bytes*/ 

#define FIRMWARE_SIZE_ADD      (0x0007FFF0 ) 

#endif  

 
 
 
7. Conclusion 
 
The following document described how the USB DFU class can be used as an option to 
make upgrades to the MCU firmware on the field. The application running over the DFU 
bootloader only required modifications in the linker file and exception table. The following 
solution can be migrated to any Freescale 8/16/32-bit MCU. 
 
 
7.1 Problem reporting instructions 

 
Issues and suggestions about this document and drivers should be provided through the 
support web page at www.freescale.com/support.  Please reference this application note. 
 

http://www.freescale.com/support


 
7.2 Considerations and References 

 
Find the newest software updates and information about USB DFU bootloader for 
MCUs on the Freescale Semiconductor home page: www.freescale.com 

 
• More implementations using USB DFU class in Freescale MCUs can be found in 

the latest “Freescale USB Stack with PHDC” software from 
www.freescale.com/usb. 

• More details about USB DFU class can be found on document named “USB 
Device Firmware upgrade specifications” from www.usb.org 

• The AN4370SW software contains all the necessary SW to run USB DFU class 
in the embedded device and PC running Windows OS. 

• Download the source files for AN4370SW software (AN4370SW.zip) from 
www.freescale.com.  
 

 

http://www.freescale.com/
http://www.freescale.com/

	3.1 Architecture overview
	3.2 Boot loader sequence
	4.1 Linker Files modifications:
	4.1.1 CFV1 Linker File: ColdFire V1 and ColdFire+
	4.1.2 CFV2 Linker File: ColdFire V2-4
	4.1.3 Kinetis K and L family Linker File
	4.1.4 S08 Linker File

	Note:
	4.2 Exception Table redirection
	4.2.1 MQX user Application
	Note:
	4.2.2 Bare metal user application
	4.2.2.1 CFV1 MCU: ColdFire V1 and ColdFire+
	4.2.2.2 CFV2 MCU: ColdFire V2-4
	4.2.2.3 Kinetis K and L family MCU
	4.2.2.4 S08 MCU


	5.1 Preparing the Setup
	5.1.1 Software Setting up
	5.1.2 Hardware Setting up

	5.2 Preparing firmware image file
	5.3 Building the Application 
	5.4 Running the Application
	5.4.1 Driver installation
	5.5 Downloading firmware
	5.6 Uploading firmware

	6.1 USB DFU bootloader file structure
	6.2 Creating new projects

