USB DFU boot loader for MCUs
By Paolo Alcantara

RTAC Americas

Mexico 2012

1. Introduction

MCU firmware upgrade on the field without using an external programming tool is a
necessary feature these days. For Freescale MCUs supporting a USB device controller,
the USB device firmware update (DFU) class is the solution. The USB DFU bootloader
only requires a PC and a USB cable. The following document demonstrates how DFU
fits in an embedded device and gives examples of implementation using a PC with
Windows OS.

1.1 Scope

The following document presents information about USB DFU class implementation in
Freescale MCUs such as S08 (JM60), ColdFire+ (51JF), ColdFire (MCF52259) and
Kinetis K and L family (K20, K40, K60, K70 and KL25). Necessary steps to run an
MQX RTOS application or a bare metal software considering DFU can be found in the
following sections. Details on how it can be ported to other platforms are also included.

1.2 Audience description

This document is intended to be used by all software development engineers, test
engineers, and anyone else who is implementing a USB DFU class or wants to use it as a
final solution.

2. Bootloader Overview

USB device firmware update (DFU) bootloader provides an easy and reliable way to load
new user applications to devices having preloaded the USB DFU bootloader. After
loaded, the new user application is be able to run in the MCU. The USB DFU bootloader
requires an application running on a PC (USB DFU PC application). The DFU PC
application supports loading the firmware to the device by using specific requests as
stated in the USB DFU specification class.

The USB DFU bootloader is able to enumerate in two ways:

- USB composite device mode: also know as run time mode. It’s formed of a DFU
device plus another USB device class. For this implementation, human interface

device (HID) mouse device is used to avoid increasing the bootloader memory
size. The MCU must be in the following conditions prior to enter to this mode:

0 MCU doesn’t contain a valid firmware image or doesn’t contain firmware.

0 An external action is applied to MCU such as pressing a button during a
reset event. This is dependant of the USB DFU bootloader
implementation.

- DFU device mode: used when DFU is ready to upload or download firmware
images by a request made from the USB DFU PC Application. Prior to this mode,
the MCU was in USB composite device mode.

2.1 Bootloader Example Overview: ColdFire V2

A bootloader is a small application that is used to load new user applications to devices.
Therefore, the bootloader needs to be able to run in both, the user application and
bootloader mode. As an example, Figure 1 describes the memory map of the ColdFire V2
bootloader implementation.

0x0000_0000 to 0x0000_03FF)

0x0000_0400 to 0x0000_0417
> Protected

0x0000_0420 to 0x0000_7FFF

y
0x0000_8000 to 0x0007_FFFF _‘
0x0008_0000 to Ox1FFF_FFFF | Reserved
0x2000_0000 to 0x2000_03FF
0x2000_0400 to 0x2000_05FF
0x2000_0600 to 0x2000_F7FF

0x2000_F800 to 0x2000_FFFF

Figure 1 Cold Fire V2 Boot loader Memory Map

After reset, the device attempts to run the user application. If the user application is not
found or corrupted, the device automatically runs into bootloader mode. In case the
application is valid and user wants to run bootloader program, external intervention is

required such as pressing a specific key at reset time to force the device entering to
bootloader mode.

The bootloader exception table is in flash memory area and used when bootloader runs,
so the bootloader cannot update its exception table when loading a new user application.
If the user application requires using interrupts, the user application exception table must
be redirected to RAM.

The bootloader parses the user application image and flashes the image to flash memory
at user application area, as shown in Figure 1.

As shown in Figure 1, the bootloader holds the flash memory region from 0x0000_0000
to 0x0000_7FFF (32KB). This flash memory region needs to be program-protected to
prevent corrupting the bootloader. The rest of flash memory, from 0x0000_8000 to
0x0007_FFFF (480 KB) is for user application. After redirecting to RAM, the interrupt
and exception table are in area from 0x2000_0000 to 0x2000_03FF (1 KB) of RAM
memory.

While the user application is running, it can use the whole RAM memory; regardless of
RAM space needed by the bootloader. Note exception table space at RAM must not be
considered for user application’s data space (data nor bss sections) by using the linker
file.

The following table shows the space required by the DFU bootloader for each
architecture:

Architecture Bootloader Flash memory required
CFV1, ColdFire+ 40KB
CFV2 36KB
Kinetis K and L family 40KB
S08 ~21KB

Table 1: DFU bootloader memory footprint

3. Bootloader Architecture and boot sequence

The following section provides an overview of USB DFU bootloader architecture and its
software flow.

3.1 Architecture overview

The architecture of USB DFU bootloader is shown in the following figure:

USB DFU Boot Loader

Boot Loader Application

A\ 4
Boot Loader Driver

v

Flash Driver

USB DFU Device Class

A 4

USB Device Driver

USB Device Controller

A
A 4

DFU PC Host

Figure 2: USB DFU bootloader architecture

The architecture of USB DFU bootloader contains the following functional blocks:

e Bootloader application: control the loading process. It uses specific requests in
DFU class to receive and send firmware image files. Then uses the bootloader
driver to load user application’s files to and from the flash memory of the device.

e Bootloader driver: parse firmware image files and flash them to flash memory.
The bootloader driver supports parsing image files in: CodeWarrior binary, S19
and raw binary file formats.

e Flash driver: support functions to erase, read and write flash memory.

e USB DFU device class: contains the API specified in DFU class.

e USB device driver and USB device controller: communicate with the USB host
(PC) through USB standard.

The USB DFU PC application supports features to download and upload firmware to and
from the device.

3.2 Boot loader sequence

The bootloader is used to load an application that performs the product’s main function.
At reset, the bootloader is executed and does some simple check to see if the application
or bootloader mode can start. Once it’s in DFU bootloader mode, it’s able to receive
requests from USB DFU PC application. If the received request is to download firmware,
the DFU bootloader accumulates the data in a buffer. When the buffer is full, it starts
parsing the buffer and downloads it to user application region. Go to Figure 1 for details.

The flow of USB DFU bootloader is shown in the following flow chart:

Bootloader
mode?

Enumerate as
DFU device

Jump to user entry
vector

Upload firmware

No—p

DFU Class specific
requests received?

Download firmware

h 4
Accumulate blocks | Rest of
in buffer firmware ?
No No
v
Send data to host
Yes
Yes
h 4
Parse buffer
Send sort frame
Download to flash
memory

Figure 3: USB DFU bootloader sequence

4. Develop Application with bootloader

The following section describes how to modify user applications to be used by the USB
DFU bootloader.

4.1 Linker Files modifications:

Normally, an application will be located at the beginning of flash memory. However, the
bootloader needs a flash memory space, and then the user application must be placed in
the rest of flash memory. Go to Figure 1 for details.

Due to this reason, the user application linker file must be modified to locate application
at a specific memory region.

The next sub sections explain linker file changes needed for ColdFire V1, ColdFire+,
ColdFire V2-4, Kinetis and S08 MCUs.

4.1.1 CFV1 Linker File: ColdFire V1 and ColdFire+

A normal CFV1 linker file is shown as follows:

Sample Linker Command File for CodeWarrior for ColdFire MCF51JM128

Memory ranges

MEMORY {
code (RX) : ORIGIN = 0x00000410, LENGTH = OxO001FBFO
userram (RWX) : ORIGIN = 0x00800000, LENGTH = 0x00004000
3

To run with the USB DFU bootloader, the user application must indicate that flash
memory area starts at address 0x0000_A000. The modified linker file is as follows:

Sample Linker Command File for CodeWarrior for ColdFire MCF51JM128

Memory ranges

MEMORY {
code (RX) : ORIGIN = Ox0000A410, LENGTH = 0x00017BFO
userram (RWX) : ORIGIN = 0x00800000, LENGTH = 0x00004000
3

4.1.2 CFV2 Linker File: ColdFire V2-4
A normal CFV2 linker file is shown as follows:

Sample Linker Command File for CodeWarrior for ColdFire
KEEP_SECTION {.vectortable}

Memory ranges

MEMORY {
vectorrom (RX) : ORIGIN = 0x00000000, LENGTH = 0x00000400
cfmprotrom (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000020
code (RX) : ORIGIN = 0x00000500, LENGTH = 0x0007FB0OO
vectorram (RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400
userram (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00005C00

}

To run with the USB DFU bootloader, the user application must indicate that flash
memory area starts at address 0x0000_9000. The modified linker file is as follows:

Sample Linker Command File for CodeWarrior for ColdFire
KEEP_SECTION {.vectortable}

Memory ranges

MEMORY {
vectorrom (RX) : ORIGIN = 0x00009000, LENGTH = 0x00000400
cfmprotrom (RX) : ORIGIN = 0x00009400, LENGTH = 0x00000020
code (RX) : ORIGIN = 0x00009500, LENGTH = 0x00077B00
vectorram (RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400
userram (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00005C00
b
4.1.3 Kinetis K and L family Linker File
A normal Kinetis linker file is shown as follows:
MEMORY
{
vectorrom (RX): ORIGIN = 0x00000000, LENGTH = 0x00000400
cfmprotrom (RX): ORIGIN = 0x00000400, LENGTH = 0x00000020
rom (RX): ORIGIN = 0x00000420, LENGTH = OxO0001FBEO # Code +
Const data
ram (RW): ORIGIN = 0x00800000, LENGTH = 0x00004000 # SRAM -
RW data

}

To run with the USB DFU bootloader, the user application must indicate that flash
memory area starts at address 0x0000_A000. The modified linker file is as follows:

MEMORY
{
vectorrom (RX): ORIGIN = 0OxO0000A000, LENGTH = 0x00000400
cfmprotrom (RX): ORIGIN = 0x0000A400, LENGTH = 0x00000020
rom (RX): ORIGIN = Ox0000A420, LENGTH = 0x00017BEO # Code +
Const data
ram (RW): ORIGIN = 0x00800000, LENGTH = 0x00004000 # SRAM -
RW data

}
4.1.4 S08 Linker File

A normal S08 linker file is shown as follows:

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

Z_RAM
RAM

READ_WRITE 0x00BO TO OxOOFF;
READ_WRITE 0x0100 TO Ox10AF;

RAM1 = READ_WRITE 0x1860 TO Ox195F;

ROM = READ_ONLY 0x1960 TO OXFFAD;
ROM1 = READ_ONLY 0x10BO TO Ox17FF;
ROM2 = READ_ONLY OXFFCO TO OxXFFC3;

To run with the USB DFU bootloader, the user application must indicate that flash
memory area ends at address OXABAS. The modified linker file is as follows:

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

// Application Segments

Z RAM = READ_WRITE 0x00BO TO OxOOFF;

RAM = READ_WRITE 0x0110 TO Ox10AF;

RAM1 = READ_WRITE 0x1860 TO 0x195F;

ROM = READ_ONLY 0x1960 TO OxABAS5;

ROM1 = READ_ONLY 0x10BO TO Ox17FF;

ROM2 = READ_ONLY OXFFCO TO OXFFC3;
Note:

Note that for CFV1, CFV2, ColdFire+ and Kinetis K and L family linker files, the start of
the user application data space matches with the start of MCU RAM. During exception
table relocation, explained on Section 4.2, the declared RAM exception table space is
reserved by the compiler, and then no other data (.data nor .bss) shares this space.

4.2 Exception Table redirection

The exception vectors are located by default in flash memory area and used by the
bootloader, so the bootloader cannot update it when loading new user applications.

If the user application needs interrupts, then the exception table must be redirected to
RAM, except for SO8 MCUs.

The procedure to redirect exception table to RAM is different for each MCU.

The following section describes how the exception table is redirected in a MQX and a
bare metal user application.

4.2.1 MQX user Application

The MQX RTOS can redirect the exception table to RAM by using the C-language macro
MQX_ROM_VECTORS contained in userconfig.h.

The following example source code shows how to assign the value of 0 to the
MQX_ROM_VECTORS macro.

#define MQX_ROM_VECTORS 0 //1=-ROM (default), O=RAM vector

Note:

MQX RTOS only supports ColdFire, ColdFire+ and Kinetis MCUs. An 8-bit MCU must
use a bare metal application instead.

4.2.2 Bare metal user application

Following sections describe how to redirect exception table to RAM for ColdFire V1,
ColdFire+, ColdFire VV2-4, Kinetis K and L family and SO8 MCU:s.

4.2.2.1 CFV1 MCU: ColdFire V1 and ColdFire+

CFV1 MCU has a CPU-register named Vector Base Register (VBR) containing the base
address of the exception vector table. This register can be used to relocate the exception
table from its default position in the flash memory (address 0x0000_0000) to the base of
the RAM (0x0080_0000).

Declaring an interrupt service routine (ISR) inside the application source code is different
when using a bootloader.

The exception table redirection procedure can be summarized as follows:

1. Declare an exception table within the user application code area and assign ISRs
at this space.

2. Reserve an exception table space at user application data area (must be at start of
RAM space)

3. At runtime, copy the declared exception table to the reserved exception table
space.

4. Write to VBR with the address of the reserved exception table which is the start
of RAM space.

The new exception table must be declared as shown in the following lines in gray. To add
a new ISR, the address vector of the dummy_ISR must be replaced with the name of the
new ISR. The address of this new exception table must be part of user application code
space. For this example is declared at address 0x0000_AO000. Look at Figure 1 for details.
The new exception table in the user application is declared as follows:

void (* const RAM Vector[]) () @0x0000A000=

{
(pFun)&dummy_ ISR, // vector_0O INITSP

(pFun)&dummy_ ISR, // vector_1 INITPC

(pFun)&dummy_ ISR, // vector 67 Vspil

(pFun)&dummy_ ISR, // vector_68 Vspi2
(pFun)&dummy_ ISR, // vector_69 Vusb
(pFun)&dummy_ ISR, // vector_70 VReserved70
(pFun)&dummy_ ISR, // vector_71 VtpmlchO
(pFun)&dummy_ ISR, // vector_72 Vtpmlchl
(pFun)&dummy_ ISR, // vector_73 Vtpmlch2

}

Next the declared exception table (RAM_Vector) must be copied to the base of RAM at
runtime. The following source code does this task.

pdst=(dword)&New_RAM vector;//0x00800000;//RAM base address
psrc=(dword)&RAM_vector;

for (i=0;i<111;i++,pdst++,psrc++)//112 exceptions
{

}

*pdst=*psrc;

Finally the following software is used to redirect exception table to RAM with address
0x0080_0000.

asm (move.l #0x00800000,d0);
asm (movec dO,vbr);

4.2.2.2 CFV2 MCU: ColdFire V2-4

Similar to CFV1, the exception table must be copied from user application space to RAM
at runtime. The following source code shows the initialize_exceptions function
which copy from user application space (FLASH) to RAM base address.

void initialize exceptions(void)
{
/*
* Memory map definitions from linker command files used by
mcF5xxx_startup
*/

register uint32 n;

/*
* Copy the vector table to RAM
*/

ifT (__VECTOR_RAM != (unsigned long*)_vect)

for (n = 0; n < 256; n++)

___VECTOR_RAM[n] = (unsigned long) vect[n];

}
mcF5xxx_wr_vbr((unsigned long)__ VECTOR_RAM);

Using CFV2 wversion, Freescale USB Stack with PHDC v3.0 also supports
initialize_exceptions function to copy interrupt exception table to specified area in
RAM.

void initialize exceptions(void);

The initialize_exceptions function copies interrupt vector table to RAM area at
__VECTOR_RAM address. This address need to be defined at linker file.

If using USB Stack with PHDC v3.0 as the user application project template, the
initialize_exceptions function is called at startup by default.

4.2.2.3 Kinetis K and L family MCU

For Kinetis MCU, the SCB_VTOR register contains the base address of the exception
table. To redirect exception table, the exception table must be copied to RAM. Then
SCB_VTOR must be written with the value of the copied address.

The following steps explain in more detail how the redirection must be performed in
Kinetis.

1. Declare a ROM area to store the exception table (linker file)

-interrupts :

VECTOR_ROM = _;
* (.vectortable)
. = ALIGN (0x4);

} > interrupts
2. Copy exception table from default user application code space to RAM base address

extern uint_32 VECTOR_RAM[]:;
extern uint_32 VECTOR_ROM[]; //Get vector table in ROM

uint_32 i,n;
/* Copy the vector table to RAM */
if (VECTOR_RAM 1= VECTOR_ROM)

for (n = 0; n < O0x410; n++)
VECTOR_RAM[n] = VECTOR_ROM[n];
s
/* Point the VTOR to the new copy of the vector table */

SCB_VTOR = (uint_32) _ VECTOR_RAM;

4.2.2.4 S08 MCU

The MC9S08 core cannot re-direct the exception table to the RAM like ColdFire or
Kinetis. Instead, the bootloader points to the exception table of the application at a re-
directed exception table in the user application space.

The re-directed exception table is stored at a specific address. The user application must
declare a function pointer to the exception table at the specific address to implement
interrupts.

For the DFU bootloader, the array UserJumpVectors is the function pointer to the
exception table, and it starts at address VectorAddressTableAddress, which is OXABAG
according to S08 specifications.

// User Interrupt Jump Vector Table

volatile const Addr UserJdumpVectors|[InterruptVectorsNum]@
VectorAddressTableAddress = {

Dummy_ ISR, // 0 - Reset

Dummy_ ISR, // 1 - Swi

IRQ_ISR, // 2 - IRQ

Dummy_ ISR, // 3 - Low Voltage Detect
Dummy_ ISR, // 4 - MCG Loss of Lock
Dummy_ ISR, // 5 - SPI1

Dummy_ ISR, // 6 - SPI2

USB_ISR, // 7 - USB Status

Dummy_ ISR, // 8 - Reserved

Dummy_ ISR, // 9 - TPM1 ChannelO
Dummy_ ISR, // 10 - TPM1 Channell
Dummy_ ISR, // 11 - TPM1 Channel2
Dummy_ ISR, // 12 - TPM1 Channel3
Dummy_ ISR, // 13 - TPM1 Channel4
Dummy_ ISR, // 14 - TPM1 Channel5
Dummy_ ISR, // 15 - TPM1 Overflow
Dummy_ ISR, // 16 - TPM2 ChannelO
Dummy_ ISR, // 17 - TPM2 Channell
Dummy_ ISR, // 18 - TPM2 Overflow
Dummy_ ISR, // 19 - TPM1 SCI1 Error
Dummy_ ISR, // 20 - TPM1 SCI1 Receive
Dummy_ ISR, // 21 - TPM1 SCI1 Transmit
Dummy_ ISR, // 22 - TPM1 SCI2 Error
Dummy_ ISR, // 23 - TPM1 SCI2 Receive
Dummy_ ISR, // 24 - TPM1 SCI2 Transmit
Kbi_ISR, // 25 - TPM1 KBI

Dummy_ ISR, // 26 - TPM1 ADC Conversion
Dummy_ ISR, // 27 - TPM1 ACMP

Dummy_ ISR, // 28 - 1IC

Timer_ISR, // 29 - RTC

}:
The Addr is function pointer type as follows:

typedef void (* Addr)(void);

The bootloader uses the array BootIntVectors in the file Redirect Vectors_S08.c to load
the interrupt vector table in the bootloader flash.

volatile const Addr BootlSRTable[InterruptVectorsNum] = {

Dummy ISR,
Dummy ISR,
Dummy_ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy ISR,
USB_ISR,

Dummy_ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy ISR,
Dummy ISR,
Dummy_ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy ISR,
Dummy ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy ISR,
Dummy ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy_ ISR,
Dummy_ ISR,

X

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

0

© 0 N o 0o b~ W N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Reset
S
IRQ

Low Voltage Detect
MCG Loss of Lock

SPI1
SP12

USB Status

Reserved
TPM1 ChannelO

TPM1
TPM1
TPM1
TPM1
TPM1
TPM1
TPM2
TPM2
TPM2
TPM1
TPM1
TPM1
TPM1
TPM1
TPM1
TPM1
TPM1
TPM1
11C

RTC

Channell
Channel2
Channel3
Channel4
Channel5
Overflow
ChannelO
Channell
Overflow

SCI1 Error
SCI1 Receive
SCI1 Transmit
SCI12 Error
SCI12 Receive
SCI2 Transmit
KBI

ADC Conversion
ACMP

The file Redirect_Vectors_S08.c contains functions to determine whether to call interrupt
functions of bootloader or user application. When an interrupt occurs, the associated

interrupt function in file Redirect_Vectors_S08.c is called, and then the function
determines whether to call interrupt function of bootloader or user application.

extern uint_8 boot mode;
/* VectorNumber Vswi */

interrupt VectorNumber Vswi vectorl(void)

{
if(boot mode == BOOT_MODE)
{
BootlISRTable[VectorNumber_ Vswi]();
}
else
{
ApplISRTable[VectorNumber Vswi](Q;
}
}

For a new application, the files Bootloader.h and Vectortable.c must be added to the
application project, and then load the array UserJumpVectors in Vectortable.c with the
proper application ISRs.

5. Bootloader Example: boot MQX

The following section explains how to use the USB DFU bootloader with a MQX boot
example. The example use M52259EVB board and CodeWarrior version 7.2.

5.1 Preparing the Setup

The DFU bootloader requires a software and hardware configuration. The following 2
sections describe the steps to run the bootloader example in MQX.

5.1.1 Software Setting up

The following software is required to run the DFU application:
e DFU PC host application
e CodeWarrior version 7.2

e Serial terminal

5.1.2 Hardware Setting up

The following hardware is required:

A PC running Windows XP, Windows Vista or Windows 7 in 32-bit or 64-bit
edition.

A M52259EVB board and +5V power supply.
Two USB cables: USB 2.0 A-B and USB 2.0 A to miniB
A DB9 cable or USB2SER converter

The hardware must be configured as follows:

1.
2.

4.

Connect the power supply to the board

Connect the USB debug port of the board to the PC using the USB 2.0 A-B
cable.

Connect MCF52259EVB COML port to the PC with a DB9 cable or using a
USB2SER converter

Turn board power on.

5.2 Preparing firmware image file

The following steps must be followed to generate a valid MQX image for USB DFU

bootloader

1. Set MQX ROM_VECTORS to 0 in user_config.h file to use exception table
from RAM

#define MQX_ROM_VECTORS 0

2. Build libraries of MQX by running Freescale MQX
3.7.0\config\m52259evb\cwcf72\build_m52259evb_libs.mcp projects. If using
CW10.x, build each library individually (bsp_m52259evb, psp_m52259evb, etc)
as listed in next figure.

build_m52259evb_libs.mcp

| % ALLLIBS ~iBy @
Files lLink Drder] Targets]

L3 File Code | Data 4% =
i1 bep_mB22588evb. mop nia nia = = -]

i psp_mbZ28%vb.mcp na nia = =l

e rofsz_mA2259vh mop n/a hia = =l

Az rtcs_m5225%evb.mop n'a hia * =

A1 wsb_hdk_mb225%evb. mop nia nia = |

usb_ddk_m52269vb. mcp nia nla =l

shell_m52259evb.mep ha nia » =l
7 files 0 0 v

Figure 4: Build MQX libraries

3. Create an MQX application. As a test for this section, project “Freescale MQX
3.7.0\mfs\examples\mfs_usb” is used.

4. Select “Flash Debug” or “Flash Release” target

mfs_usb_m52259evb.mcp [

| % |t Flazh Debug j B %
Files l Lirk, Elrder] Targets]
W File Code | Data |98 4 =
@ =< Linker Files 1l a - =~
o estroramlof héa nda =l
w 8 intflagh.|ck n'a néa =l
W [+{_] MEX Libraries] n = =l
@ [+{_] MFS Libraries n o - =l
w +{_] USE Host Libraries 1] o« =l
w [+ Shell Libraries] n = =l
% [+{_] Source] 0« « =
23 files 0 0 A

Figure 5: MQX example

5. Modify intflash.Icf linker file to move code section (vectorrom, cfmprotrom
and rom memory segments) to user application region of USB DFU
bootloader. User application region starts at 0x0000_9000.

vectorrom (RX): ORIGIN 0x00009000, LENGTH 0x00000400

cfmprotrom (RX): ORIGIN 0x00009400, LENGTH 0x00000020

rom (RX): ORIGIN 0x00009420, LENGTH 0x00075BEO # Code+Const
data

6. Configure project to generate s19 and binary image files. These are valid files
formats for the USB DFU PC application.

‘m Int Flash Debug Settings [mfs_usb_m5225%vb.mcp]

[§ ColdFire Linker

[§ Target Settings Panels
= Language Settings ;|
C/C++ Language

C/C++ Preprocessor
C/C++ Warmings
ColdFire Assembler

¥ Generate Symbolic Info
[v Store Full Path Mames
¥ Generate Link Map

[Disable Deadstipping
¥ Generate ELF Symbol Table
[T Generate Waming Messages

Code G ; [List Urnssed Objects r
o T amEen v Show Transitive Closure
ColdFire Processor
Global Optimizations ‘ [Abways Keep Map ‘ tMax S-Record Length: |80
= Linker ¥ Generate S-Record File EOL Character:
ELF Disassembler isting File ' 005 -]
ColdFire Linker Iv Generate Binary Imags Max Bin Record Length: | 252
Libsarian A
= Editor Enty P“!t' |—boot
Custam Keywords Force Active Symbols:
= Debugger —
Debuagger Settings
Remate Debugging
CF Debugger Setti.. - |
Facton Settings | Revert Irmport Panel... | Export Panel... |
oK. | Cancel | Apply |

Figure 6: options to generate s19 and binary firmware image

7. Build user application. After build process, m52259evb folder contains two
valid file formats:

e intflash_d.elf.S19
o intflash_d.elf.bin

and Folder Tasks

er Places

Generated s19 file has the start address at 0x0000_9000

] C:\Program Files\Freescale\Freescale MO 3,7, 0ymfsiexamplesimfs_usbiowcf72imS225%vh

intFlash_d.elf
intflash_d.elf.bin
intflash_d.elF.rbin
intflash_d.elf, 519
B intFlash_d.lf map

g

Figure 7: firmware image files

8. The s19 and binary files from previous step will be used on Section 5.5.

5.3 Building the Application
1. Open USB DFU bootloader project for the M52259EVB platform on CodeWarrior
version 7.2 IDE and build it. The mcp file is found in the following path:
\Source\Device\app\dfu_bootloader\codewarrior\cfv2usbm52259

Or using CW10.1: Source\Device\app\dfu_bootloader\cw10\cfv2usbm52259

2. Load the project to MCF52259 flash memory by using CodeWarrior Flash
Programmer utility.

5.4 Running the Application

The following section describes how to install the USB DFU bootloader device in the PC
running Windows OS.

The test firmware used in section 5.2 uses the serial terminal to communicate with the
user. Open a Serial Console at 115.2Kbps 8-N-1 No flow control.

5.4.1 Driver installation

The following steps describe how to install the USB DFU bootloader device driver. The
USB DFU PC Application uses WinUSB 2.0. WinUSB is a generic USB driver provided
by Microsoft.

1. Reset the M52259EVB and connect to the PC by using USB 2.0 A to miniB cable.
Direct connection of the USB cable to the PC’s USB port is strongly advised.
Windows starts asking for the USB driver to use with the new device. Found New
Hardware Window appears as shown in next figure.

i) Found New Hardware
DFU DEMO

Figure 8: Find New Hardware Callout

Found New Hardware Wizard

Thiz wizard helps you install software for:

DFU DEMO

\-) If your hardware came with an installation CD

2 or Hoppy disk. insert it now.

whhat do you want the wizard to do?

() mztall the software automatically [(Fecommendsd)

(®ilnstall from a list or specific location (4dvanced}

Click Mexst to continue.

’ < Back ” Mext » l[Cancel]

Figure 9: Found New Hardware Window

2. Select “Install from a list or specific location (Advanced)” option and click on the
Next button. The next figure shows the current message shown by Windows. Select
“Don’t search, | will choose the driver to install” option and click Next.

Found New Hardware Wizard
Please choose your search and installation options. .

() Search for the best driver in these locations.

Usze the check boxes below to limit or expand the default search, whick includes local
paths and removable media. The best driver found will be installed.

(%) Dion't zearch. | will choose the driver to install.

Chooge thiz option to gelect the device driver from a list. Windows does not guarantee that
the driver you chooze will be the best match far your hardware.

[< Back ” Mewt > l[Cancel]

Figure 10: Search and Installation Options

3. Hardware Type Window appears. Select “Show All Devices” option, and click Next

button. Select “Have Disk...” button as soon as “Select device driver window”
appears. The following 2 figures show this step.

Found New Hardware Wizard

Hardware Type.

Select a hardware type, and then click Next.

Common hardware tppes:

5 A
& 1394 Debugger Device

&4 610883 Device Class
& &C Device Class
Eg, Batteries

@ Bluetooth Radios

¢ Computer

l§ DFU Devices

& nE Pl

’ < Back ” Next » l[Cancel

Figure 11: Hardware Type Window

Found New Hardware Wizard

Select the device driver you want to install for thiz hardware. .

Select the manufacturer and model of your hardware device and then click Mexst. |f you
have a disk that containg the driver pou want to install, click Hawve Disk.

M anufacturer ke todel ~
[Standard CO-ROM drives) ¢ CO-ROM Drive [force CODA accurate)
[Standard IDE ATAATAR co H CD-ROMM Drive [force CODA inaccurate]
{g{::ﬂ:[ﬂ :::the?na[dd;\]»ices] || 5 CD-ROM Drive (force IMAP dissble)
¢ > ?CD-HDM Dirive [IMAP] settings 0.1) 2
y Thig driver is digitally signed.
Tell e why driver signing is important

’ < Back ” Mext » l’ Catcel]

Figure 12: Select device driver window

4. Navigate to the INF file located at \DFU_winusb_driver and choose

DFU_Device_Runtime.inf file. Click Open and then click Next to install the USB
driver.

Locate File @@

Laok irc | 2 DFU_winusb_driver e N s :§
() amdad

Ciae
(%86 k. IF you
b DFU_Device.inf

'-3 DFU_Device_Runtime. inf

File: narne:

DFU_Device_Runtime.inf A
Filez of type: bt

Tell e why driver signing is important

Figure 13: selecting the driver

5. Once the driver is installed, Windows recognizes it is a composite device made of a
DFU class and HID mouse, as explained in Section 2.

To verify the USB installation, open the Windows device manager. The “Device

firmware upgrade” (DFU) and “USB Human Interface Device” entries are displayed
by the device manager in Figure 14.

= _} DFU Devices
+-age Disk drives

+ _} Display adapters

—|-fidg Hurnan Interface Devices

4= USE Hurnan Inketface Device

Figure 14: DFU device and Human Interface Device in Device manager

6. Open USB DFU PC application. The PC application automatically recognizes the
run-time mode (USB composite device) is running as shown in Figure 15. Click
“Enter DFU mode” button to switch the device to DFU mode.

File

vl ‘ Enter DFL mode ’
i |

Device: Device firmware upgrade - RUNTIME Mode Status: IDLE Device opened .

Figure 15: device firmware upgrade - runtime mode

7. Unplug and plug the USB cable to get a USB bus reset; the M52259EVB USB
device will enter in DFU mode.

8. Once DFU mode is entered, Windows OS will ask for driver again. Follow step 2 to
step 4 from this section to install the USB DFU driver. This time DFU_Device.inf is
selected as shown in next figure.

Found New Hardware Wizard

Select the device driver you want to inztall for this hardware. .

"'-:t'.. Locate File

Lok, in: |E} DFU_winusb_driver V| € _?' % [

[C)amded
(Chiatd
(C)x86

~_DFU_Device inf
3DFU_Device_Runtime.inF

File name: | DFU_Device.inf v [open |

Files of type: | Setup Infarmation [.inf)
Figure 16: Install driver for DFU Mode

9. Once driver for DFU mode is installed successfully, USB DFU device bootloader
is in DFU mode and ready to use. USB DFU PC application is shown as follows:

DFU Demo 5]
Eile

USE Device

8]

Download Firmware | | B

Download Fimware from a File to the Device

Upload Firmmware | |
Upload Firmware from the Device ta a File

Loa file folder
[logfile | D
Data Received
Azl Hexa
Device: Device firmware upgrade Status: IDLE

Device opened

Figure 17: DFU device demo in DFU mode

Note:
The use of a USB hub or docking station for the USB DFU device bootloader is not
recommended.

5.5 Downloading firmware
The following steps must be followed to download the firmware through the USB DFU

bootloader.

1. At this point, Section 5.4 must be completed. Using the USB DFU PC Application,
select a firmware image file for download to the device as shown in Figure 6-21. The
files generated at Section 5.3 can be used for this step.

File
ISE Device
|Deviu:e firrmware Lpgrade b L
T Loak in: | 129 MQX_MFS_USE_Shel v @ F @
1l ™ [=]irtriash e bin
{ E; = intFlash.elf 519
1 MyRecent |[Hintflash_d.ef bin
Documents | intFlash_d.elf. 519
|
ezklop
A
by Documents
ty Computer
. File name: |intflash.elf.bin V| [Open]
o] My Metwork | Files of type: |l file [7) v| | Cancel]

Figure 18: Choosing firmware file

2. When a S19 file is selected, the content of the firmware file is displayed in ASCII and
hexadecimal (HEX) format. If a CodeWarrior binary format is selected, the content of
the firmware is only displayed in hexadecimal (HEX) format as shown in next figure.

DFU Demo [x
File
15B Device

E Device firmware upgrade w |

i_@Dl:nt_I-:nal:IerHVSS'ximage_files"-.h’lSD_Device_buutlnaderHEEEEElEl [j

Davenload Firiware from a File to the Device

Dawnload Firmware

IJpload Firrware L
Upload Firrware from the Device to a File

Laq file Falder
E-IE:-";.IDgfiIe.t:-:t i D

Azl Hewxa

' |00 009000000000FC2000FE FFOOO E21C » |
(0 E3TCO0DOTE37FCOOMNE3FCODOTE3TC — |
{00 E3YCO0M E37FCO0O1 E3FC 0001 E3VC
(0001 E37CO001E37CO00NE37CO00 E37C
{00 E3YCO0M E3FCO0O1 E3YC 0001 E3VC
(00 EZ7CO001E37CO0D E37CO001 ES7C
{00 E3YCO0M E3FCO0MT E3FC 00O E3VC
(00 E3YCO0M E3FCO0OT E3FC 0001 E3VC
{00 E37CO0M E3FCO0M E37CO0M E3VC
(00 E3FCO0OO1E37FCO0CM E3FCO001 E3FC
(00 E3YCO0M E37FCO0O1 E3FC 0001 E3VC
(0001 E37CO001E37CO00N E37CO0D E37C
(00 E3YCO0M E3FCO001 E3FC 0001 E3VC %

Data Recerved

Device: Device firmware upgrade Skatus: IDLE Device opened

Figure 19: Content of the firmware is displayed

3. Click “Download Firmware” button. The firmware will be downloaded to the
device.

DFU Demo [x

File
15B Device

Device firmware upgrade w |

|E\Boot_loader'55himage_files\MSD_Device_bootloader'5225% | [.. |

Davenload Firiware from a File to the Device

Upload Firrware from the Device to a File

Laq file Falder
C\logfie.tst B

Azl Hewxa

| | 0000900000 0000FC 2000FE FFODO1 E31C - |
0001 E37CO0001 E37CO001 E37CO0001E37C — |
0001 E37C0001 E37C0001 E37C 0001 E37C
0001 E37C0001 E37C0001 E37C 0001 E3 7C
0001 E37C0001 E37C0001 E3 700001 E3 70
0001 E37C0001E37C0001 E37C 0001 E37C
0001 E37C0001 E37C0001 E37C 0001 E3 7C
0001 E37C0001 E37C0001 E37C 0001 E37C
0001E37CO0001 E37C0001 E3 700001 E3 7C
0001 E37C0001 E37C0001 E37C 0001 E37C
0001 E37C0001 E37C0001 E37C 0001 E37C
\0001E37C0001 E37C0001 E37C0001 E37C |
0001 E37CO001 E37CO001 E37CO0001E37C |

Data Recerved

Device: Device firmware upgrade @s: 7424 bytes writteb Device opened

Figure 20: Firmware is downloaded

4. Once the download firmware process is completed, the USB DFU PC Application
shows the final status of the download process.

IISB Device

Device firmware upgrade w Enter DFU mode

| E:MBoot_loaderS5%image_filez\WM50_Device _bootloaderth52253E |

Dawrload Firrnware from a File ta the Device

Diownload Firrnears

Ipload Firrmware | |
Ilpload Firmware from the Device to a File

Log file folder

[Chiogie et | (-]

[rata Recerved

Azl
QOODFC2000FEB FFOOOTE21C A
Firrmmare has been downloaded successFully! LR L il L
" PO E3FCOOO1E3FCOOOT E3YC
CTE37CO001 E3FCO0O01 E3FC
DTE3FCO0O1E3FCOO0TE3FC
- , ME3FCO0O1E3FCOOO1 E3FC
— A 0TE37CO00TE3FCOOMO1 E3FC
OOME3FCODM E3FCOOO1 E3FCOO0T E3FC
QOO E3FCOOM E3FCO0OO1 E3FCOO0T E3YC
OOOTE3FCODM E3FCO0OO1 E3FCOOOT E3YC
OOOME3FCODM E3FCOOO1 E3FCOO0OT E3YC
OO E3FCODM E3FCO0OO1 E3FCOOOT E3FC
DO E3FCOODIE3VCO0OM E3FCOO0T E3 VL ™
Device: Device firmware uparade Status: Download finished, Device opened .

Figure 21: download is completed

5. As an additional verify process, a log file contains the events occurred during the
download process

File Edit Wiew Insert Format Help

DEexE £k #

downloading. ..

state = 5T DFU IDLE

state ST DFU DNLOAD S¥YNC
ST DFU DWBUIY

ST DFU DNLOAD IDLE
ST DFU MANTIFEST 3I¥NC
Manifesting...

state = 5T DFU IDLE

116756 bytes written. —
Download finished.

state

state

state

IF::-r Help, press F1

Figure 22: content of log file

6. Press reset key on board to run the user application. The serial terminal shows a menu
sent by MQX user application.

‘¢ COM_115200 - HyperTerminal

File Edit Mjew Cal Transfer Help
0 & 2 0 EH
Shell (build: May 24 2011)
Copyright (c) 2008 Freescale Semiconductor;
shell>
shell>
¢ | 5
Caonnecked 2:10:20 Auto detect 115200 g-M-1 MWLM

Figure 23: user application running

NOTE
If the USB cable is unplugged during the download process,
The USB DFU PC application will ask to continue the
download process whenever the USB cable is re-plugged as
shown in Figure 24.

File
ISE Dewvice

Device firmmare upgrade w

|E\Boot_loaderV55\image_fies\MSD_Device_bootioader\5225% | [.. |

Du:uwnlu:uau:l Firrnare from a FI|E {a] the Dewce

‘ Dowrload Firmware

‘ IJpload Firmware ‘ l
Iplaad Firmware fram the Device to a File

Log file folder
| C-ogfile et ' D

Azoii Hewxa

EIEI 003000000000FC 2000 FE FF OO E31C A
- 0 E37CO001 E3FCO001 E3FC
Device attached 1001 E37FCO001 E37C 0001 E3 7L
001 E27CO00 E3FCO0O1 E37C
Do wou want to continue downloading? PO01E37CO0001 E37C00M E3YC
I00TE3YCO0ON E3FCO0O1 E3FC

[rata Recerved

001 E3 7C 00 01 E3 7C 00 01 E3 7C
| ok || cancel | BooiE37COOOE3FCODDIE3TC
001 E37C 0001 E3 7C 00 01 E3 7C
OTESTC 00 01 £3 7C 00 01 E2 7000 01 £3 7C
|00 01E37C0001 E37C0001 E3 7C 0001 E3 7C
|00 01 E3 700001 E37C 00 01 E3 7C 00 01 E3 7C
(0001 E37C0001E37C0001 E27C0001E37C v |

Device: Device firmware upgrade Status: IDLE Device opened

Figure 24: resuming download

5.6 Uploading firmware

To return to USB device bootloader mode, a special sequence must be followed. The
USB DFU PC application can upload the firmware image running in the USB DFU
device bootloader by using the “Upload” feature. When the USB DFU device bootloader
contains a valid user application, it automatically starts the user application and doesn’t
start the USB DFU functionality.

The following steps explain how to return to USB device bootloader mode and upload an
embedded firmware:

1. Keep pressing the M52259EVB SW1 key and then press the reset button. The
M52259EVB returns to bootloader mode (run time mode).

2. Click “Enter DFU mode” button on the DFU demo application, unplug and plug
again the USB cable; the device will enter DFU mode.

3. Click “upload firmware” button on USB DFU PC application. The application asks
for a file name. Type a file name and click save button. The upload process starts.
The PC application notifies when the upload process is complete.

DFU Demo
File
USE Device

(%]

| Device firmware upgrade

Save As

Save in; | = MO¥_MFS_USE_Shel

a

ky Recent
D ocuments

Deszkbop

\$

by D ocuments

&«

by Computer

150 |

m

File narme; | nadfi

v | [Save J

My Network | Saveastyper | Hes file [hex)

w | [Cancel]

Figure 25: Save the upload firmware file

4. When the upload process is completed, the PC application displays the result. During
the process, the data received is displayed in two text boxes as shown in next figure.

J File
| USE Device

Device firmware upgrade b

‘ Dovwnload Firmware

‘ Upload Firrmware | :
Ilpload Firrwware from the Device to a File

Log file folder
EIE:'xIDgf.iIe.t:-:t
| DataReceived
Azl

FILE HAMDLEMEMO WM FILESYST

Firmware has been read successfuly!

Dawwnload Firrware from a File to the Device

E:\Boot_loadertSS\mage_fileshMSD_Device bootloadertb2253E

L

00000000000000000000

YERSIONALID DEVICECLUSTER (00 00 0000 00 00 00 00 00 0o
DELETE LFMLFM 0000 00 0000 00 00 00 0000
EMTRYARTITIONRY1234567354B 1 [0 0000 00 00 0000 00 00 0o
fe/Freescale MO0 OO0 O o0 o0 o 00 00 00 00 00 00 00 00 00 00
| oS-+ +Cm- FEmAmt DI FILE | zclir@zC+HIE_m {00 000000000000 CE F20044 03 04 50 FF 00
(I 00N D 50 3 ol YN {FF OO0 00 00 0000 00 00 00 0000 00 00 00 0000
UNHAKDLED IMTERRUPT **1 04 0000 00 04 FF FF FF FF 0000 90 00 40 00 00
mT azk |d: Ox%0x Td_ptr Dwis Stack Frame: Qs {00 00 00 Q0 00 00 FF QO FF 01 FF 00 F& 80 FF FO
terrupt_nesting level: Zd PC: Ox08x SH: |FOFF FOFOFO OO FF FF FF FF FF FF FF FF FF FF
w04 =Mty a: pio; outputo: input |FF 55 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
| I e o O Do G Oy Cr Do D DOm0, T |FF OO 02 41 80 20 00 0000 00 00 08 5C 00 00 00
| IMIMIE EE B B B I 0530 » 00 0000 00 00 00 0000 0o b
Device: Device firmware upgrade Status: Upload finished., Device opened

Figure 26: Upload firmware completed

6. Port the bootloader to other platforms

The following section explains how to develop new USB DFU bootloader applications in
other platforms. The USB DFU bootloader is developed over the “Freescale USB Stack

with PHDC v3.0” software.

6.1 USB DFU bootloader file structure

The following figure shows the folder structure of the DFU source code:

=1 1) AW Al [Chcodewarrior
I DFU_PC_Demo Iowin
| DFU_winusb_driver I3 flash_driver
=l) image_files |hiar_ew

=l | MSD_Device_bootloader

ﬂ Boot_loader_task.c
ﬂ Boot_loader_task.h

+ |) 52259EVE
£ (3 M&0 h] Bootloader.h
3 m128 ﬂ dfu_mouse.c
O T il dfu_mouse.h
=l I} Source ﬂ Loader.c
= [Device ﬂ Redirect_Vectors_S08.c
= 2 app €] usb_descriptor.c
H () common ﬂ ush_descriptor.h
= i] user_config.h
| Z) codewarrior
| ocwi1d
| flash_driver
|3 iar_ew
3 () source

Figure 27: USB DFU bootloader File Structure

o DFU_PC_Demo: contains the USB DFU PC application
o DFU_winusb_driver: USB drivers needed by Windows OS.
o image_files: contains examples firmware image files for MC9S08JM60,
MCF51JM128, MCF52259 and K60 MCUs.
0 Source: contains USB DFU bootloader source code
e Folder dfu_bootloader contains the following folders:
v’ codewarrior: contains CodeWarrior v6.3 and v7.2 projects
v" cwl0: contains CodeWarrior 10.2 projects.
v iar_ew: contains IAR projects.
v’ flash_driver: contains flash driver for supported MCUs.
The following files are part of the dfu_bootloader folder:
v' Boot_loader_task.c: contains bootloader general tasks.
v' Boot_loader_task.h: includes function prototypes.
v Bootloader.h: includes memory map definitions for ported boards to DFU
bootloader.
dfu_mouse.c: contains DFU application + mouse functionality.
dfu_mouse.h: contains DFU parameters definitions.
Loader.c: contains functions to parse and load firmware image to MCU flash
memory.
v Redirect_Vectors_S08.c: contains bootloader interrupts for MC9S08JM60
(S08 MCU).
usb_descriptor.c: contains USB descriptor structures and functions.
usb_descriptor.h: contains USB descriptor parameters.
user_config.h: contains user configurations.

AN

AN

6.2 Creating new projects

Perform following steps for creating new USB DFU bootloader projects:

1. Create a new project under
Source\Device\app\dfu_bootloader\codewarrior or
Source\Device\app\dfu_bootloader\cw10

= 153 AMxaossw
[y DFU_PC_Demao
I3 OFU_winusb_driver
= I3 image_files
= [C3) MSD_Device_bootloader
| 52252EVE
I M&a
I M1z2s
I ka0
= 15 Source
E L) Device
= 2 app
|53 comman
=) dfu_bootloader
= I25) codewarrior
I cfvlusbim128
I cfv2usbm52259
o
I3 =08ushimen
I cwin
I flash_driver
I iar_ew
I source

Figure 28: create a new project folder

2. Create a project with file structure like bootloader project for M52259EVB. Use
cfv2usbm52259 project as a CodeWarrior template.

3.

chw2usbm32259 mcp l

| INTERNAL_FLASH

Files l Lk Elrder] Targets]

By &% 0

Figure 29: M52259 boot loader project

Add files to project:

e Flash driver source code:
= flash.c: CFV1 and ColdFire+ flash driver

= flash_cfv2.c: CFV2 flash driver

» flash_FTFL: Kinetis K and L flash driver
= flash_hcs: S08 flash driver
= flash_NAND.c: NAND flash driver.

e USB classes (DFU and HID classes) source code

e USB device driver source code

e dfu_mouse.c, dfu_mouse.h, Boot_loader_task.c, Boot loader_task.h,
Loader.c, Bootloader.h, usb_descriptor.c, usb_descriptor.h and necessary

files specific to boards.

W File Code | Data 4 =
=3 Sources 18978 4519 » = =
£ app o84 2825 . =
- Boot_loader_taskc 344 232 « =l
-~ usb_descriptor.c 1305 1581 = =
~ B dfu_mouse.c 952 181 » =
B Loaderc b2 FHE——=t
-l flazh cfv2c AF0 0 =
@ PIT1 _cfvze 34 4 « =
@l main_cfvz.c 392 3« =
Ml It _CH_efv2.c 250 0« =
-l FealTimerCounter_chi.c 440 3« =
@l wdt_cheZc 28 0« =
S Quart_zupport.c 452 0= =
S class 4408 102 « =i
[-H usb_hidc 1573 o= =
8 usb_clazs.c Faz -
-l usb_dfuc 2082 32« =
S-Eq driver B985 1886 « =l
[-Hl usb_driverc 828 126 » =l
-l usb_framewark.c 1620 142« =l
-l ush_dei_chvZ.c 4473 1618 « =l
+{_7 Inchides 1] n =
+-{_] Project Settings 1300 1043 « =l

Bootloader application

BEootloader driver
Flash driver

TTEE claszses

TTEE dewice drivers

Modify Boot_loader_task.c file for the specific board willing to implement DFU

bootloader.

Modify memory map which indicate application region for the platform in

Bootloader.h file as shown below:

#if (defined _ MCF52259 H)

#define MIN_RAM1_ADDRESS 0x20000000

#define MAX_RAM1_ADDRESS 0x2000FFFF

#define MIN_FLASH1 ADDRESS 0x00000000

#define MAX_FLASH1 ADDRESS Ox0007FFFF

#define IMAGE_ADDR ((uint_32_ptr)0x9000)
#define ERASE_SECTOR_SIZE (0x1000) /* 4K bytes*/
#define FIRMWARE_SIZE ADD (0Ox0007FFFO0)

#elif (defined _MCF51JM128 H)

#define MIN_RAM1 ADDRESS 0x00800000

#define MAX_RAM1_ADDRESS Ox00803FFF

#define MIN_FLASH1 ADDRESS 0x00000000

#define MAX_FLASH1_ ADDRESS Ox0001FFFF

#define IMAGE_ADDR ((uint_32_ ptr)0x0A000)
#define ERASE SECTOR_SIZE (0x0400) /* 1K bytes*/
#define FIRMWARE SI1ZE_ADD (0Ox0001FFFO)

#elif (defined MCU_MK60ON512VMD100)

#define MIN_RAM1_ ADDRESS Ox1FFF0000

#define MAX_RAM1_ADDRESS 0x20010000

#define MIN_FLASH1_ ADDRESS 0x00000000

#define MAX_FLASH1_ ADDRESS Ox0007FFFF

#define IMAGE_ADDR ((uint_32_ptr)0xA000)
#define ERASE_SECTOR_SIZE (0x800) /* 2K bytes*/
#define FIRMWARE_SIZE ADD (0x0007FFFO0)

#endif

7. Conclusion

The following document described how the USB DFU class can be used as an option to
make upgrades to the MCU firmware on the field. The application running over the DFU
bootloader only required modifications in the linker file and exception table. The following
solution can be migrated to any Freescale 8/16/32-bit MCU.

7.1 Problem reporting instructions

Issues and suggestions about this document and drivers should be provided through the
support web page at www.freescale.com/support. Please reference this application note.

http://www.freescale.com/support

7.2 Considerations and References

Find the newest software updates and information about USB DFU bootloader for
MCUs on the Freescale Semiconductor home page: www.freescale.com

More implementations using USB DFU class in Freescale MCUs can be found in
the latest “Freescale USB Stack with PHDC” software from
www.freescale.com/usb.

More details about USB DFU class can be found on document named “USB
Device Firmware upgrade specifications” from www.usb.org

The AN4370SW software contains all the necessary SW to run USB DFU class
in the embedded device and PC running Windows OS.

Download the source files for AN4370SW software (AN4370SW.zip) from
www.freescale.com.

http://www.freescale.com/
http://www.freescale.com/

	3.1 Architecture overview
	3.2 Boot loader sequence
	4.1 Linker Files modifications:
	4.1.1 CFV1 Linker File: ColdFire V1 and ColdFire+
	4.1.2 CFV2 Linker File: ColdFire V2-4
	4.1.3 Kinetis K and L family Linker File
	4.1.4 S08 Linker File

	Note:
	4.2 Exception Table redirection
	4.2.1 MQX user Application
	Note:
	4.2.2 Bare metal user application
	4.2.2.1 CFV1 MCU: ColdFire V1 and ColdFire+
	4.2.2.2 CFV2 MCU: ColdFire V2-4
	4.2.2.3 Kinetis K and L family MCU
	4.2.2.4 S08 MCU

	5.1 Preparing the Setup
	5.1.1 Software Setting up
	5.1.2 Hardware Setting up

	5.2 Preparing firmware image file
	5.3 Building the Application
	5.4 Running the Application
	5.4.1 Driver installation
	5.5 Downloading firmware
	5.6 Uploading firmware

	6.1 USB DFU bootloader file structure
	6.2 Creating new projects

