I.MX Linux® Reference Manual

Document Number: IMXLXRM
Rev. 0, 10/2016

h
V"

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

Contents
Section number Title Page
Chapter 1
About this Book
| N 1<) T OO OSSOSO PRSP 29
1.1.1 CONVENLIONS. ...ttt ettt sttt ettt et et eae bbbt sa e ae et ettt ea e st eneebeebesueea e b e 29
1.1.2 Definitions, Acronyms, and ADDI@VIAtIONS.c...coiuiiriiritiiiiieiierie ettt sttt et et esareebee e 29
Chapter 2
Introduction
2.1 OVEIVIBW ..ttt e et h bbb bbb e a e s e s 33
2.1.1 SOFEWATE BASE.......eetieiietieie ettt ettt ettt e bt et e s bt et e s b e e a e e bt eat e eb e e bt e st e bt eneeebeeneesaeenaeanean 34
2012 FRALUIES ...ttt ettt e h bbb bbbttt et et eae e 34
Chapter 3
Machine-Specific Layer (MSL)
3.1 INEEOAUCTION. ...ttt e bbbttt e st et ea e bt b sae et b snens 39
3.2 INLETTUPLS (OPETALION)....eeutieirieieeniitetteette et te ettt et e e sttt e bt e sate e bt e eaeeeabeesabeeabeesabe e bt e eute e beeeaseeabeesabeenatesabeesseesabeebaesnseeseens 40
32.1 Interrupt HardwWare OPETation..........cceecuirierieruierieiieteeitesteette it ete et esteete e eesaeetesseenbeestesbeessenbeentesbeensesseenseane 40
322 Interrupt SOFtWAre OPEIatiON........coeetirtiriiriieiirteeie ettt ettt ettt et st et sttt ebee bt estesaeestesbeensesbeeanesbeens 40
323 TNEETTUPE FRALUTES.eetieiie ettt ettt et et e e st et e s bt e et e e sbbeenbeenbeesabeansaesaneas 41
3.2.4 Interrupt SOUICE COAE SIIUCLUIE.c.utiriirtiiritieiteite ettt ettt ettt et ettt e bttt e bt e st esbeesabeenbeeeabeenee s 41
3.2.5 Interrupt Programming INTEITACE.cc.evuiiiiiiiiiiiiiieie ettt e 42
TR B 11115 0 41| o1 OO OO OO OO PSP U PP RTUPRRRTN 42
3.3.1 Interrupt Hardware Operation 3780,IMX28........cceeiiiiiiiiierieeie sttt ettt ettt sneas 42
3.3.2 Interrupt Software Operation 3780, MX28.....cc.eooiriiriiiiriee ittt ettt st nbe s 43
333 INEETTUPE REQUITEIMENIES.eeiiieiiieiieeiteeie ettt ettt e b e ettt st e bt e sat e e sbaeeab e e bbesabeebeesabeeseesaees 43
334 Interrupt Source Code Structure Implementation..............ccevieriirieriiiere e 43
3.3.5 Interrupt Programming Interface, 3780, MX28.......cccotiiiriiriiiineitenie ettt st 44
3.3.0 INLETTUPE UNIE TESE.utiiitiitieiieeite ettt ettt et e bt e b e et e e bt e st e e bt e sabeesabesabeesbbeenbeenbeesnbeensnesans 44
T 111 1<) OO OO OSSR PTORRPSRRRPON 44
34.1 Timer HardwWare OPEIatiOn........ccccoeeruiriiriirtirientenieeteett ettt sttt sttt et et b e ettt et bt et ebee et eaeenaeenees 45

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 3

Section number Title Page
342 Timer Hardware Operation 3780, MX28.........cooiiiiiiiiiiieieniieteseete sttt ettt s 45
343 TIMET SOfIWATE OPETALION.eeueieiiieiieeite ettt ettt ettt et e et e bt e st e et e st e e bt e sat e e sbaesabe e beesabeebeesabeeseenanes 46
344 TIMEI FEALUIES. ...c..eeuiitieiiiitiete ettt ettt h et e et ae e s bt eaee et e emeesb e et e ebeenbeese et e eneenseeneeseenes 46
3.45 Timer SoUrce COde STIUCTUIE.c.eiuiriiiiiiiieiiieieteet ettt sttt ettt et ea e s sa et 46
34.6 Timer Programming INterface 3780......cccuioruiiiiiiiiiiiiieieiit ettt sttt et ettt s 46
347 Timer Programming INtEITaACE............couiiiiiiiiiiiieeeee ettt st aeeaeas 46
3.4.8 Timer Programming INtEITaCe.cccuoviiiiiiiiiiriiiii ettt s 47
3.4.9 TIMET UNIE TSttt e s 47
3.5 MEIMOTY MAP. .ttt ettt e h e et b ettt e b e eh bt e bt e at e e bt et e e bt e st e e beesateenbeeeaaeenne 47
3.5.1 Memory Map Hardware OPeration...........cc.coueeverierriirieiiinienieitenieeit ettt ettt st et sbteae st saesstesbeesnenbeas 47
3.5.2 Memory Map SOftWAre OPETAtION.coiuutiiuieriiiiienieette st et ettt e et et eesbe e bt e sate e bt e sabeenbaesabeenbeesnbeenaeesaseas 47
353 MemOry Map FEATUIES.cooui ittt ettt ettt ettt ettt s bt et e bt et e bt e s e e b e en e ebee bt eneebeeneenbeeneenees 48
354 Memory Map Source Code SIITUCTUIE........coutiiiriiriiriietintieteeit ettt ettt et et st et st e ettt sbe et ebeeneeae 48
3.0 TOMUX ..ttt bbb ee 49
3.6.1 IOMUX Hardware OPEIation...........ccceeieuirueriirtenienieieteteteiteiteit et etesie sttt saesaetess et ens et eseeseesessesaessessenaens 49
3.6.2 TOMUX SOftWare OPETAtiON.......cc.eevertirtiriieienieetenieetesitete st ete st e e st et sttesteettesteeaeesbeestesbeeseesaeeneesbeesenseen 50
3.6.3 IOMUX FEALULES........oiuiiiiiiiiiiiiiiiccc et 50
3.64 TOMUX SOUICE COE SIIUCIUIR.eruieuiirtieieetiete ettt ete st eit et et e bt en e ete e teeaee bt estesbeeseesbeesseabeentesbeenseeseaneeane 50
3.6.5 TOMUX Programming INtEITaCE.........cccuiriiriiiiiniiiiiicitceetee ettt sttt 51
3.6.6 IOMUX Control Through GPIO MOAUIE..........cooiiiiiiiiiiiiiiieeteeet ettt s 51
3.6.6.1 GPIO HardwWare OPEration.ccueeueerueeiertieienieeteste et et ete st etesteetesieenbesseebeeseebeeneenseeneeneeenes 51
3.6.60.1.1 MUXING CONLIOL...cuuiiiiiiiiiiiiiniieieeteeet ettt sttt ettt sae e 51
3.6.6.1.2 PULLUP CONLIOL......ooiiiiiiiiiiiiiiieiiieeeteeeesee et 52
3.6.6.2 GPIO Software Operation (ZENEral)..........cceceeieriiieriiiereeiert ettt 52
3.6.6.3 GPIO IMPIEMENTAION. ...c..eotiriiiiiniiiiieiieteettet ettt sttt ettt ettt ettt sae e 52
3.7 General Purpose Input/OUtput(GPIO)........c.coiiiiiiiiiiiiee ettt ettt st ettt s e st e baesabeeaee s 52
3.7.1 GPIO SOFtWAIE OPEIALION. ... eueeutieueiteeteetieieetterteeetesteeite bt eete bt eate e st enteeseenteesee st eseenseestesbeenseabeentesseensesseenteane 52
3.7.1.1 APLOT GPIO ..ottt sttt ettt 53
372 GPIO FEALULES. ..ottt et s 53

i.MX Linux® Reference Manual, Rev. 0, 10/2016

4 NXP Semiconductors

Section number Title Page
3.7.3 GPIO Module Source Code SIUCLUIE........c..ccuccuiiiiiiiiiieiiiiic ettt st 53
3.7.4 GPIO Programming INTEIFACE 2.......cc.eeiiiiiiiiiiiiiieiieeiieee ettt sttt st ettt e bt e et e bt st esaaesatees 54
Chapter 4
Smart Direct Memory Access (SDMA) API
A1 OVEIVIEW ..ottt et a e 55
411 HAardwWare OPEIALION.c..ueiueeueetieuieeteeuteetteteettesteettestestesteeseesteesee bt easenseestenseeneeebeenseeseansesseensesseensesseebesneansens 55
4.1.2 SOftWATE OPETALION.cetiiuiiiiiiterieeiteitt ettt ettt ettt ettt bttt ebte s bt et e s bt ee s esb e eat e s bt eab e st e eabeebe et e sbeenbesmeenaeennes 55
4.1.3 SoUrce Code STIUCTUTR.cciiuiiiiiiiiiiitiiieie sttt st s eb e e 56
4.1.4 Programming INEITACE.eoouiiuiiiiitieie ettt ettt ettt et e bt et et e besbe e beeseenbeeaeenaeens 57
415 USAZE EXAMPIE....oneiiiiiiiiiiiietiitet ettt e b et ettt sttt sttt et e b e 57
Chapter 5
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)
5.1 OVEIVIBW. ..ottt et b ettt ettt et ea e bt a e a e b b s a et b e st et et e st eaees e e bt eu e eb e e b sae et e saenens 59
5.1.1 HardwWare OPETALION.ceiuviiiieriiiiiteeie ettt ettt ettt e b e st e e bt e sabe e s st e eabeesbbeeabeenbeesabeesabesabeesssesnseens 59
5.1.2 SOFEWAIE OPETALION.cueeuiieeietieiieete ettt ettt ettt ettt e bt e st e et e eaeesat e beeate bt esee bt en b e bt enbeeseentesseensesneenaeenees 60
S5.1.3° SoUIce Code SIIUCLUIE.c.oiuiiiiiiiiiiiiiiiietie ettt st sttt et eb e sae b saen 60
5.1.4 Menu Configuration OPLIOMNS.c..ueeiieritritierieeiee et et e st et e sttt e bt essteebeesabeesbeesateesbeesaseebeesaseebeesnseenseesasean 61
5.1.5 Programming INTEITACE.ccuoruiiiiiiiiie ittt ettt sttt b et b et e b et b et eese e b eee 61
5.1.6 0 USAZE EXAMPIC......iiiiiiiiiiiiiiiitcee ettt et ettt st st b e st b e bbbt et b et ebe et e 61
Chapter 6
Image Processing Unit (IPU) Drivers
6.1 REVISTION RISTOTY ...ttt ettt et b et b e et s bt e et bt et sb et eb e e bt eb e e bt eaeenaeenees 63
6.2 INETOQUCTION. ...c..iiiiiiiiiiic et e st 64
6.2.1 HAardWare OPEIatiON........couerueiieitieieitiete et iet et et ettesteeieesteeatesteetesbeebeebeenbeeseeteesee st eneesseeneesaeenbesseensesneansens 66
0.3 SOFtWATE OPETALION.eouiiuiiriiiiieitieteete ettt ettt ettt ettt ea e bt e st e bt et e bt e et e st esbeeate s bt eet e bt eabesbeeab e s bt enbeebee bt esaenaeeneen 66
6.3.1 IPU Frame Buffer DIivers OVEIVIEW.........c.cccciiiiiiiiiiiiiiiiiiecicccc s 68
6.3.1.1 IPU Frame Buffer Hardware OPeration..........c..ccuecieieiririinienienienieieeeiereeee et seesve e seenene 69
6.3.1.2 TPU Frame Buffer Software Operation...........ccceeeeriereeniirienenieneeicnieeieseeteeieete et 69
6.3.1.3 Synchronous Frame Buffer DITVeT........coceiviiiiiiiiiiiiiiecc et 70
6.3.1.4 Asynchronous Display Controller (ADC) Frame Buffer Driver...........ccccooceeveniinencnnenceeen. 71

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

Section number Title Page
6.3.2 TPU BaCKII@NE DITVET...c..eoiiiiiiiiiiiinicieiece ettt sttt sttt et sb et be et ebe e et st e nae e 72
6.3.3 MPEGA/H.264 POSt FIIter DITVET.....c.eeutiiiiiiitiitiitintietestestetet ettt ettt sttt ettt ettt 72
0.3.4 TPU DEVICE DIVcutieuiiiieiieeteeie ettt ettt ettt ettt ettt ettt et e st e et eb e bt e st e bt emeenbeeeee bt embeebeenteeseenteeneeneeene 72

0.4 SOUICE COUE STIUCLUIRvetiiuiiiiitiettete ettt ettt ettt ettt ettt ettt et eb e et ebe e aeebtesbeeatesbeeate s b e esbesbeenb e e bt et e ebeenbeeneenaeeae 73
6.4.1 Menu Configuration OPLIOMS.eeiueeiiiertierie ettt et et e st eteestteebee sttt ebeesstesabeesseesabeessbesaseenbeesnseenseenas 74

(O S B 11 L] A OO OO ORI 78
6.5.1 FramebUTTEr TESTS. ...cueiiiiiiiietiet ettt ettt ettt et b ettt sb e et sae et esbe et e sbeenbenanens 79
6.5.2 VIAEOALINUX APT BSt....ccuiiiiiiiiiiieieet ettt ettt et sttt sae e sae e sbeeanesaeeas 79
6.5.3 POST-TFIIEET T@SL. ..ttt ettt ettt et b ettt et a e bt e st et e e st e sbeemeesaeeneesaeenbesbeenbeeseenbeeneenseans 80
0.5.4 TPU DEVICE UNIE tESt...euuteuiieiieieeitenteete ettt ett ettt ettt ettt sbe et s bt estesbte bt ebse bt eebenbeeabesbeestesbeenteeneenaeenees 82

Chapter 7
MIPI DSI Driver

7.1 TIETOAUCTION. ...ttt h e et bt et b et s bt et s bt et sbt e s bt e bt e bt ee b e bt est e bt en b e b e et e ebeeneenaee 87
7.1.1 MIPI DST IP DITVET OVEIVIEW.....ccuviiiiiiiiieiiiiieiieieett ettt ettt ettt ettt sttt et e eae e sae e naes 87
7.1.2 MIPI DSI Display Panel DIiver OVEIVIEW.cc.ueruirieriieieniieiesteeeesieestesieenteeiee st este st eneesseentesseenaesaeenaesnees 88
7.1.3 Hardware OPeIatiOn........cocuerueeiiriirteriietenttet ettt ettt ettt ettt et s bt et st e et e ebee bt ebt e bt eatesbeesaesbeeaesbeenbesbnenbens 88

T2 SOFtWATE OPETALION. .. uteiutieiiiieiteeite ettt ettt et te st e sbteeabe e bt e eabeebeesabeebeeseteebteeabeeabaeeabeenbeesabeeastesateebeesabeenbeesnseeseenas 88
7.2.1 MIPI DSI IP Driver SOftware OPEIatiOn.cceerueruierueruienieritenteettenteeetesteeseeseeetesteenaesseessesseesseensesseesenseens 88
7.2.2 MIPI DSI Display Panel Driver Software OpPeration...........c..cecueieeueriieiienienienienieneeneseenieeeenieeeesieenenieens 89

T3 DIIVET FRATUTES.eeutiiiiiiiiieie ettt et e sa et s et et s et et s ae e e s ae e e s b s esbeeane bt eane st ennenaeenne 89
7.3.1 SOUICE COAE SIITUCTULE.......eeeieiieitiete ettt ettt ettt ettt et et e bt st e s te et e s bt eate s b e eateebeemteeseenteeseebeeneenaeeneesneensesnean 90
7.3.2 Menu Configuration OPTONS.ccuereeierterieriteteeit ettt ettt ettt et sttt setesteeatesbeeebesbeeabesbeestesbeeneesaeenaeenees 90
7.3.3 Programming INEETTACE.c...eiiuiiiiiiiie ettt sttt st e b e e e e st e b 90

Chapter 8
LVDS Display Bridge (LDB) Driver

Bl TIFOAUCHION. ...ttt ettt ettt e st et et eae et e e et e st e st e saeessesaeensesaeensesunemsesunenneeanensens 91
8. 1.1 Hardware OPETAtION.......c.ceeeiruiriirteriertetetetet ettt ettt et ettt sttt se st ea et et esteaeeae e st ebeebesaesbeebesbesa et ensenennen 91
8 1.2 SOFtWATE OPEIALION. c ..ttt ettt ettt ettt ettt ettt ettt e st e s bt e st eb e e st e e bt esteebe e bt eatesbeemtesbeemtesbeennenbeens 91
8.1.3 S0UTCE COAE SIIUCTUTE.......vevieniiriieieeiteteet ettt ettt ettt et ettt e st e s be e s et e essesue et e eaeesaeeseesaeennesaeennenaeen 92

i.MX Linux® Reference Manual, Rev. 0, 10/2016
6 NXP Semiconductors

Section number Title Page
8.1.4 Menu Configuration OPLIONS........co.eeuirtieiirtiertieiteie ettt ettt ettt sttt st et e at et ebeesbe et e sbeestesbeenaesbeensesinens 92
Chapter 9
Video for Linux Two (V4L2) Driver
9.1 REVISTON HISTOTY ...eutiieiiiiiieittetie ettt ettt et e et et e et e e bt e eab e e st e eabe e seesabeessaeease e ssesabeenseesaseessseenseessseensaenssean 93
0.2 INETOQUCTION. ...ttt st 94
0.3 VAL CaPUIE DEVICE.....cuiiuiriiiitiieiiietetetet ettt ettt ettt ettt b bt sttt be sttt e e ss e st st ebe e bt saeeb e b e 95
9.3.1 VAL CaPure TOCTLS.eeuieiiiiiiieeieeieeteeit ettt ettt ettt et ettt s b et sbe et e bt e b ebe e bt eneeneeene 96
9.3.2 Use Of the VAL2 Capture APIS.......ooiiiiiiiiiieetestee ettt ettt ettt ettt e st e e sabeebeesaeen 97
0.4 VAL2 OUIPUL DEVICE......cuviuvenieiiiieiieitetieitett ettt ettt ettt ettt sa et sttt e s et eateu e bt ebesae et s besaestennennens 98
0.4.1 VAL OULPUL IOCTLS....cveiiieiiiiieiiteietet ettt ettt ettt 99
9.4.2 Use of the VAL2 OULPUL APIS.....ooiiiiiiiiii ettt st ettt e b e st be e st e saae s 100
9.5 SOUICE COAE SIITUCTUIEeentieuietieieite ettt ettt ettt et et e et este e tesa e e b e sb e et e e s ee bt este bt emeeeseantesaeenbesaeenseemeebeemsenbeennanseans 100
9.5.1 Menu Configuration OPLIONS.coueeuerteriieieiteetenteete sttt ettt ettt ettt e bt eb et ebeesbeestesbeestesbeessesbsensesanens 101
9.5.2 VAL2 Programming INEEITACE.........coiuiiriiiiiiiiieeieeitee ettt ettt ettt e st et e bt sabeesaaesateas 101
LS T U 11 L] AU RO 101
9.6.1 Framebuffer TESES.......oouiiiiiiiiieeec et e 101
9.6.2 ViIdeo4LInUX AP LESE....c.ciiiiiiiiiiiiiiiiic s 102
0.60.3 POSE-FIILET TOST ... eeuteeeieieeiie ettt ettt et a ettt et e s et e bt e st e bt es e e bt en b e e aeent e e et e bt eneenbeeneenbeentennean 103
Chapter 10
Electrophoretic Display Controller (EPDC) Frame Buffer Driver
020 B Ui (0T 1117 510) 3 OO OO 105
10.2 HAardwWare OPEIAtION........couerueriirtietentieteete ettt ettt et ettt e sbe et e s bt eetesteeabeeb e esteebeesteebeenteebtenbeestenbeemtesbeeasenbeenbesbeenteane 106
10.3 SOFEWATE OPETAON.ueiiutieiiiieiieeite ettt ettt et e st et e e et e bt e eabe et eesabe e bt e sate e bt e eabeeabeeeabeeabeesabeenbeesabeenbaessseebeesaseenseenas 106
10.3.1 EPDC Frame Buffer DIivVer OVEIVIEW........ccueiuiiieriiiiierieiierteeteste ettt etce e eeeestesaeeseesseesbeenaesbeeneesaeans 106
10.3.2 EPDC Frame Buffer Driver EXtENSIONS.cccccuioiiiiiiiiiiiiiiiieicieteeceeteee et s 107
10.3.3 EPDC Panel CONfIGUIAION.c...oiiuiiiiiiiieriiieiteeitt ettt sttt st ettt et e st et esateebeesebe e bt e saeesbeesssesaneas 107
10.3.3.1 Boot Command Line Parameters..........c..cecueruieriirieniieieniieiesie ettt 108
10.3.4 EPDC Waveform LOading........cc.ceviriiiiniiiinieieiteeniteteeit ettt ettt st sttt st sttt sae e eae 109
10.3.4.1 Using a Default Waveform File..........ccooiiiiiiiiiiiiieeeece et 109

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 7

Section number Title Page
10.3.4.2 Using a Custom Waveform File.........ccccoiiiiiiiiiniiiiicctcee e 110

10.3.5 EPDC Panel INTHAZAtION.cc.ooiiiiiiiiiiiceeieeeeeet ettt et 110

10.3.6 Grayscale Framebuffer SEIECtION.cc.eiiiiiiiiiiie ettt ettt et naeas 111

10.3.7 Enabling an EPDC SpPIash SCIEEM.......cc.coouiriiiiiiiiiniieieniieteetet ettt sttt ettt 111

104 SOUICE COE SLIUCTUTRouiiuiiiieiiiniieiieitete ettt ettt ettt ettt et e bttt e ae et eae e st et e saeeasesaeesnesbeeasesbeeanesueenseeseenneennenseene 112
10.5 Menu Configuration OPLIOMS.euiruieueruieteeiierte ettt ete st et et e eat e et e e teete e et eseesteestesbeeaeesbeenseabeanseeseenteeseeseeneeseeneesaeenees 113
10.6 Programming INTEITACE.cccuiriiiiiiiiiiiiete ettt ettt eb ettt sae et sbe e e sbeenaesbeen 114
JO.6.1 TOCTLS/FUNCHONS. ...ttt ettt sttt ettt ettt et st et sae et sae e st e st e s st easesaeeanesbeeasesbeenseeseenneeneenneeane 114

10.6.2 Structures and DEfiNeS.coueeuiiiiieiiieeee ettt ettt ettt et ettt s et et bt et sbe et e s bt eteeneens 117

Chapter 11
Pixel Pipeline (PxP) DMA-ENGINE Driver

08I0 B 01 (0T 1117 510) 3 OO S PRI 119
11.2 HAardware OPEIAtiON.....c..couerueriiruirtentieteete ettt sttt et ettt esbe et esb e eet et e eabeebeesteebeesteeb e e bt ebeesbeestesbeeatenbeenbesbeennesbeenteane 119
11.3 SOftWATE OPETAON.eiiuiieiiieitieeite ettt ettt et e bt e et e bt e eabe et e e st e e bt e sate e bt e eab e e beesabeeabeesabeebeesabeenbaeesbeebeesaseenseenas 119
L1301 KEY DAA SIIUCES. ...eeeteiiieeiteeeeeett ettt et et e b e st e s bt e st e sb bt e bt e sbeesbeesbtesabeesanesaneenes 120

11.3.2 Channel ManQ@EIMENL.......c..couiriiiirieiiniteteeitete ettt ettt ettt et sbeete s bt esaeebtesueeatesbeeatesbeestesbeesteebeenaesae 120

11.3.3 DeSCriptor MANAZEIMENL........cccueeriieriierieette et ettt et e et estte et e esbteeabeesbtesabeesabeeabeesbbeesbeesbeesaseessbesabeesssesseens 121

11.3.4 Completion NOUTICALION.eeuiitieieiieit ettt ettt et ettt et et e bt estesbe et e sbeen b e ebeenbeeseenteeneeneeenes 121

T1.3.5 LINMEEATIONS. ¢ttt ettt ettt sttt sttt s b et s b et eb et ea et e bt e bt e et e ebeemtesbe et sbeenbesbeenbesbtebesanens 121

11.4 Menu Configuration OPLIOMNS.cc.utiruierieiriieeieeriee st e stte et et e et estee e bt esteesateesteesabeesbteesbeenbeesabeesstesabeesssessseenbaesseenseenns 121
L1.5 SOUICE COE STIUCLUTR.cetieuiiiieitietiete ettt ettt ettt ettt et et e e et e ea et es e e bt ea e e bt e aeesbeeaeesbeemeeebeembeebeanbeeseenteeseenseeneenseenes 122
L1.0 TUNIE T@SIME..eeueeiieiteeiteieeit ettt ettt ettt ettt et b e ea e bt et s bt et sb e et e s at e bt ea b e bt e et e bt eateeb e et e ebe e bt ebtenbeentenbeenaenbeen 122

Chapter 12
ELCDIF Frame Buffer Driver

I2.1 TEFOAUCTION. ...ttt ettt ettt et b et s b et s bt et bt et eb et eb e et e e bt e sb e ebtesbe e st e sbe e tesbe et e sbaebeeunenbeann 123
12.2 HAardWare OPETAtION......c...eecueeruiietieriteeriteetteeteeeiteeteesiteetee sttt ebeesate s beesabeeabeesateaaseessseeabeesssesabeesasesaseesabeenseenaseesaenssenane 123
12.3 SOTEWATE OPETALION. ..ottt ettt ettt ettt et e e st e bt ese et e eat et e emee et e en et es e e bt esee bt emeeabeemse bt emte st enteeseanteeneenbeeneenteenees 123
124 Menu Configuration OPHONS.couereetiriieterieieeit ettt ettt st ettt ettt etesbe et e eat et e et s ebeebtesbeeatesbeeatesbeeaesbeenaesueensesanens 124
12,5 SOUICE COE SLIUCTUTR.ouiiuiiiietieiiete ettt ettt ettt ettt et e bt et e ae et eae e st et e saeeasesaeesaesbeeasesbeesnesueenneeseenseeneenseeaee 125

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

Section number Title

12,0 UNIE TESEINME e vtenteeiteieeiteteeit ettt ettt ettt ettt et e e sb e e et e bt e et b e et e bt e st e e bt et e ebee et sbte et ebeenaesbsenbeennens

Chapter 13

Graphics Processing Unit (GPU)

I3.1 INEFOQUCTION. c..viiiiieiietieic et ettt ettt et eb e sae et sa s
I3.1.1 DIiVer FEAUIES......c.oouiiiiiiiiiiiiiiiicicicccce e
13.1.1.1 HardwWare OPeration..........ccceeeeruerienuerienteeienteeite st eetesteentesaeeeesaeeneeseeenaesseensesneenneas
13.1.1.2 Software OPEeration........c..cocueruerieriertenieeienieeteeteete ettt st eee sttt esresbeebesaeeaeeae
13.1.1.3 Source Code SLIUCIUIEcceiuiiiiiiiiiiiiiiiiiei e
13.1. 1.4 LiADIary SEIUCKUIE ...c.eeviitieiiitieiieetieie et ettt eeee et ettt et e st et esbeestesbeentesbeentesbeeneeeae
I3.1.1.5 APT REfEreNCES.....cuiiiiiiiiiiiiiiciccccee e
13.1.1.6 Menu Configuration OPONS.........ceeueeieeriieniierie ettt eiee sttt e e
13,2 URIE T@Stuutteuititiete ettt ettt ettt et s h et e s b et e bt et e e h e et e es e et e es e e bt eme e beemeesaeeneesaeensesneenbesneanseeneens

Chapter 14

Wayland

L B Vi (o7 181510)3 OO OO SO PSSRSO
14.2 Hardware OPEIAtiON........cocueruerieriirterieeiteeteeite ettt ettt st et sit et eatesb et e s bt eatesbeeat e e bt esteebeetesbeenbesaeenbeennenueas
14.3 SOftWATE OPETAON.ueeeitieiiieieeitie ettt ee ettt et e bt et e et e e bt e st e e b tesabeesbaeeab e e beesabeebeesabeebeesaseebeesnseenne
14.4 YOCtO BUild INSEIUCTIONS.iitieniiiiieiieiieitt ettt ettt et e ae et e bt et e s bt este s bt et e sbeemteebeenteeseeneeene
14.5 CUStOMIZING WESTOM......eoutiiiriiitiiiienttete sttt ettt sttt ettt ettt et eaeesae e bt e sbeeseesbeesaesbeenbesbeenbesbtenbesbeenseens
14.5.1 Multi display sUppOTted N WESTOM.eeiuiiriieriiieiieiit ettt ettt ettt et sbe e b saeeeaees
14.5.2 Multi buffer supported in WESTOM.c..ceouiitiiiirtieiieiieie ettt ettt
14.6 RUNNINZ WESTOM..c..eiiuiiiiiiiiiiiiieieeit ettt ettt ettt ettt ettt et et b et e s bt et e bt et e e bt e bt eaeesbeemtesbeenbesbeennesinens

Chapter 15

On-Chip High-Definition Multimedia Interface (HDMI)

IS.] INEFOQUCTION. c..uiiiiiiiitieic ettt et sttt et eb e sae et saenes
I15.1.1 Hardware OPETAtiON.........cccuuerieeriieriieeitiesieesite sttt eite et e et ebee bt e bt esabeesbeesabeebeesabesabeesaseeseens
15.2 SOEWATE OPETALION. ... eeutieiiitieiiietieiteet ettt et ettt e s te e te bt et e s bt ea b e ebeente et e enbeeaeentees e e et eseenaeeneesbeeneesaeensenneas
L5201 COT@niiiiice e ettt
1522 VIOt
15.2.3 Display Device Registration and InitialiZation...........c..cecerieririenenieneeieseeescee e

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

Section number Title Page
15.2.4 Hotplug Handling and Video Mode Changes...........ccccouerierieriiriiniirienieeiesieeie sttt st sie e 141
I5.2.5 AUAIO ..ttt ettt st 142
15206 CEC .ttt ettt bbb bbb s bbbttt bt ne 143
153 SOUICE COAE STIUCTUTIR.cueuiiuiiiieiiiiiiiietiete ettt ettt ettt be sttt be st sttt ese et et eaeeseebeeaeeueebesaesnenes 143
15.3.1 Linux Menu Configuration OPLIONS.c.ceevierierieiniienieeieesteeite st e sitesiteesitesieesbeesbesbeesateesseesaseenbeesasesases 145
L B 1 L I APPSR 145
IS4 1 VIOt et e e ne 146
I5:4. 2 AUAIO ...ttt ettt a e sttt 146
[543 CEC ittt et b bbb bbbt b s b bbbttt bbbt 147
1544 HDCP...o.ciiiiiiiee ettt ettt 147
Chapter 16
External High-Definition Multimedia Interface (HDMI) for i.MX 6SoloLite
LO.1 INEFOQUCTION. ...ttt ettt b bt b e s a e eb bbbt ettt et eae e b e bt eaeeb e b sae s esnene 149
16.2 SOFEWATE OPETAON. ...uteiutieiiiiitieeite et ettt sttt e st e bt e et e bt e eabe e bt e s bt eabeesa et enbteeab e e beeeabeeabeesabeebeesabeenbaessbeebeesaseebeenas 149
16.2.1 Hotplug Handling and Video Mode Changes............cceceririirierienienienienieieieieeeteeeee et 149
16.3 SOUICE COAE STIUCTUTIR.ueuiiuiiiiiiiiiiitietiete ettt ettt ettt st e be bbb et e st ese et et eseeseebeeaeeaeebesaesaenes 150
16.3.1 Linux Menu Configuration OPLIONS.ceeuterierieiriienieeiteeteeiee st site st esbtesstesbeesbesseesieeesbeesssessbeesanesnses 151
LT B 1 L I AR OUS P R U ROP 151
TO.A. T VIO ettt ettt ettt bttt ettt e 151
LO0.4.2 AUAIO. ...ttt ettt h ettt eaenee 152
Chapter 17
X-Windows Acceleration
I7.1 INErOQUCTION. c...eiiiiiiiiitc e e b e s b e e b e sa e b eaesae et e saesans 153
17.2 HAardWare OPETALION.ccueeuieiuieuieitieieittete et et et et et e e bt eteeeteeaeesteemeeseeensesseenbeeseenteeseenbeemsabeeneeeseenteeseansesmeenbesneenseeneenean 153
17.3 SOFtWATE OPETALION.eoueiuiiriiiiieiteteet ettt ettt ettt et ettt eat e sbeea e s bt eaee s bt et e s bt ea b et e et e eb e e bt ebtesbeeatesbeentesbeenaesbeebesanens 153
17.3.1 X-Windows Acceleration ATrChItECIUIE.ccuivuiiiiiiiiiiiiiiiiiie s s 154
17.3.2 i.MX 6 Driver for X-WindOWSs SYSIEIM......c..ceouiitiiiiitieiietietietieste ettt sttt sttt s be et eeeete e neeenee 155
17.3.3 1.MX 6 Direct Rendering Infrastructure (DRI) for X-Windows System...........ccccccceueeiiiiviniiniinniniiiinicncnnns 157
17.3.4 BEGL- X LIDTATY ..ottt sttt sttt saenea 158

i.MX Linux® Reference Manual, Rev. 0, 10/2016
10 NXP Semiconductors

Section number Title Page
17.3.5 XOT@.CONT 0T 1.IMX Bttt ettt ettt et b et sttt sb e ae et e bt eine bt et e sbeennenae 159
17.3.6 Setup X-Windows System AcCCEleration 0N YOCTO......cccutertierieriieiiieeieeitesteesit et e st eibe et ebeesbeesreesaee e 161
17.3.7 Setup X Window SyStem ACCEIETALIONeeouiiuiriiitieiietieieetieste ettt ettt sttt ese et eaeeneeene 162
17.3.8 TTOUDIESROOTING ..ccuveiiiniiiiiiieiieieeit ettt ettt ettt e s bt et e sbt et sbeeaesbeenbesbeenbesanens 162
Chapter 18
Video Processing Unit (VPU) Driver
18.1 HArdWAare OPEIAtION.cueiutirtirititieitetieit ettt ettt ettt ettt et e b et e b e eet e bt e et e eb e e st e ebeesteeb e e bt ebtesbeestesbeeanesbeenbesbeenbesbeenteane 165
I8. 1.1 SOFIWAIE OPETALION. ¢ e eutieiiiiiieeite et ettt ettt ettt et e st e et e e sateeabeesbeeeabeesbeesabeenbeesabeenbeesabeeabtesabeebeesaseenseesas 166
18.1.2 SOUICE COUE STITUCTUIE. ... eeutieuiitieuieettete et tete et ettt et et e bt es e et e e s e ete et e s et e beestebeestesbeemsenbeensenbeenseeseenseeneeneeenee 167
18.1.3 Menu Configuration OPtIONS.co.eetirteetirieeierteete ettt sttt stt et ettt ettesteestesbeeatesbeestesbeenbesbeenbesbeensesanens 168
18.1.4 Programming INEETTACE.ccueiiuiiiiiiiieiit ettt ettt ettt e sbe e et e nbe e sabe e bt e sabeenseesanes 168
18.1.5 Defining an APPIHCALION.c.coirtiriiriiiiieietetet ettt sttt ettt ettt et eae et sae bt ebe s b saesnesaenaens 169
Chapter 19
OmniVision Camera Driver
19.1 OVS5640 USing MIPI CSI-2 INETTACE.c..cveuiriiriiriietinierieetetestet ettt sttt ettt ettt st st 171
19.1.1 HardwWare OPeIatiOn........coeeruiiieriertirieeienieete sttt ettt ettt eatesbe et e s bt et e ebt et e ebe e bt eatesbeestesbeentesbeebesanenbens 171
19.1.2 SOFWATE OPETALION. ¢ .t eutieiieiiieeiteetee sttt ettt et e sttt e bt e s tte s bt e sateeabe e s bt e eabeebeesabeenbeesabeenstesateesbeesaseebeesabeenseenas 172
19.1.3 SOUICE COUE STITUCTUIE.eutieuiitieiieettete et tete ettt et et et et e es e et e e st e eteenbesae e be e st ebeestesaeemsenbeensenbeenseeseenseeneenseenee 172
19.1.4 Linux Menu Configuration OPLiONS...........coeeuerieieriierienieieeitenteeiteste et et st ettt ettt sieere bt et eneenaeene 173
LO.1.5 UIE TSttt ettt sttt ettt n e b e b se b e sesaesesaeseeaeneas 173
19.2 OV5642 Using paralle]l INEITACE.ccoeoviiiiiiiiriietirereetetes ettt sttt ettt 174
19.2.1 Hardware OPEIAtiON........coeeruirieriertirieetenteeiteet et ettt ettt ettt et sbeeabe s bt et e ebe et e ebt e bt eatesbeeatesbeenaesbeenaesbnenbens 174
19.2.2 SOIWATE OPETALION. c....eeutieiiieiieeiteete ettt ettt et e sttt e bt e s tte s bt e sate e st e e s beeeabeebtesabeenbeesabeenbtesabeenbtesabeebeesabeenseesas 174
19.2.3 SOUICE COUE STITUCTUIE.eutieiiiteeieettete ettt ettt ettt et e es e ete e s e eteenbesae e beeseebeeseesaeemse bt enseebeenseeseenteeneeneeenee 175
19.2.4 Linux Menu Configuration OPLiONS...........coeeieriieriirieienieieeiteste ettt ettt et sttt te et ebee st eneenaeeaee 175
19.2.5 ULEE T@SE.. ettt sttt b et e s e b seeue e sae st sae e eaeaees 175
Chapter 20
MIPI CSI2 Driver
20,1 INErOQUCTION. ...ttt e st a et 177
20.1.1 MIPI CSI2 DIIVET OVEIVIBW.eeutietieutieieettetienteeutesttetesteeeesteetesteessesseenteeseantesseeteeseaseeneesseeneesseeneesseensensean 177

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 11

Section number Title Page
20.1.2 Hardware OPEIatiOn........cocuerueriiriertinttetentteteettet ettt ette st e eate st et sbteste st e et e ebe e bt ebtenbeeatesbeemtesbeenaesbeensesbnenbens 178

20.2 SOFtWATE OPETALION. .. uteiuiieiitieitteeite ettt ettt et e it e st e stteeabe e beesabeebeesabeebtese bt ebteeaseeabaesabeenbeesabeenseesateesbtesaseebaesnseeseenas 178
20.2.1 MIPI CSI2 Driver InitialiZe OPEration..........ccceeieruerierieriienieeiieieeeiesteeetesteete st etesieessestesteeseesseessesseennesseens 178
20.2.2 MIPI CSI2 Common APT OPEration..........c.cecueiierierieniinieiieiteniteitenie ettt et st ete st te sttt sis et ebee et eseenaeenee 179

20.3 DIIVET FEATUTES.eoueiiiiiiiiieie ettt ettt et ettt e a et sa e sae s et esaesaeessesaeesnesase b e eane b e eanenneennenaeenne 179
20.3.1 SOUICE COUE STITUCTUIE.eutieuiitieieetiete et te sttt ettt et ee e bt eateeteeatesaeetees e e bt eseebeeseesbeemte bt ensenbeenseeseenseeneenseenee 180
20.3.2 Menu Configuration OPTONS.cc.uereeuerterieriteieeit ettt ettt ettt e ettt sbtesteease s bt eebesbeesbesbeestesbeenaeeneenaeenees 180
20.3.3 Programming INEETTACE.c.c.eiruiiiiiiiieeieeie ettt sttt sttt e st e b b e st e ettt esbeesans 180
20.3.4 INterrupt REQUITEIMENES. .. .c.ieuiitieiiitieie ettt ettt ettt ettt et e ea e bt e st e bt eseesbeeseeebeenbesbeenseeseenseeseenseeaee 181

2014 UNIE TSttt ettt ettt ettt et b e e st e s bt e st e s bt e st e eb e enb e eb et e e bt e bt e st e sbeeae e s bt e bt e bt et eb s e bt e bt e bt eba e b enee 181

Chapter 21
Low-level Power Management (PM) Driver

21,1 HardwWare OPEIATION.c..cecuertirtirtietentiete ettt ettt ettt st e sbees e bt eat e s bt eate et e eateebees et ebtente e bt esbeeatesbeeatesbeenbesbeenbesbeenbesbeentenne 183
21101 SOEWATE OPETALION.eiitieiieeitieite ettt ettt et et eb e e sbe e et e e et e e bt e sateeabeesabeeabeesabeeabeessteeabeesabeenseesabeenseenasean 184
21.1.2 SOUICE COUE STITUCTUIE.eutieuiitieieetieie et ettt ettt et eat e bt eateetees e e seeetees e e bt emeebeemeenbeemee bt ensesaeenteeseenseeneenseene 185
21.1.3 Menu Configuration OPTONS.c.uereeuirterieriteteeit ettt ettt ettt et sttt st esteeatesbeeebesbeeabe s bt estesbeenteeneenaeenees 185
21.1.4 Programming INEETTACE.c.c.eiiuiiiiiiiieiieei ettt sttt st e b e st e b b e e bt ebeesabeesbeesates 185
2115 UIHE T@Steuiiuieuietiett ettt ettt ettt ettt et et e st ettt e st e ee et e s e s e en s eseemeeseeseen e es e et e ebeeeeeaensesensensenseneaneeseeneeneesesneeneas 186

Chapter 22
PF100 Regulator Driver

B2 B Vi (0T L1 11 5 (o) 3 OO SOSRPPTO 187

222 HAardWare OPEIATION.c..eeuirtiritirtietentteite ettt ettt et este et e ste et e e bt easesbeeate et e eateebeesteebtenbeebeesbeeaeesbeeatesbeesbesbeenbesbeennesbeentene 187
2221 DIIVEI FEAUIES. ...c..eouiiiieiiieiieit ettt ettt et et st st e sae e sbe et e st eneeaeeaeeeee 188

22.3 SOTEWATE OPEIALION.euientieiieteetteetteite et ettt et e et e bt et te bt eate bt emte st emteeaee bt eaeebeemeesbeemeeabeemte st anteebeanteeseenseeseenseeneenaeeneas 188
22.3.1 REGUIALOT APIS.....eiuiiiiiiiiiieie ettt ettt ettt b et b et b e bbbt e et bt et sbe e et st e b et e b s 188

224 DIIVET ATCHITECIUTE.eouiiutieiiitieititteite ettt sttt ettt ettt ettt et eae et saee et et e b e sase s bt e s e bt easesbe et e ebeemneeaeeneeunenaeennen 189
22.4.1 Driver INterface DELailS.ccouiiieriiiieieeieiteee ettt ettt ettt b e ettt s bt et e bt et e bt et bt e b e enee e eeee 189
2242 SOUICE COUE STIUCTUIE.euiiutitiiiirttete ettt ettt ettt ettt ettt ettt et eb e et ebee bt s st esbeesbesbeeebesbeeabesbeenteebeentenne 190
22.4.3 Menu Configuration OPLIOMNS.cc.ueevuieruitriteerieeiee st etee sttt et e sttt e bt e ssteebeesabeebtesabeesbeesaseebeesaseebeesnseenseesasean 190

i.MX Linux® Reference Manual, Rev. 0, 10/2016
12 NXP Semiconductors

Section number Title Page

Chapter 23

CPU Frequency Scaling (CPUFREQ) Driver

B2 T B Vi (0T L1 17 5 (o) OO OSSO OO ST SUSRSOSRRPPO 191
2311 SOFEWATE OPETALION.euiiuiiriiiiiriteieeterte ettt ettt ettt ettt es e sb e et s bt e tesb e e bt ebt e bt ee b esbeeatesbeestesbeentesbeenaeeaees 191
23.1.2 Source Code SIIUCTULE.c..couiiiiiiiiiiiiitiie ittt st s sa e 192
23.2 Menu Configuration OPLIONS.coueouerteteieieieiteiieit ettt sttt ettt ettt et st eseeseebesae st e e b e sbe st et et e s esensenteneeneeueeueeueas 193
23.2.1 Board Configuration OPTIONS.cc.eetertirtirtieienteetenieete sttt sttt sttt sttt stt et e ebee bt eaee bt estesaeestesaeeneesbeenaensean 193

Chapter 24

Dynamic Bus Frequency Driver

241 INEFOQUCTION. c..viiiiieiitiite sttt ettt et b bt b et b e s a e sb et e s ettt et eaeebeenesueen e b sae e b ene 195
o O B O TS5 15 () FO OO OO PRTRPRRPR 195
24.1.2 SOFtWAIE OPETATION.cueiuiiuieiieiieiietiettett ettt sttt et ettt et eat et eae et e bt bt sa et besa et e et e s ens et enteseeaeeueeueebe b nee 195
24.1.3 SoUICe COde SIIUCLUIE.cuviiiiiiiiiiiiiiiiiietiie ettt sttt et et eb e sae b saeas 196
242 Menu ConfigUration OPLIOMNS.ccueeiuuiereeriieeieerite et esite et e st teebeestee bt esttesabeesbteeabeesbaeasbeebeesabeesstesabeesssesabeenbaesseenseenns 196
24.2.1 Board Configuration OPHONS.cc.eeuertiruerieieieteteeeit et ettete st sttt st sttt st ee et est st eueeseeseeseebesaesaeesesnensens 196

Chapter 25

Thermal Driver

25,1 IETOQUCTION. ¢ttt ettt ettt et e sttt e st e eb e ea et e h e et e e et e bt ea e e bt es e e bt em b e bt emte bt enteeseeneeeseenbeeneenbeemtesaeensennean 199
25.1.1 Thermal DITVETr OVEIVIEW.......cciiiiiiiiiiiieiiiiiieieiiet ettt ettt st eae 199
252 HArdWAare OPETAtION.covteruieritieriieettentte et eatteeteestte sttt esbeesateebeeeabeebeesabeeaseesateestesaseenbeesaseeabeesabeanseesabeenbaessseenbeesnsennne 199
25.2.1 Thermal Driver SOftWare OPEIatiOn.........cc.eiueeruirtierteetienteeiiertteie st etesteestesteeteeseeteeseesteeseesseentesseeeesaeenaesaees 200
253 DIIVEI FRATUTIES. ...ttt ettt et e b e bbb b sa et b e ettt ateae e s eae b saeeue s 200
25.3.1 Source Code SIUCTULE.c.occuiiiiiiiiiiiiiitiie sttt st s sa e 200
25.3.2 Menu Configuration OPTIOMS.eueeueeierueeieeieeteetterteette et estesteeteeteetesaeesteeseesteeseesseenbesseenseeseenteeseensesaeenaeenees 200
25.3.3 Programming INTEITACE.cccuiviiiiiiiiiiiiicet ettt sttt sttt 201
254 UL TESE. ittt sttt e b e b e st e e e et a et ettt e a et 201
25.5 Device-SPecific INFOIMAtION. ... c.iiuietieieit ettt ettt ettt e e ettt e bt s st e beesee b e es s e et e enbesbeeneesseeneeenee 201

Chapter 26

Anatop Regulator Driver

20,1 INETOAUCTION. 1.ttt ettt ettt ettt e b e et et e st e et e ea et eh e e bt e ae e bt e et e bt em e e bt eat e b e emteebeenteeseenseesee st eneenbeemeesneeneennean 203

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 13

Section number Title Page
260.1.1 HardwWare OPeIatiOn........cocuerueriiriirterieetenttet ettt ettt ettt ettt et s bt ebe st e et e ebe e bt ebe e bt eatesseentesbeenaesbeensesbnenbens 203
20.2 DIIIVEL FEATUIES. ...ttt bbb et ea e e 204
20.2.1 SOFEWAIE OPETALION.eueeuiieeieteeiieeteete ettt ettt et e et e bt es e eteeseeebeeneeeae e aeeseebeesee st ente bt anseeseenteeseensesneenseenees 204
20.2.2 REGUIALOT APIS.....eiiiiiiiiiiieiee ettt ettt sttt st b et b et b et b et b et ebeena e st ae et e b s 204
26.2.3 Driver Interface Details..........cccouiiiiiiiiiiiiiiiiiicc e 205
20.2.4 SOUICE COUE STITUCTUIE.etieuiitieie ettt te sttt ettt et eat et eateeteente st e e et es e e bt eseebeemeeabeemeeabeensenbeenseeseenseeneenseene 205
26.2.5 Menu Configuration OPHONS.cccuerueeiirterieriteteriterte ettt ettt ettt ettt este st e stesatesbeeebesbeeabesbeestesbeenaeeneenaeenees 205
Chapter 27
SNVS Real Time Clock (SRTC) Driver
271 INEPOQUCTION. ..ttt ettt et ettt et h bt b et b e s ae sttt et et eae bt eaesu e b e b saesn b ene 207
27.1.1 Hardware OPETALION..........eeueeruieriteriieeteeitteeteeeite et esttesteestteebeesbeesabeesseesabeesabeanbeesbbeenseenseesabeenstesabeessnesseens 207
27.2 SOTEWATE OPEIALION.eueeutieeieteeiteete ettt ettt et e et e bt et te bt eate et e em e e et e enteeseenbeesee bt emeeabeemeeabeemte bt enteebeanteeseenseeseenseeneenaeeneas 207
2721 TOCTL.ctietieteeee ettt ettt ettt bbb e 207
27.2.2 Keep Alive in the POWET Off STALe......ccuiiiiiiiiiiiiiiie ettt ettt ettt et e e aee e 208
27.3 DIIVET FRATUIES.eeeitieiietieie ettt ettt ettt ettt ettt et ea et e st et e ea e e eb e emeeee e emteseeemtesbeembeebeenbeebeenbeene et e eneenseeneenaeenee 208
27.3.1 SoUIce COde SIIUCLUIE.c.eiuiiiiiiiiiiiiiiiietiie sttt st sttt et eb e sae b saeas 209
27.3.2 Menu Configuration OPLIOMNS.c..ueeuieritrriieniieetee st etee sttt et e sttt esbeessteebeesabeestesateesbeesaseenbeesaseebeesaseenseesssean 209
Chapter 28
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
28.1 ALSA Sound Driver INIrOQUCTION.coiiiiiiiiiiiiiiiicieicceee et 211
28.2 SOC SOUNA CAIA ...ttt ettt ettt ettt et e s bt es e e bt em e eb e eat e eh e et e es e e bt satesbeemeesbeemseabeenteebeenseeseenseeneeneeenee 214
28.2.1 Stere0 CODEQC FEAUIES.........coeiiiiiiiiiiiiiiiitiiesiestetetet ettt ettt sttt eae e s sa s 215
28.2.2 5.1 Codec Features 1. IMX 25, 1.MX B, .e ettt e et e e e e e e e e e e e e e e s e s e ssasasabaaaaeneeees 215
28.2.3 Bluetooth Codec Features 1.IMX35.......couiiiiiieiieee ettt ettt et sb et see et et aesbeenaesanns 215
28.2.4 4-Channel ADC Codec Features 1.IMX25.......cc.coiiiiiiiiiiiiiiiiecieeee et 216
28.2.5 Built-in ADC/DAC Audio Codec Features 3780.........cccoviiiiiiiiiiiiiiiiiiiiiciciciciccceceeese e 216
28.2.6 Multi-channel Codec FEALUIE.cc.uiuiriiiieieie ettt ettt ettt ettt et e bt et e seeeneesbeenaesaean 216
28.2.77 5.1 COARC FRALUIES.ccueiuiiiiiiiiiieietet ettt ettt e eb e st saeaeae 217
28.2.8 7.1 Audio Codec FEatUres........c.cciviiiiiiiiiiiiiiiiiiicc s 217

i.MX Linux® Reference Manual, Rev. 0, 10/2016

14

NXP Semiconductors

Section number Title Page
28.2.9 Bluetooth Codec FEAUIES.........ccoociiiiiiiiiiiiiiiiiesctce ettt sttt 218
28.2.10 AM/FM COdeC FEATUIES.coiuiiiiiiiiiiiiiiiiiiiciiitiie sttt 218
28.2.11 4-Channel ADC CoOdeC FEAUIES.cc.eeuieriieieiieierit ettt sttt et e sttt ettt e sbeeseeseeeneesbeensennean 218
28.2.12 Built-in ADC/DAC Audio Codec FEAtUIES.........c.coueiiiiiiiiiiiiiiiiiecctecteieeeeeteteee et 218
28.2.13 Sound Card INfOrmation..........ccccuiiiiiiiiiiiiiiii s 219

28.3 HAardware OPETAtION.ccueieureuirieiietieieete ettt sttt ettt ettt et e e ateat et b e bt sa et e b st e e et et eseeseeaeeateueebesbesaeetesbesaesaennennens 219
28.3.1 Stere0 AUdio CODEC.......cooiiiiiiiieiiei ettt ettt ne 219
28.3.2 7.1 AUAIO COURC.....uiuiiiniiiieiiicteeeec sttt ettt 220
28.3.3 5.1 AUGIO COUCC....eneitieiietiee ettt ettt ettt et e et e a e e bt e et e bt e st e ebeembeebeen b e ebeenteebe et e eneenbeenee 221
28.3.4 4-Channel ADC COURC........cueuiruiiiiiiiiiiiiiieiiesie ettt sttt sa s 221
28.3.5 BIUELOOth COUEC......cuiiiiiiiiiiiiiciic e e 221
28.3.0 AM/EIM COURC.iiiuiiitirieiiitetste ettt ettt sttt sttt b et b et b et b ettt ae e b e 222
28.3.7 Built-in ADC/DAC COAEC 3780.....cecuirieuiriiiirieiiiiietieetenteientettsteitseet sttt s s es et esae e aesesseneenes 222

284 SOFtWATE OPETALION. .. ueeiuiieritieriteeite ettt ettt st et e et e stteeate e bt e sabeebeesabeebeese bt ebteeabeeabaesabeeabeesabeeastesateenbeesabeebaeenseeseenns 222
28.4.1 ASOC Driver SOUICe ATCHITECIUIE.c.ieiitieiirtieie ettt ettt ettt ettt et e et e te st e sbeeseenbeeseesbeennenaeans 222
28.4.2 Sound Card REZISIIAION.c..covuiiiiriiiieitieititeet ettt ettt ettt et b ettt et be et sbe et st enaesaeenaes 227
2843 DEVICE OPCIN..cuutiiiiieiiieiieeie ettt ettt ettt ettt e bt e bt e st e bt e s et e e bt e sat e e bt e e at e e bt e e a b e e bt e shb e e bt e shb e e bt e bt e eabeeeaneeates 227
28.4.4 DeVICetree BINAING.......cccuiiuiiiiiieie ittt ettt ettt e e e a ettt e bt et bt et e bt en e bt et e bt et e ene et enee 228
28.4.5 Menu Configuration OPHONS.cccuereeriirterierieteeit ettt ettt ettt et ettt st e sae et e bt eebesbeeabesbeestesbeenaeeaeenaeenees 228

28.5 UL TSEo ittt sttt b et e e e a et ettt h et 229
28.5.1 Stere0 CoAEC UNIE TESE....c..eeuiitieietieie ettt ettt ettt ettt ettt e bt e et e aee bt sa e e bt esee bt entesbeenbeeseenteeseenbesneenaeeneas 229
28.5.2 7.1 Audio Codec Ut TSt ..c.ciiiuiiiiiiiiiiiiiiti ittt sttt s 231
28.5.3 AM/FM Codec Uit TESL.....coucuiiiiiiiiiiiiiieicieieeeesee ettt 232

Chapter 29
Asynchronous Sample Rate Converter (ASRC) Driver

201 REVISION HISEOTY . ceiutiiiiiiiieiie ittt ettt sttt e bt e bt e e st e bt e sab e e bt e sa bt e bt e sab e e beesabeeabeesabeenseesabeenbeenanenn 233

20.2 INETOQUCTION. 1.ttt ettt ettt ettt ettt et et et e bt ea e bt e st e et e ea et eh e e et e aee bt ea e e bt em e e bt ease bt emte st emteeseeneeeneenbeeneenbeemeesaeensennean 234
20.2.1 HardwWare OPEIAtiON........cocuerueriiriertintietentteteet et ettt et st eate st et s bt etesb s et e ebe e bt ebt e bt eatesbeesaesbeeaesbeesesbnenbens 234

20.3 SOFtWATE OPETALION. .. uveeutieritieiteeiteette et ette et et e st e stteeate e beesabeebeesabeebtesa bt ebteeaseeabaesabeenbeesabeeseesateenbeesabeebaesnseeseenas 235

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 15

Section number Title Page
29.3.1 Sequence for Memory to ASRC t0 MEIMOTY....c..couiriiriiriiiiiniieieeieeie ettt ettt ettt 236
29.3.2 Sequence for Memory to ASRC to Peripheral............cooiiiiiiiiiiiiiiie e 236
20.4 SOUICE COUE STIUCTUTR.etieuiietieieetiete ettt et e e e st e e et e et e eate et e ea b e et e ea bt es e e bt ea e e bt eaee bt emeesbeemseabeenbeebeenseeseenteeneenseeneeneeenee 236
29.4.1 Linux Menu Configuration OPLiONS...........coeeuerierierieiiinietieitenit et ste ettt ete st ete st et st esbe bt ebesbeenaeeseenaeenee 237
20.5 DeVICELIEE BINAING....cciuiiiiiiiiiiiiiiie ettt ettt e b e st e e b e s a bt et e e s et e bt e sht e e bt e s abe et e e sabeeabeenbbeebeenaeenn 237
29.5.1 Programming Interface (Exported APT and IOCTLS)......cccceeiririririniniinienieieteteeereeeeee et 238
2000 UINIE TEST.ueiiiiiiieieiitecee ettt sttt et et et b bt bbb b et b e ettt ettt et ea e s ea e 239
29.6.1 Memory-to-ASRC-O-PEeriPheral..........cccooiiiiiiiiiiiiieieceeeet ettt ettt et st 239
29.6.2 Memory-t0-ASRC-LO-MEIMOTYcocirtiriiriirtietitentetetet ettt ettt ettt ettt sae st et sae sttt e et et ebe et eueeaee 240
Chapter 30
The Sony/Philips Digital Interface (S/PDIF) Driver
30,1 TIEOAUCTION. ...ttt ettt et ettt et ettt e st e et e eueem e e eb e eas e e bt ea b e es e embeea e et e em e e bt emeeebeemeesseentesseensesbeenseeseenseeneansens 243
30.1.1 S/PDIEF OVEIVIEW....c.ecviuietiietiieiinieiinteitsteet ettt ettt ettt ettt ettt ettt et a ettt s s es s b et st s st st st nneneesesneneanenes 243
30.1.2 HAardware OVEIVIEW........cccccuiiiiiiiiiiiiiiiiiiiiii sttt st et 244
30.1.3 SOFEWAIE OVEIVIEW....cutiiuietieiietieteitteit et ettt et ee e bt e st e ste et e st e eaeesbeeateebeenteeseenbeeseenteesee bt eaeenbeemeesaeeneesneensennean 245
30.1.4 The ASOC LAYRT.....eoiiiiiiiieiieieet ettt ettt sttt sttt sttt sa bt e bbbt e bt et e st e bt e st e sbe e et sbeenaesbeentenaeen 245
30.2 S/PDIF TX DILVET....c.ccuiiiiiiitiieiirieiieece ettt ettt b et a ettt a et a e s en e enenens 245
30.2.1 DIIVET DIESIN. .ttt ettt et b et h et b et e ae e bt e ae e bt e st e ebe et e sbe et e e bt et e eb e et e eneeteene 246
30.2.2 Provided USer INTEITACE.cc.couiiiiiiiiiiiiiciciciccee ettt et 246
30.3 S/PDIF RX DITVET....cuiiiiiiiiiieiiiicirce ettt a e enes 247
30.3. 1 DIIVET DIESIN. ittt ettt ettt h et h et e bt e et e he e bt e he e bt e st e ebe et e sbeenteebe et e ebeenbeeneeteene 248
30.3.2 Provided USer INTEITACE.cc.couiiiiiiiiiiiiiciciciccec ettt st 248
30.4 S0OUICE COE STIUCTUTIEooueiuiiiiiiiiiiiiiiiiitiee et st s e et s e a e easea s enesae e nes 250
30.5 Menu Configuration OPTOMS.ccueiueetertieteetieteetierteettesteetteeteetesseetesteestesbeenbesstenseeseenseaneaseeneesseensesaeensesseensesneansesneans 251
30.0 DeViCe TTEE BINAINGS...c..eeutiiieiiiriiiiiieee ettt ettt sttt e b et b e et e b e st e sbe e st eb e et e satesaeestenbeenaenueas 251
30.7 INterrupts and EXCEPLIOMNS. ... cciuuiiiiiiiiiiieeite ettt ettt ettt e bt e st e e bt e sat e e beeeabeeabeeeabeeabeesabeebeesateenbeesaneenne 251
30.8 UNIt T@St PrOPATALION.cetiiuiiiieieitieie ittt ettt ettt et e bt e b e sh e et e s bt et e ebee bt es e et e ene e bt eneesseentesaeensesseensesneansesnnans 252
B0.8.1 TX ST STEP.uteuteeutieteete ettt ettt ettt ettt ettt et eb e et ebt e bt eat e s bt ea b e s bt e st e s bt e st e e bt et e bt et e bt e bt eht e sbeeatesbe et e sbeebesanens 252
B0.8.2 RX LSt SEOP . tteutteeuteetieeiteeite ettt et e sttt et e et e et e st e e bt e sht e et e e eht e e bt e sabeea b e e s ab e et e e eh bt e bt e eht e e bt e eabe e bt eshbeeabeesabeebeenaees 252

i.MX Linux® Reference Manual, Rev. 0, 10/2016

16

NXP Semiconductors

Section number Title Page
Chapter 31
SPI NOR Flash Memory Technology Device (MTD) Driver
) I B 615 (o4 11 (e o) | OO OO OSSR UTO SRR PRSPPSO 255
31,11 Hardware OPETatiON.c...coueeieruirtirieetinieete sttt sttt sttt ettt ease bt estesbeestesbe e et sbtenaesatesbeeasenbeeasesbeensesbeennenne 255
3112 SOFEWATE OPETALION.ceueiiuiieiieeitierite et ettt et e et e et e et e ebeesiteeteesateebeeeate e bt e sabeeabeesateenseesaseenbeesnbeenbeesabeenseenas 256
31.1.3 DIIVET FRATUIES. ... ettt ettt et e h et e s b et e e a e e bt e st et e e s e e bt en e e bt eneesaeeneesseeneesaeensesnean 256
31,14 SoUTCE COA@ SIIUCLUIE.eouiiiiiiiieieieiet ettt sttt et ettt et e saeebe e saens 257
31.1.5 Menu Configuration OPUOMNS.eeiuieriteriieiieeteestte et etee st e sttesiteesttesite e beesabeebeesbeesseesateessaessbeenbeesseesseesas 257
BL.1.0 UL TS Tu ettt ettt ettt ettt ettt ettt et e at et e s a e et e e ae e bt s et e bt es e e bt em e e bt em e e et e em e e bt enteeaeeneesneenbesaeenbeenean 257
Chapter 32
MMC/SD/SDIO Host Driver
32,1 REVISION HISEOTY . ..cutitiiiiiiiiiieteieie ettt et et e b ettt et b b et et s et ettt ebe e b eueeueebeebesaesaenes 259
322 INEFOQUCTION. c.etiiiiictiteite sttt ettt et h b bbb b st et s et ettt eae e bt nesa e b e b e sn b ae 260
32.2.1 Hardware OPEIAtiON.coiuuieiuierieriieniieeteesiteetee sttt ebe e st e ebeessteeabeesbaeebeesateeabeesstesabeessbeeabeesbbeenbeenseesbeenanesnne 261
32.2.2 SOFEWAIE OPEIALION. ... tieutiitieteeiiete ettt ettt et et e et eae e bt estesaeea e e s bt eeteebeenteebeamteeseanteesee bt emeesaeemeesseensesneensenneans 263
323 DIIVEI FRATUTIES. ...ttt et b b bbb b st et be ettt at e bt st eae b eueea e 265
32.3.1 SoUrce COode SIIUCLULE.ccuiiiiiiiiiiiiieie ettt sae b 266
32.3.2 Menu Configuration OPLIONS.cc.eeuertieieetieieetientteiesteete st eteste e te st e e teeseenteeseenteeneesbeentesaeentesseensesseensesseens 267
32.3.3 DeVICEIIEE BINAING...c..eitiiiiiiiiiiiiiieieetteeet ettt sttt ettt b ettt sae et bt et bt e e sbeen 268
32.3.4 How to add @ SDHEC SLOt SUPPOTIL....cuveitieriiieiieeieeitieete et sttt sttt e sttt e sbe et esabeesaeesabeesseessbeesbaesseenseens 269
32.3.5 Programming INEEITACE.ccueiuiiiiiiieiiet ettt h ettt e a ettt e bt e et eate bt eatesaeeneeeaean 270
32.3.6 Loadable MoAUIE OPEIatiONS.ccoueruteriertertieienteetenieete sttt sttt site sttt sbeeete st e eatesteestesaeenaesbeenaesseesueensenueas 270
324 UDIE TOSE it ettt 271
Chapter 33
NAND GPMI Flash Driver
3301 INEFOAUCTION. oottt s e s se bbb 275
33.1.1 HArdWare OPEIatiON.c.eeiueeuieruieienteeieetteteettetesttesteett e bt esee s bt este st emteeseenteeseensesaeensesmtesbeemsenbeentenseensesseenseane 275
33.2 SOFEWATE OPETALION.eoutiiiiiiiiieiiiite ettt ettt ettt ettt ettt e at e s bt et e s bt esbe s bt e st e sbtea bt e bt et ebt et e ebtesbtemtesaeemaesbeenaesbnenbesbnens 275
33.2.1 Basic Operations: REAA/WIILE......cc..iiiuiiiiiiiieieiiee ettt sttt st ettt be e et e bt e st esaaesanes 276
33.2.2 Backward CompPatiDility........cceeoueiuieiiiieiiet ettt sttt et ettt ettt et sae et she et sneebeeneens 276

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 17

Section number Title Page
33.2.3 EITOT COITECHION.uiuiiieiiiieiieii ettt ettt ettt et bbb e b s a ettt e eneene e 277
33.2.4 Boot Control BIOCK Mana@emeENt.ceiuieiiieriiiiiienieeiiesteeite sttt sttt ete et e st e bt e sabeesbeesabeenbaesabeenbeenas 277
33.2.5 Bad BloCK HandIing........cccuoiiiiiiieiieeeet ettt ettt ettt et e bt et sb e sae e e enean 278
33.2.6 Special NAND SUPPOITINE.cuertirtiiiitietietteteettete ettt ettt ettt et st e e st e st e ae et e ebe e bt estesaeestesbeennesbeennesanens 278

33.3 S0UICE COE STIUCTUTR.cueiuiiiiiiiiiiiiiitiitiet ettt st st a e s e eas b saesaenes 278
33.3.1 Menu Configuration OPLIONS........co.eeuertieteetieteetienteeieesteete st etesteete st e e teaseenteeseenteeseesseentesseentesseesesseensesseans 278

Chapter 34
SATA Driver

34,1 HAardWare OPEIAtiON.ceueitieuiertieteetiete et et ettente et testeeaeesteeste st e eaeeabeeate et e emteeaeenteestenseeseenbeemeeeseensesseensesbeenseaseenseeseentenns 281
34.1.1 SOFEWATE OPEIALION. «...eeeeuiiiiiiieiiteteeiteet ettt ettt ettt e bttt eb e bt et s bt es b sbeest e e bt et ebe e bt eatesbeemtesbeemsesbeennenbeens 281
34.1.2 Source Code Structure CONTIUIATION.eirteirtieiieriiteiterite ettt ettt ettt et ettt e st e st e sibesabeesbeeebeenaees 281
34.1.3 Linux Menu Configuration OPLIONS.cc.eiuteuirieriertiertteienteetie st site st ete st eite st eseesteeneesseetesaeetesseensesseensesneas 282
34.1.4 Board Configuration OPtIONS.c..eeruerteriertertietentteiteeteete ettt ste et ste et st et e s bt eate s bt esbeebee bt eseesaeeseesbeenseniean 282

342 Programming INEETTACE.ccueiiuiiiiiiiieee ettt sttt e et e b e et e e bt st e e bt e sab e e sabeeabe e bbeenbeebee s 282
34.2.1 USAZE EXAMPIE2......oiiiiiiiiiieitiee ettt ettt et s h et s he et s bt et e e bt et e e bt et e es e e bt eae e bt enteeaeentesheenbeenean 282
34.2.2 USAZE EXAMPIC.....iiuiiiiiiiiii ittt sttt ettt ettt b ettt a ettt sbe e naean 283
34.2.3 SATA tCMPETALUTE MOMILOT .. ccuvtetreetieriteeteesiteeteestteeteestteebeesstesateesuteeseesstesnseenstesabeesseesabeessseenseensaesseenseess 284

Chapter 35
Inter-IC (I12C) Driver

35.1 INEFOAUCTION. ...ttt e a b sh bbbt e b e e b s 285
35.1.1 T2C BUS DIIVET OVEIVIEW......eetiiiietieiietieiieetteie ettt et et ettt et be et e s bt e s e sbeenteeseenbeesee bt eatesaeeneesbeensesneensenneans 285
35.1.2 T2C Device DITVET OVEIVIEW......c.oiuiiiiiiiiiiiiiiiiitiieiestcteetet ettt st sttt e 286
35.1.3 Hardware OPEIAtiON.cccuuiiruierieritieniieeteesiteetee sttt ebeesite et e ssteeabeesbte e bt esbteeabeesseesabeesabeeabeesbbeebeenseesbeenanenane 286

35.2 SOFEWAIE OPETALION.eeeitieiietieieiteete ettt ettt et ettt et e e atesteeaeesaeeaeeebeeseeebeembees e en bt es e et e eneenbeeneeebeentesaeensesseensesneansesseans 286
35.2.1 I2C Bus Driver Software OPeration...........coeeruereerierienienientieitenieetesie ettt ete st ete st et st et sbsebeeeeesaeeseesaeenee 287
35.2.2 I2C Device Driver SOftWare OPEIatiOn........ccueeueeriieriueeniienieeniesieesite et e sitesteesttesbeesseesabeesbteseeesbeesseenseens 287

35.3 DIIVEI FEALUIES. ...ttt ettt bt et h et e b e a e et et e e et e bt e et e ebeemeeebeemaeebeembeebeenbeeneenseeneenaeenee 287
35.3.1 S0UTCE COA@ SIIUCLUIE.eouiiiiiiiieieieiet ettt sttt ettt ettt et e sae b snen 288
35.3.2 Menu Configuration OPUONS.cevuteriteriiaiteeteette et ete et estee bt esbtesite e beesabeebeesabeesbeesateesbeessseenbeesseesseesas 288

i.MX Linux® Reference Manual, Rev. 0, 10/2016
18 NXP Semiconductors

Section number Title Page
35.3.3 Programming INTETTACE.cccueiuiiiiriiiiieiieieee ettt ettt sttt et e sae s 288
35.3.4 INterrupt REQUITEIMENLS.coiutiiiiiriiieiieiteet ettt ettt et ettt e s bt et e s bt e st e e ebeesabeesatesabeesbbeenseenbaeeaseenseens 288
B5.4 UNIE TSttt ettt ettt ettt ettt et e eae e e bt em e e e bt ea s e e bt em e e es e mt e eh e et e ene e bt emteeh e enteehe e beeh e et e eh e e bt ente bt enteeaeenee 289
Chapter 36
Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver
30.1 TITOAUCTION. ...ttt ettt ettt et ettt ettt e st e et e s ae e st e e bt eae e e bt ea b e es e embeeaeem et eme e bt emeeebeemeeeseenbesseensesbeenseeneenseeneensens 291
36.1.1 Hardware OPEIatiON.......c...coueetiriirtirieetinieete sttt sttt eit et ettt ettt eatesbees e e sbee bt sbeenteeatenbeeasenbeeasesbeensesbeenneane 291
30.2 SOFIWATE OPETALION. ... e iutieiieeitieeiteetee ettt et e sttt et e ettt et e estteeabeesbteeabe e bteeabee bt e eabeessbeeabeesbbesabeebaeeabeenstesabeeseesabeensnesnbeennes 292
36.2.1 SPI Sub-System in LINUX OS......cooiiiiiiiiiiineieieetetet ettt sttt ettt ettt et s e 292
36.2.2 Software LIMILAIONS.ccoiiiiiiiiiiiitiiieitetet ettt e s e 292
360.2.3 StANAArd OPETAtIONS. ...ccueeruiiitieriteette ettt etee st et e sttt e bt e eate e bt e saaeeabeeshteeabeessbeeabeesaeeeabeesabeenbeessseebeenseeebeenanesane 293
36.2.4 ECSPI Synchronous OPEratiOn..........c..ceueruerieueierteieieteieeiieieseeestesessessesessesessessenseneeseesesuteseesessessessessessenses 293
36.2.5 SPIENOR ACCESS....ueiuiiiiiiiiiiitiiteitt ettt et st sttt ettt et b e b st et saesa e e 293
36.3 DIIVEI FEATUIES......oviiiiiiiiiii et s st 293
360.3.1 SOUICE COA@ SIITUCTUIE.c..iiuietieiietieteet et etiet et ettt e bt et e sbeeeesbe et e s bt en b e ebeenbeeseenbeesee bt eaee bt eneesaeeneeseeensennean 294
36.3.2 Menu Configuration OPLIONS.co.eeveriieiirtiertieitete ettt ettt ettt sttt sttt e bttt ebee s bt estesbeestesbeensesbeensesanens 294
36.3.3 Programming INEEITACE.iivuiiiiiiiiieiieet ettt et ettt sb e sttt e st e e s bt e s b e bt e ebeenaee s 294
36.3.4 Interrupt REQUITEIMENES.ccueruiititiieteteieietet ettt ettt s st sttt et eat bt et eae bt be s b sae et nnenaens 295
304 UL TSttt sttt ettt et e b bt bbb b st b e b se ettt ettt eaeea e 295
36.5 Device-SPpecific INTOrMAtION.ecviiiiiiiieeitectt ettt sttt s bt e st e e bt e bt e sab e e bt e sabeesstesabeesbbesnneenne 296
Chapter 37
FlexCAN Driver
371 REVISION HISTOTY...oiutiiiiiiiiiiiieete ettt ettt e b e e bt e bt st e e e bt e e at e e s bt e eab e e bteea bt e stesabeesabeeaseesbbeenbeenneean 297
372 DIIVEE OVEIVIEW .. .euiiiieiiiitiete ettt ettt ettt et et ekt e st eeteeae e e bt e st e eeeemeeeaeemsesseemsees e enbeeaeensees e et e en e e st eneeebeentesaeensesaeensesnean 298
37.2.1 Hardware OPETatiON.......c...coueeuieriirtinieetinieete sttt sttt sttt ett et eate bt eatesbeestesbe e tesbee bt s st enbeeasenbeentenbeensenbeennenne 299
37.2.2 SOFIWATE OPETALION.ceueieutieiiertterite et e sttt et e sttt et e st e ebeesabeebtesateebeesabeea bt e sabeeabeesabeesseesaseenbeesnseenbeesabeenseesas 299
37.2.3 SOUICE COUE SIITUCTUIE.c.tiiutetieiietieteet ettt ettt ettt e et e e e sbe et e sbe et e s bt ea b e ebeenbeeseenbeesee bt eaee et eneesaeenseseeensesnean 300
37.2.4 Linux Menu Configuration OPLIONS.......c..ceuteiirieriinieniintene ettt ettt ettt ettt et sbee et sbeeneesbeenaesaees 301
37.3 UDIE TOSE ittt 302

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 19

Section number Title Page
Chapter 38
Media Local Bus Driver

38,1 REVISION HISTOTY ... ettt ettt ettt ettt e bt e et e bt e et e bt eete bt e et e bt em b et e emeeeseenteeseentesaeenbesneenaeenean 303

38.2 INIOQUCTION. ...ttt et et b b s a e et b e s bbbttt et eae b e aesa e b b saesn e ae 304
38.2.1 MLB Device MOGUIE........ccocouiiiiiiiiiiiiiiiici s 304
38.2.2 SUPPOIEA FEAUIES.ceuiiiieiiiiietieiet ettt ettt et ettt et st e bt e st e b e e st e bt eneesbeeneeeseeneesseensesaeenseenean 305
38.2.3 MLB DIIVEI OVEIVIEW.....uiiiiiiiiiiiiiiiiiieieietet ettt st sttt et e st s sa e 306

38.3 IMILB DIIIVET...eiuiiiiiiietiete ettt h et s et 306
38.3.1 MLB DIiVer ATCRItECIUIE.cutiuiiitieieitiete ettt ettt ettt ettt et ettt e s aeete et ebesbe e besbe e beessenbeeseenbeeneenseenes 306
38.3.2 SOFtWATE OPEIALION.evtiuiiiiiiiieiteteeit ettt ettt ettt ettt et ettt b et e s bt e st esb e e st e e bt et e ebe e bt eatesbeemtesbeemtesbeennenieens 307

384 DIIVEI FLES...oiiiiiiiiiiii e 309

38.5 Menu Configuration OPLONS.c.coueeterterterteteieteitett et ettt ettt st ettt et et eat st e st ebeebesaestesbesae st et ensensensenneneeneeseeseeae 309

380 UIIE TSt ittt ettt ettt et b bbb b sh e s h e b e ettt et sae et 309
38.0.1 PIEPATALION.eiutieiiieiieeiie ettt ettt ettt et e et et e s et e e b e s at e e bt e e at e e bt e e ab e e bt e sabe e bt e eat e e b e e eab e e beesabeebeena 310
R I A N TN AN 1<) oSO RPRRSRTRI 310
3803 CASLS ittt et e h e bbb b sttt et ettt eae et sae e 311

Chapter 39
CHIPIDEA USB Driver

30,1 REVISION HISTOTY . c..eeutiiiiiiiiiieie ittt ettt ettt s b et s b et bt e be e et e bt e e b e bt ea b e bt eat e bt es b e ebeemtesbeentesbeenaeeaeen 313

392 INEFOAUCTION. ...ttt e e a b s s bbb d e bbb s 314
39.2.1 ATCHILECTUIAl OVEIVIBWiiiiiuiiitieieitiete ettt ettt et sttt st e bt s e e bt e st et e es e e bt embeeseentesaeenbesseesbesneesbeeneennean 315

30.3 HAardWare OPEIAtION.c..cevirtieitirtietentieiteett et ettt ettt et e stees e sbeeat e s bt eate st e eateebees et ebten bt s bt esbeeaeesbeeatesbeesbesbeesbesbeennesbeentenne 315
39.3.1 SOFIWATE OPETALION.eeueiiutieiieetiesiteette sttt et sit e et e sttt ebeesabeebeesuteebeesabe e bt e sabeeabeesabeenseesaseenbeessseenbeesnbeanseesas 315
39.3.2 SOUICE COAE SIITUCTUIE.c..iiutetieiietieiteet ettt ettt ettt et e et e sbe et e sbe et e s bt e teebeenbeeseenbeesee bt eaee bt emeesaeeneesaeensennean 316
39.3.3 Menu Configuration OPLIONS........co.eeuertieiirtieriieitente ettt ettt ettt sttt e bttt ebeesbe et e sbeesaesbeenaesbeensesinens 316
39.3.4 L0adable MOAUIE SUPPOTL......eeruiiitiirieitieriitette ettt ettt st et e st e bt e sate e bt e sabe e bt e sabeesbeesabeesbeesnseenbeesnseeseens 317
39.3.5 SYSIEM WAKEUDP.....oiiiiiiiiiiiiiiiiiiititere sttt ettt sttt ettt et et b et st sa et 317
30.3.60 USB WaKEUP USAZE...c..eeruiruiiiiiiiiiieie ittt ettt ettt ettt ettt sa et s b et bt e bt bt e b sbt e bt et s et e et s et eseesbeenee 317
39.3.7 How to Close the USB Child Device POWET...........cccccoviiiiiiiiiiiiiiiiiiiiccceeee 318

i.MX Linux® Reference Manual, Rev. 0, 10/2016
20 NXP Semiconductors

Section number Title Page
39.3.8 Changing the Controller Operation MOGE...........c..coiriiriiiiniinieneeienteeee ettt 318
39.3.9 Loadable MOAUIE SUPPOTL.......eiuiiiiiiiieiiieiteeie ettt sttt eb et e e et e bt e st e et e st e e satesabeesbbeenbeesbeesnbeesanesanes 318
39.3.10 USB Charger DetECION.coueeuiriirieieieieieieteteit ettt ettt st sttt ettt et a et eae bt be s b sae s snenaens 319
39.3.11 USB OTG HNP and SRP SUPPOTT....cc.eoouiriimiiiiniiieiteteittetestt ettt ettt ettt st et s 319
39.3.12 Embeded HoSt CertifiCation.cooiiiiiiiiiiiiiiiiiiiiiiiii e s 320
39.3.12.1 Adding TPL-Support PrOPEITY.....ccccoveriiiiiiieiiiiieiteteienente sttt ettt 320
39.3.12.2 VBUS CONUIOL...uiiiiiieiirieiirieintctetc ettt ettt sttt ettt ettt be et saenea 321

Chapter 40

PCI Express Root Complex Driver

40.1T INEOAUCHION. ...ttt et b et s b e b e b ettt e bt et eaeea e b e saesb b e b e saennes 323
AO.1.T PCICiiiteee ettt n et ens 323
40.1.2 Terminology and CONVENTIONS.c..eeuerterterteeterteeiesteeateetteteeteeteeeeesteeaeesseeaeesaeeseeabeenteabeensesseentesseenseeneensennes 323
40.1.3 PCIe TOPOIOZY ON 1. IMX ..ottt ettt sttt st ettt ettt ettt b et sbe et ebe e et eseenaeenees 325
40.1.4 FRALULES.ouiiuiiiiiiiiiiiii e et a bbb 327
40.2 Linux OS PCI Subsystem and RC AIiVET...........couiiiiiiiiiiieiieieieeet ettt sttt ettt ettt esee b eseenteeseesaeenee 327
40.2.1 RC Driver SOUICE FIIES.....cc.couiiiiiiiiiiiiiiiiiicicicec et st 328
40.2.2 Kernel CONfIGUIATIONS.cc.utiitiiiiieiieiiteeitte ettt ettt ettt e bt e st et esbte e bt esatesabeesatesabeesbbeeabeenbeeeabeebeesabeesseesanes 328
40.3 System Resource: Memory LayOUL..........cccoiiiiiiiiiiiiiiiiiic e 329
40.3.1 System Resource: INTEITUPE TINES......cc.uerueriiririiriiiieniieteeit ettt ettt ettt ettt sae e st enaeseees 330
40.4 Using PCle Endpoint and RUNNING TESES.......cciuiiriiiriiiiiiiitiiteeieei ettt ettt ettt ettt ettt e e st e s b e saseeaees 330
40.4.1 Ensuring PCle System INitialiZation.coeeiuirieriieiiieiere ettt sttt s ebesaeeae s 332
BO.4.2 TSES ettt h b eh e b bt b b e ettt ettt ettt eae e 332
40.4.3 KNOWIL ISSULS. ...ttt s eb e e a e s a et e ea e 333

Chapter 41

EIM NOR Driver
Chapter 42
Quad Serial Peripheral Interface (QuadSPI) Driver
Chapter 43
Fast Ethernet Controller (FEC) Driver

43,1 REVISION HISTOTY .c..etiiiiiiiitiitiititctetet ettt ettt ettt ettt et b bt bt et be sttt et e et bt e bt ebeebesae s b e 339

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

21

Section number Title Page
43.2 INEOAUCTION. ...ttt ettt e b bbb bbb ettt e bt et eaeea e b saesa et sa s 340
43.3 HArdWare OPETAtION. ..c..ueetieriiiiiieeiieette et etee sttt ete e sttt ebeesttesabeesabeaabeesateeabee sttt e beeesbeeabeesabeeabeesaseenbeenseeeabeesabesabeesaseenseens 341
43.3.1 SOFEWATE OPEIALION.cetiiuieeeiiieteeteit ettt ettt et et e bt este bt e aeesaeeseesbeeaeesbeemteabeemseeseenteeseenseeseenseeseeneeeneenaeeneas 343
43.3.2 S0oUICE COE STIUCTUIR.cueiuiiiiiiiiiiiiietiite ittt ettt sttt et ea e b saesa b b saeanes 344
43.3.3 Menu Configuration OPLIONS.ccc.eeruieriieriieriieeieetee sttt ettt e sttt ebeesatesbeesstesbeesbbesabeesbaessbeesseesabeenseesaseas 344
434 Programming INTEITACE.c..eeiuiiieitiit ettt ettt e bt a et e st e bt e st e eheentesae e besae e beese e beeneenbeententeans 344
43.4.1 Device-Specific DefINItIONS.ccueviiiiriiiiiieie ittt sttt sae s e sbe s e b 344
43,42 GettiNg @ MAC AATESS...ccuveiiuiieiieiiiteiteete ettt ettt ettt et e st e bt e st e e bt e sab e e bt e sbb e e bt esaeeeabeesanesabeesasesnbeees 345
Chapter 44
ENET IEEE-1588 Driver
441 HATAWATe OPETAtION. ..c..uiitieriiiitieeiteette ettt et ee et et e sttt ebee ettt sabeesateeabeeshteebeeshbe e beessbeeabeesabeeabeessseeabeensteenbeesabesabeesasesnseens 347
44.1.1 TranSmit TIMESTAMPING........ccuteuieuietieiente ettt ete st et et ete st e e e etees b e et ee bt eseesseeseesbeeaeesseemtesseenseaseensesseensenseenes 347
44.1.2 ReCeIVE TIMESTAIMPING....cuveruretiriritieitinteetiettete et ettt et et et e eete bt eeb e bt ettesbeesteebeestesbeenaesbeenbeemtenbeessenbeeanenaeens 348
442 SOFEWATE OPEIALION. ...coueieiiiiiieeite ettt ettt ett e et e et e bt e st e e bt e sat e e bt e sateeabeeeabeeabeesabeeastesateebteeaseebaesabeenbeesabeenseenatean 348
44.2.1 SOUICE COUE SEITCLUIR.eutieiiitieiieetiete ettt et ettt ete e e ste e e sb e et e et ee bt este bt eseeeseaneesaeentesaeeaesseensesseebeeneanseans 348
44.2.2 Linux Menu Configuration OPtIONS.cc.eeuireetirientrteneeitenteet ettt ettt eteestesseete st esaesbeesbeessesbeessesbeesnenieens 348
443 Programming INTEITACE.coiiiiitiiiiiiiieeeeee ettt et e a et e bt e e bt bt e s bt e st e e sab e et e e bt e et e e bt e sbeenateeates 349
444 1588 SLACK SUPPOTL...c..iuiiiiiiiiiiieiiiietett ettt ettt et b et st sttt ettt et et eat e bt e bt sae et e b st e e et ne e e e ene 349
44.4.1 1588 Stack INtrOAUCTION.ccuiiiiiiiiiieieieicc ettt st st 349
4442 LinUXPUP StACK FEAIUTES. ...ccuviiiiiiiieiieiie ettt ettt ettt e bt e sat e e bt e sabe e bt e sabeebeesateebeesaneen 349
44.4.3 How to Use the Stacks in LiNUX OS....c..ooiiiiiiiiieieiiee ettt sttt sae st beennenaens 350
Chapter 45
Universal Asynchronous Receiver/Transmitter (UART) Driver
5.1 REVISION HISTOIY ...ttt ettt ettt ettt et e bt e et e bt e st e bt ea e bt en b e ebeen e e ebeemteeaee bt emeenaeemeesbeensenbeentenbeans 351
45.2 INEOAUCHION. ...ttt et b bbb bt b et et e st es e e bt et eaeeb e b saesa b b saennes 351
45.3 HArdWare OPETAtION.eeuieriiiiiieeiteeite ettt et e sttt et e sttt ebeestteebeesabeeabee sttt eabee sttt eabeessbeeabeesabeeabeessseenbeenseeeabeesasesabeesaseenseens 352
45.3.1 SOFEWATE OPEIALION.ceuteiietiiieeteete ittt et et e bt et ee bt este bt e st e saeeseesbeeaeesbeeateabeenseeseenteeseenseeseenteeseenaeeneenaeenees 352
45.3.2 DIIVEI FEATUTIES. ..c..euiiiiiiiiiiiiieiiiciet ettt et sttt ettt s sae s 353
45.3.3 SoUrce Code STIUCTUTR.c.coiiiiiiiiiiiiiitiiti ittt st es s sa b saeanes 353

i.MX Linux® Reference Manual, Rev. 0, 10/2016

22

NXP Semiconductors

Section number Title Page
454 CONTIGUIALION. ...c..eeutiiiiiiiiitirte ettt ettt ettt et h et s bt et e bt e bt e bt et ea b et ea b e bt eat e eb e e et sbe e bt ebt e bt eatenbeeabesbeesneebeenee 354
45.4.1 CONTIGUIALION OPLIOMS. ..ceuttiritieiiertterite ettt e et et eeste et esute e bt e eateebtesabeeabeesabeeseesabeenbtessbeenbeesasesbeesaseeseesaseen 354
45.4.2 Source Code Configuration OPLIONS.cc.eeueeuierueeierieeienteetesteetesteetesteesteeseenteeseenseeseesseeneesseensesseesesseensens 354
45.4.3 Chip Configuration OPtONS.co.eeruirierierterieetente ettt ettt ettt et ateste et esteeatesbeessesbeestesbeesbesbeesbesbeeteebeensennee 354
45.4.4 Board Configuration OPLIONS.eecueerureeriterieeriieniteestte st esteesiteestee sttt esteesiaesbeesstesabeesabesseessaeeseesseesseesseesanes 354
45.5 Programming INTEITACE.c..eeiuiiiiiiitiete ettt b e bttt et ea e bt e st e sheent e see e beeat e beeste bt enaenbeentenbeans 354
45.5.1 INtErTUPt REQUITEIMEIIS. .c..eettiiiitieitietteteett ettt ettt et sttt ettt et bttt e bt e bt eatesbeestesaeeaesbeebesbsenbesanenbeeas 354
A5.0 UIEE TSt .ttt t et h e s b e s b e bt s e ettt a et ettt btk seeh e e b e ae et a et ea et 355
45.7 Device SPecific INTOIMALION.cc.iiiitiiieit ettt ettt ettt e bt et e bt et e sbeeaeesbeeateebeenteebeenteeseeneeeneenee 355
A5.7.1 UART POIES. .ttt ettt ettt b et b et b et b et be e a e naene 355
45.7.2 Board Setup CONfiIGUIALION. ...c...eiitiiiiiiiiiiteete ettt ettt et ettt e sbt e e bt e s bte s bt e sabesabeesabeeabeesaseenseenseean 355
A5.7.3 UNIT TEST2...c ittt ettt bbbttt b et bbbt b et b et b et be e bt 356
Chapter 46
Wi-Fi BCM4339 Driver
46.1 HArAWAre OPETAION.cuiiueitieuiettete et et ette et eteeste et e s bt eetesh e e te et e enteeseenteesee bt eaeeaaeameesaeembeeseemseeseenbeeseenseenee st eneesseeneenne 357
46.1.1 SOftWATE OPETALION.ceruiriiiieiiterieeitenteeteett ettt ettt ettt et e bt s aeebteste et e sbeeatesbeeat e bt eatesbeeabeebeenteebeenaesneenaeeanes 357
460.1.2 DIIVET fEATULES. ..ottt et s 357
46.1.3 SOUICE COUE SEITCLUIR.eutieiiitieiieetiete et tet ettt ettt et e ste e e eb e et e e st et e et te bt eseeaseemtesaeentesaeesesseenbeeneebeeneenseans 357
46.1.4 Linux Menu Configuration OPtIONS.c..ceuireertirieninienieeitenieeit ettt ettt ettt etesbeesaesbeesbeessesbeessesbeesnenieens 358
46.2 How to Install the Driver MOUIE.............ccciiiiiiiiiiiiiiiiiiiic e 358
46.3 DeVICE TTEE BINAING....c.eiiuiiiiitieiieiieie ettt sttt b et b et et e bt e et e bt e a e e ebeeaeesaeemeesbeembeebeemseebeenbeeseenseeneenee 358
46.4 Murata ModUle SUPPOTT STALUS. ...cc.uerttitiriieieeitete ettt ettt ettt ettt et ettt ea et e ea et sbe et sbeesaesbeenbesatenbeeabesbeesnesbeenee 359
Chapter 47
Pulse-Width Modulator (PWM) Driver
AT.1 INEOAUCTION.ceiniiiiiiiiiiciet ettt et b bt bbb s bt et b e ettt st et eaeea e b e saesu et sbesaennen 361
4711 HardWare OPETAtION.cciuuieiierittetieeteette et et e et estte ettt ebeeeabeesbeesabeesstesateesbbeeaseebteeabeenseesabeesabesabeesbseeseenaees 361
AT.1.2 CLOCKS ettt ettt h bbb bbb bbb bbbt b et b et bbb 362
47. 1.3 SOftWATE OPETALION.ceuiiiiiiiiiteieeiterte ettt ettt ettt ettt ettt e s aeebte st e et e s bt ee s esbeeate s bt esb e st e eabeebeentesbee bt eneenaeennes 362
AT7.1.4 DIIVEI FEATUTIES.ottt et s 362

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 23

Section number Title Page
47.1.5 SoUCE COE STIUCTUTR.cueiuiiiiitiiiiitietiite ettt ettt ettt s st et a ettt et ea e b saesa b b saeanes 363

47.1.6 Menu Configuration OPLIONS.cc.eeiviiriieriteitteeieetee et et e sttt e sttt ebeesttesbeessbesabeesbteesbeesbaessbeeseesabeesseesaseas 363

T2 UL T@SEu ittt ettt ettt ettt ettt ettt et e et et e e st e bt ea e e e bt eaee e bt em e e e bt emteebeem e e ebeembees e em et eme e bt emeeebeeneesheenteebeenneebeenteeneans 363
47.2.1 Unit Test on .MX 31 and 1.MX 32.....cciiiiiiiiiiiiiiiiiceeee ettt 364

Chapter 48
Watchdog (WDOG) Driver

8.1 INEIOAUCHION. ...ttt et b bbb bbb ettt e bt et eaeea e b e saesb b sbesaennes 365
48.1.1 HAardWare OPETAtION.ccvuvieiuierittetieeteetee et ette sttt et e et e bt e sbeeeaeesabeesstesateesbteeaseebtesabeenseesabeesabesabeesbseeseenaees 365

48.1.2 SOFIWATE OPEIALION.cettiuietiiiietieiteete ettt ettt ettt e bt este bt eseesaeeseesbeeatesbeemteabeemseebeenbe et eenseeseenbeeseenseeneenaeeneas 365

48.2 Generic WDOG DIIVET......cuiiiiiiiiiiiiicieiee ettt et sttt ettt ettt e 366
48.2.1 DIIVEI FEATUTIES. ..ottt et 366

48.2.2 Menu Configuration OPTIONS.ccueeueiuieiertieteetiettettete et te et etesteestesteetesbeestesseanse et eentesseenteeseenbeeseenseeneesaeenees 366

48.2.3 S0oUICE COUE STIUCTUIR.cueiuiiiietiiiiiiietiite ettt et sttt ettt eas e b saesae b b sueanes 366

48.2.4 Programming INLETTACE.cocuiiiiiiiiiiiieiiie ettt ettt e bt st e bt e sate e bt e saneenae 367
A8.2.4. 1 UNIE TSt ittt ettt b et bbbt b ettt b et b et b et bbb e 367

48.2.5 WDOG Under the Machine Specific Layer..........cccoiriiriiiiiiniiiirieeeteeeeseete et 368
48.2.5.1 Source Code SIrUCUIEL........cciiiiiiiiiiiiiiiiiiiiic e 368

48.2.6 1. MX23 WDOG DITVEL.....ecuiniiiiiiiirieiiiteitrtet sttt sttt ettt sttt sttt ettt b et b et bbb e e 368
48.2.6.1 Linux Menu Configuration OPtion..........ccc.eeeeiireiniirienenieneeienie ettt ettt esee e esee e 369

48.2.6.2 Source Code SIIUCUIEZ........cciiuiiiiiiiiiiiiiiiiei et 369

Chapter 49
OProfile

49.1 REVISION HISTOTY .c..tiiiiiiiiiiiiie ittt ettt bt ettt st e et e s at e e bt e sab e e bt e sabeeabeesabeenbeesabeenseesabeeabeesasesases 371
E LB 1113 (o L1 et (o) s WO OO OO P TSRS 372
A9.2.1 OVEIVIBW..uetiritiieiintettsteit sttt sttt ettt ettt sttt a ettt et et e h et bt b et bt b e b et s ettt bt ene e 372

49.2.2 FRALULES. ...cuiiuiiiiiiiiiiitii ettt st b e bbb 372

49.2.3 HardwWare OPEIAtION........coueeverterieteieieieiteeteit ettt et ettt st et et sae ettt e e est et eseeseebeeuesbeebesaesaeetennenaensennennens 373

40.3 SOFtWATE OPCIATION. ...ceuviiiiiiiiitiieeiteet ettt ettt ettt ettt et s bt et s bt et e e bt e st e eat et e eb e et e ea et sbe e bt sbeenaesbe e bt sat e beebbenbeesnenneenee 374
49.3.1 Architecture-specific COMPONENLS.......c.cevutertierieiieerteetterite et ettt e site et eesibesbeesbbeebeesbtesabeesaaesabeesssesneenes 374

i.MX Linux® Reference Manual, Rev. 0, 10/2016

24

NXP Semiconductors

Section number Title Page
49.3.2 oprofilefs PSEUdO FlESYSIEIM.ccueiiiiiiiiriiiiiiteieetee ettt ettt ettt et 374
49.3.3 Generic Kernel DITVET.......ccocoiiiiiiiiiiiiiiiiiiiicc e s 374
49.3.4 OPTOFILE DACIIION.cueiutieiiieiieie ettt ettt ettt et e bt et e e bt et e e bt et e eb e et e es e et e eseeebeenteeseensesaeenaesnean 375
49.3.5 POSt PrOfiliNg TOOIS. ..cueiuiiiiiiiiitiiieeitcieet ettt ettt ettt et ettt sbt ettt e bt ebaenbeebsenbeeanenbeeas 375
494 REQUITEIMEIILS. ¢ .eeeuteeuiieiiteette ettt estte ettt ebeeeateebeesabeettesateebeeeaeeeabeeeabeeabeesabeeaseesateenbeesaseeabeeesbeeabeesabeeabeessbeanseenseeeabeenneesases 375
49.4.1 SOUICE COUE SEITCLUIR.ctieiiitieiiietiete ettt et ete st e e st e et e et e et e es e e beeste bt eseeeaeeneesaeentesaeebeeseenbesseenbeeneanseans 376
49.4.2 Menu Configuration OPLIONS.coueeuerteteritetiett ettt ettt ettt ettt et st et sbe et e st e et e sbeenbeebeebeebeenteemeenaeenees 376
49.4.3 Programming INLETTACE.cocuiiiiiiiiiieieiiie ettt ettt st e bt st et esateenbtesane e 376
49.4.4 INEITUPt REQUITEIMEIIES.uveuiiitiitiitietietestest ettt ettt ettt ettt sttt sttt ettt ea e bt ebesbesae b sbesaennen 376
49.4.5 Example Software COnfigUIation..........cccecvuiriiriiriiniiriinieeteneete sttt ettt ettt nae st saeeaeen 377
Chapter 50
CAAM (Cryptographic Acceleration and Assurance Module)
50.1 CAAM DeViCe DITVET OVEIVIBW.....c.oiuiiuiiiiiiiiiiiiiiiiiiietisie sttt st sttt 379
50.2 Configuration and JOb EXECUON LEVEL.......cooiiiiiiiiiiiiiiii ittt sttt e 379
50.3 Control/Configuration DITVET...........ccceiiiiiiiiieite ettt ettt ettt ettt ettt e st e e aeesbeebe s bt enbesbeenteeseenbeeseenbeeneeneeenes 380
50.4 JOD RING DITVEI..c..tiiiiiiiiiiiiiee ettt ettt ettt et b e e bt s bt et e b e et bt e st s bt et ebe e bt e bt e nbeeatesbeenaenbeas 380
50.5 APIINEErface LeVel.......ccoiiiiiiiiiiiiii e e 382
50.6 DIiVEr CONTIGUIATION.cuiitiitietietiet ettt ettt ettt ettt et e et e e bt et e e bt es e et e enteebeeneeeaeen bt eaee bt emeeabeemeebeenbeabeenseeseenseeseeneeenee 384
50.7 LAMIEATIONS. ...ttt ettt et et a e s et b e b e ettt et e st e bt e bt ea e eh e b e ebesh et e b e s et et et et enteaeeaeeuea 385
50.8 Limitations in the Existing Implementation OVETVIEW.........cc.uiiiuieriiiiiiinieniienie ettt ettt ettt st site st e siaeeaeenaee s 386
50.9 Initialize Keystore Management INEEITACE.co.evueriiriiiiiiiiiiiieic ettt ettt s 386
50.10 Detect Available Secure Memory StOrage UNILS......cc.ceouereerieriinierienienienieeitesie ettt sttt st st sttt s e sbeesnesaeenee 387
50.11 Establish Keystore in DeteCted UNt..........cocveiriiriiiiieeieeiie ettt ettt ettt st site st e sate st esateesbeesbeeebeesanesabeas 387
50,12 REICASE KEYSTOTE. . ..eueiiuiitiiiiitieteet ettt ettt ettt sttt e e e bt eb et es et e e st e eb e eme e eae e bt sa e e bt seee bt emse b e enbenbeenbeeseenteeseeneeenee 388
50.13 Allocate a S1ot fTom the KEYSIOTE.couiriiiiiiiiiiriieite ettt sttt et sb ettt et 388
50.14 Load Data int0 @ KEYSIOTE SIOt.....ceiuiiiiiiiiiiiiiiie ettt st ettt e be e sat e e bt e et e e bt e s st e eabeesbeeenbeenaees 389
50.15 Demo IMage UPAALe........c.cciruiriiriiriiiiieieieee ettt ettt ettt ettt sttt be st b e s a st eae et e bt saeebe b e 389
50.16 Decapsulate Data in the KEYSIOTE.......ccouiriiriiriiiiiiieneeieecet ettt ettt sttt st sae sttt be e ebe e 390
50.17 Read Data From @ KeYSIOTE SIOt.....cc.eiiuiiiiiiiieiiieiiie ettt ettt ettt et sate et e sab e e sbeesaseebeesabeebee s 391

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 25

Section number Title Page
50.18 Release a S10t back t0 the K@YSTOTE.c..evuiiiiriiiiiieteiteeet ettt sttt ettt be et sbe bbbt enteeae 391
50.19 CAAM/SNVS - Security Violation Handling Interface OVEIrVIEW..........cocviiiiiiiiiiiiiiiieiieeieereeeieeste e 393
50.20 OPETALION. ...c.vetititeietetetet ettt ettt et ettt st ettt ettt eaeea e e st e bt e bt e bt s bt eb e b e bt sttt et et e e et et e st eat et bt e bbbt saeen e be e 393
50.21 Configuration INEEITACE.cc.eviiriiiiiiiiteeceee ettt ettt ettt et sttt st besatesbe et e s bt eas e bt eane bt enteene 394
50.22 Install @ HANAIET........ccoiiiiiiiiiiiii e 394
50.23 Remove an INSTAlled DITVET.......cccuiiuiiiiiieieiiee ettt ettt b e e b et b et e st et e e st e bt eaeesaeeneesbeenaesbeenseneeans 394
50.24 Driver Configuration CAAMY/SINVS ...ttt ettt ettt s ettt ettt et e e eaee 395
Chapter 51
Remote Processor Messaging (RPMsg)
STT INEEOAUCTION. c...iiiiiiiititee et st b e st s et ettt b e ebeeae b besue st e saesnens 397
ST.2 FRAIUTES. ...t e a e a e st st 398
S51.3 SOUICE COUE. ..ottt ettt et et e e et e et e a et e e et e bt ea e e saeeaeeeb e em s e bt embeebeen b e eb e entees e e bt enee bt eaeenbeeneennes 399
514 Kernel COnfIGUIAtIONS. ...c...coueiiiiiiiteitieiteete ettt sttt ettt ettt e e eb e et sb et e bt et s bt e bt sbtesbeesse bt eebenbeeabesbeentesbeenaeenee 399
51.5 Running i.MX RPMSEZ TSt PrOZIAMS. ..c...eiitiiiiiiiiiiiieiteeit ettt ettt et ettt st et e eabeesbaesnbeenaees 399
Chapter 52
Display Content Integrity Checker (DCIC)
52,1 INEFOQUCTION. ...ttt s st a et 403
52.2 HArdWare OPETALION.cc.eeuiiuieiertieieittete et et et et e ett e bt esteeteeatesteeaseeaeeseeseebeaseenbeeaeenbeemee bt enteeseenseeaeensesaeenbesmeenseeneensean 403
52.3 SOFtWATE OPETALION.eruiiuiiriiitieitieteeite ettt ettt ettt et b et b e eat et es et ebe et e e bt e ae e st esbeeatesbeeste bt eabesbeeab e e bt et e ebee et esaenaeenees 403
52.3.1 Source Code SIUCTULE.c..ccuiiiiiiiiiiitii ettt sa e 403
52.3.2 Menu Configuration OPTIOMS.eueeuieriereeteeiteteettesteette et esteeteeteetee et eaeesteeseesteesse bt entesseenteeseenteeseeseeneenaeenees 404
52.3.3 DTS CONTIGUIALION. ¢ ettt sttt ettt ettt ettt ettt ettt s bt e st e s bt estesae et e sbeesbesbe e b e ebs et e ebeenbeebeenaeenee 404
524 Programming INEETTACE.ccc.uiiiiiiieiit ittt ettt ettt et e sa e e bt e s bt e e bt e st e sab e e sabeeabeenbbeenbeenaee s 404
52.4.1 TOCTLS FUNCLOMNS.ttiuiitieiieitieteetiet ettt ettt ettt ettt et e s bt et e s bt en b e e bt enbeeseenteese et e eneeabeemeesseensesaeensesseensennnans 404
5242 SHTUCHUIES. c..cviitiieietetet ettt sttt ettt et et eae bbb et b e s s e bt test et et eaeebeebesueebeebesaens 404
52,5 UL TSt ittt sttt e st a et et ettt 405
52.5. 1 SOUICE COUR....uiuiitieiieett ettt ettt ettt ettt e a e e et e e st e e aeentesa e e et s a e et e es e et e es e et e es e et e en e e bt eneesaeaneesneenees 405
52.5.2 DCIC CRC Calculation FUNCHONS.ccueouiiiiiiiiiiiieiieiit ettt st e s 405
52.5.3 SAIMIPIC...cuutiiiieeiieeite ettt et h bt et e s bt e e bt e bt e e bt e h et e bt e e h b e et e e e h bt e bt e bt e e bt e ehb e e bt e eabeebeenas 405

i.MX Linux® Reference Manual, Rev. 0, 10/2016

26

NXP Semiconductors

Section number Title Page
Chapter 53
ADC Driver
53,1 ADC TNETOQUCHION. ...ttt ettt ettt ettt et e e e bt et eb e em e eh e et e ea e e bt ea e e bt emeeebeemeesbeemseebeembeebeenteeseenteeneenseeneeneeenes 407
53.2 ADC EXEEINAl STZNALS...c..eoiiriiiiiiiieieiteeet ettt ettt ettt ettt b e bt et e b et b e et ebe et e bt et e bt bt et sbe et nbean 407
53.3 ADC DIIVEI OVEIVIEW....uiiiiiiiiiiiiiiiiiiiiii ittt sa e et a et sa s eb b s 408
53.3.1 ADC DIIVET FIl@....uioniiiiiiieeieitieee ettt ettt ettt h et e b et e st et e e st e bt eaeesbeeneesbeensesbeennennnans 408
53.3.2 Menu Configuration OPTIONS.ccueveeiirterierietert ettt ettt ettt et st e ste bt e steeasesbeesbe st e eabesbeestesbeeneesneenaeenees 408
53.3.3 Programming INEETTACE.c.eiruiiiiiiiieeieet ettt sttt ettt e st e bt e st e bt st e bt et 408
Chapter 54
Video Analog-to-Digital Converter (VADC)
541 INEFOQUCTION. c...eiiiiiiiiiicic e s st a e b e s 411
54.2 HAardWare OPETALION.ccueeuiruieieiteeteittete et et et et et e e bt eaeeeteeateeteentesaeesesseebeaseenbeeaeenbeamee bt enteeseeneeeaeensesaeenbesmtenaeeneensean 411
54.3 SOFtWATE OPETALION.eruiiutireiitieitieteete ettt ettt ettt ettt ettt ea et e st e eb e et e s bt esae e st enbeeatesbeea b e bt eatesbeeab e e bt enteebee et esaenaeenees 412
54.3.1 Source Code SIIUCTULE.c.occuiiiiiiiiiiiiii ettt et sa e s 412
54.3.2 Menu Configuration OPTIOMS.eueeueetereeieeiteteetterteette et estesteesteeteetesseesteeseesteeste bt esbe st eenseeseenteeseenseeneenaeeneas 412
54.3.3 DTS CONTIGUIALION ..teutiiiiiiiiiiiiiiinieete ettt ettt ettt ettt ettt ettt sttt b e et sbeestesbe e bt sbe et e ebe et e ebeenbeebeenaeenee 412
SA4 UL TESE. ittt sttt b et bbb st b e ettt et ettt 413
Chapter 55
Bluetooth® BCM4339 Driver
55.1 Bluetooth Wireless Technology INtrOQUCION.ccueeiuiiiiiiriieiiieiteee ettt ettt ettt ettt e bt esaaeebeenaees 415
55.2 HAardWare OPETALION.cc.eeuiiuieiiitieieitteteettete et et e ette bt esteeteeatesteeneeeaeebess e e beeseebeeaeen bt emee st enteeseenseeseensesaeebesmtenseeneenseas 415
55.3 SOtWAIE OPETALION.eruiiuiirititieitieteeite ettt ettt ettt ettt eat et ea e e bt et e bt e et e bt enbeeabesbeeet e bt eabesbeeabeebeenteebee et esaenaeeneen 415
55.3.1 Bluetooth DIiVer OVEIVIEW.......ccccciiiiiiiiiiiiiiiiiiiecieeee et s 415
55.3.2 BlUetooth DIIVET FILES.......ooiiiiiiiiiieieiee ettt ettt ettt st e bt sbe et eb et e st e nteeneenaeenee 416
55.3.3 BIUELOO STACK.....c.oiiiiiiiiiiiiiiiie e 416
55.3.4 Menu Configuration OPLIOMNS.cc.ueeuieriiteriieniieetee st eete et et e sttt esbeesateebeesabeebeesateesbeesaseesbeesaseebeesaseenseesssean 416
Chapter 56
Samsung MIPI DSI Driver
56.1 INErOQUCTION. ...c..iiiiiiiiiiici e s st ea e s a e 419
56.1.1 MIPI DSI IP DITVET OVEIVIEW.eeueitieiiiitieiesteeteetteteetteteette e eate bt eseesaeentesaeensesseenaesseebeeseeseeneenseensesseeneenne 419

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 27

Section number Title Page
56.1.2 MIPI DSI Display Panel DIiver OVEIVIEW......c..coveruiriiriirienieeienieete sttt sttt ettt et siee e saeenaeeaees 420
56.1.3 HAardware OPETALION..........ceuteruieriteriieettestteeteeeite st e st e eteestteebeesbeesbeesseesabeesatessbeesbbeenbeenseesabeenstesabeessnesnseens 420
56.2 SOTEWATE OPEIALION.euieutieeietieiteett et ettet et e bt et e bt et ee bt eate et e eate et e esteeaeentees e e bt emeesbeeseeabeemte bt enteebeanteeseenseeseenseeneenaeeneas 420
56.2.1 MIPI DSI IP Driver SOftware OPEration.coceeouereerierienierienientenieeitenteetesieentesieetesieenaesseessesssenseeanenseens 420
56.2.2 MIPI DSI Display Panel Driver Software OpPeration.............coceerueerieriieinienienitesieesieesieeeieeseeeieesreeiee e 421
56.3 DIIVET FRATUIES. ...ttt ettt ettt ettt et e et et e st et e ea e e et e eaeeee e em e e saeemeesheembeeseembeebeenteeseenbeentenseeneenaeenee 421
56.3.1 SoUIce Code SIIUCLUIE.coiiiiiiiiiiiiiiiietite ettt st sttt et eb e sae et saens 421
56.3.2 Menu Configuration OPLIOMNS.ueetieritritieriieeteesteetee sttt et e sttt esbeessteebeesabeesbeesateesbeesaseebaesaseeseesaseesseesssean 422
56.3.3 Programming INTEITACE.cc.oouiiiiiiiiie ettt ettt et b et e b e e bt et eb et ese et eee 422
Chapter 57
Subscriber Identification Module (SIM) Driver
ST.1 IETOQUCTION. ¢ttt ettt ettt e et e e et e st e et e ea et e st et e ea e e bt e et e bt emeeabeeabe bt em s e bt enteeseenteeneenbeemeenbeemtesaeensennean 423
57.2 MOAES OF OPEIALION. ...c..teutiiieitietiett ettt ettt ettt ettt ettt et b et b et ebe et eb e et e e bt esbeestesbeeate s bt esbesb e et e e bt et e ebeenbeeneenaeenee 423
57.3 EXternal Signal DESCIIPION. ...ccuueitiiitiiiiteiie ittt ettt ettt et e st e sbee et e ebeesabe e bt e sabeesseesateesbtesabeenbaesnseenseenns 423
574 SOUICE COUE SIUCTUTR.euieuiiitieieetiete ettt et ettt e et e et et e eateebeea b e et e emtees e e bt ea e e bt eaeeabeemeesbeemseabeenseebeenseeseenbeeneenseeneeneeenee 424
57.5 Menu Configuration OPTIONS.cc.eeeeuirieriirierieeterte ettt ettt ettt ettt et ebeesae et e sbeeaeesbeestesbtesbesbeenbeebeebeebeenseeseenaeenees 424
5T.6 UL TESE. .ttt sttt et st e et et b et e b et bbb 424
577 SOFtWAre FIrAMEWOTK......c.eiiiiiiiiiiiiet ettt et ettt e e et e bt et e bt s et e bt ese e been b e b e enteeseenteeseeeeenee 424
Chapter 58
Revision History
581 REVISION HISEOTYuiiuiitieiiiitietiet ettt h ettt et h et ea et e ea e e e bt eaeesb e eaeesbe e b e ebeenbees e et e ese et e eneenseeneeneeenes 427

i.MX Linux® Reference Manual, Rev. 0, 10/2016

28

NXP Semiconductors

Chapter 1
About this Book

1.1 Audience

This document is targeted to individuals who will port the i.MX Linux® OS Board
Support Package (BSP) to customer-specific products.

The audience is expected to have a working knowledge of the Linux OS 3.0 kernel
internals, driver models, and i.MX processors.

1.1.1 Conventions
This document uses the following notational conventions:

* Courier monospaced type indicate commands, command parameters, code examples,
and file and directory names.

* [talic type indicates replaceable command or function parameters.

* Bold type indicates function names.

® <Yocto BuildDirs stands for <vocto puild directory>/tmp/work/<machine-poky-linux-gnueabis>

1.1.2 Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition
ADC Asynchronous Display Controller
address Address conversion from virtual domain to physical domain
translation

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 29

Audience
Term Definition
API Application Programming Interface
ARM® Advanced RISC Machines processor architecture
AUDMUX Digital audio MUX-provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces
BCD Binary Coded Decimal
bus A path between several devices through data lines
bus load The percentage of time a bus is busy
CODEC Coder/decoder or compression/decompression algorithm-used to encode and decode (or compress and
decompress) various types of data
CPU Central Processing Unit-generic term used to describe a processing core
CRC Cyclic Redundancy Check-Bit error protection method for data communication
CSl Camera Sensor Interface
DFS Dynamic Frequency Scaling
DMA Direct Memory Access-an independent block that can initiate memory-to-memory data transfers
DPM Dynamic Power Management
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage Frequency Scaling
EMI External Memory Interface-controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system
Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In big endian, the order of the bytes is reversed
EPIT Enhanced Periodic Interrupt Timer-a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention
FCS Frame Checker Sequence
FIFO First In First Out
FIPS Federal Information Processing Standards-United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards
FIPS-140 Security requirements for cryptographic modules-Federal Information Processing Standard 140-2(FIPS 140-2)
is a standard that describes US Federal government requirements that IT products should meet for Sensitive,
but Unclassified (SBU) use
Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.
Flash path Path within ROM bootstrap pointing to an executable Flash application
Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command
GPIO General Purpose Input/Output
hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and is
generated by a formula in such a way that it is extremely unlikely that some other text produces the same hash
value.
I/0 Input/Output
ICE In-Circuit Emulation
IP Intellectual Property
Table continues on the next page...
i.MX Linux® Reference Manual, Rev. 0, 10/2016
30 NXP Semiconductors

Chapter 1 About this Book

Term Definition
IPU Image Processing Unit -supports video and graphics processing functions and provides an interface to video/
still image sensors and displays
IrDA Infrared Data Association-a nonprofit organization whose goal is to develop globally adopted specifications for
infrared wireless communication
ISR Interrupt Service Routine
JTAG JTAG (IEEE® Standard 1149.1) A standard specifying how to control and monitor the pins of compliant
devices on a printed circuit board
Kill Abort a memory access
KPP KeyPad Port-16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)
line Refers to a unit of information in the cache that is associated with a tag
LRU Least Recently Used-a policy for line replacement in the cache
MMU Memory Management Unit-a component responsible for memory protection and address translation
MPEG Moving Picture Experts Group-an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video
MPEG Several standards of compression for moving pictures and video:
standards + MPEG-1 is optimized for CD-ROM and is the basis for MP3
* MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
* MPEG-3 was merged into MPEG-2
¢ MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web
MQSPI Multiple Queue Serial Peripheral Interface-used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals
MSHC Memory Stick Host Controller
NAND Flash |Flash ROM technology-NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high-
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write,
and read capabilities over NOR architecture
NOR Flash |See NAND Flash
PCMCIA Personal Computer Memory Card International Association-a multicompany organization that has developed a
standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths
physical The address by which the memory in the system is physically accessed
address
PLL Phase Locked Loop-an electronic circuit controlling an oscillator so that it maintains a constant phase angle (a
lock) on the frequency of an input, or reference, signal
RAM Random Access Memory
RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application
RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to
create other colors. The abbreviation RGB comes from the three primary colors in additive light models
RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the
lighter the picture gets. PNG is the best known image format that uses the RGBA color space
RNGA Random Number Generator Accelerator-a security hardware module that produces 32-bit pseudo random
numbers as part of the security module
ROM Read Only Memory
ROM Internal boot code encompassing the main boot flow as well as exception vectors
bootstrap

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 31

Audience
Term Definition

RTIC Real-Time Integrity Checker-a security hardware module

SCC SeCurity Controller-a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter-a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface-a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOS/

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface-standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter-asynchronous serial communication to external devices

uiD Unique ID-a field in the processor and CSF identifying a device or group of devices

uSB Universal Serial Bus-an external bus standard that supports high-speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480
Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go-an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

i.MX Linux® Reference Manual, Rev. 0, 10/2016
32 NXP Semiconductors

Chapter 2
Introduction

2.1 Overview

The 1.MX family Linux BSP supports the Linux Operating System (OS) on the
Applications Processor.

The 1.MX family Linux Board Support Package (BSP) supports the Linux Operating
System (OS) on the following processors:

1.MX 6Dual/6DualPlus/6Quad/6QuadPlus/6Solo/6DualLite/6SoloLite/6SoloX/6UltaLite/
7Dual applications processor

Because of an order from the United States International Trade Commission, BGA-
packaged product lines and part numbers indicated here currently are not available from
Freescale for import or sale in the United States prior to September 2010: 1. MX25,
1.MX27,1.MX31, 1.MX32, i.MX35, i.MX37.

NOTE
The family of all .MX processors is known as the 1.MX
platforms. This term is used in sections that apply to any of
these application processors.

The purpose of this software package is to support Linux OS on the i.MX 6Dual/6Quad/
6Solo/6DualLite/6SoloLite/6UltaLite/7Dual family of Integrated Circuits (ICs) and their
associated platforms. It provides the necessary software to interface the standard open-
source Linux kernel to the .MX hardware. The goal is to enable Freescale customers to
rapidly build products based on 1.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of
the product-specific drivers, hardware-independent software stacks, Graphical User
Interface (GUI) components, Java Virtual Machine (JVM), and applications required for
a product. Some of these are made available in their original open-source form as part of
the base kernel.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 33

Overview

The BSP is not intended to be used for silicon verification. While it can play a role in
this, the BSP functionality and the tests run on the BSP do not have sufficient coverage to
replace traditional silicon verification test suites.

2.1.1 Software Base

The 1.MX BSP is based on version 4.1.15 of the Linux kernel from the official Linux
kernel website (www .kernel.org). It is enhanced with the features provided by Freescale.

2.1.2 Features

Table below describes the features supported by the Linux BSP for specific platforms.

Table 2-1. Linux BSP Supported Features

Feature

Description

Chapter Source

Applicable
Platform

Machine-Specific Layer

MSL

Machine-Specific Layer (MSL) supports interrupts,
Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA.

Interrupts GIC: The Linux kernel contains
common ARM GIC interrupts handling code.
Interrupts (AITC/AVIC): The Linux kernel contains
common ARM code for handling interrupts. The
MSL contains platform-specific implementations
of functions for interfacing the Linux kernel to the
ARM Cortex-A9ARM Cortex-A11ARM Cortex-
A8interrupt controller.

Timer (GPT): The General Purpose Timer (GPT)
is set up to generate an interrupt as programmed
to provide OS ticks. Linux OS facilitates timer use
through various functions for timing delays,
measurement, events, alarms, high-resolution
timer features, and so on. Linux OS defines the
MSL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick
implementation.

GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the
configuration and utilization of the system,
including GPIO, IOMUX, and external board 1/O.
The 10 software module is board-specific, and
resides in the MSL layer as a self-contained set
of files. I/O configuration changes are centralized
in the GPIO module so that changes are not
required in the various drivers.

SPBA: The Shared Peripheral Bus Arbiter
(SPBA) provides an arbitration mechanism

Machine-Specific Layer (MSL) All

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016

34

NXP Semiconductors

http://www.kernel.org/

Chapter 2 Introduction

Table 2-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform
among multiple masters to allow access to the
shared peripherals. The SPBA implementation
under MSL defines the API to allow different
masters to take or release ownership of a shared
peripheral.
SDMA API The Smart Direct Memory Access (SDMA) API driver | Smart Direct Memory Access All
controls the SDMA hardware. It provides an API to (SDMA) API
other drivers for transferring data between MCU, DSP
and peripherals. This API is standard Linux DMA
engine APl. SDMA is Linux DMA engine driver. . The
SDMA controller is responsible for transferring data
between the MCU memory space, peripherals, and the
DSP memory space. The SDMA API allows other
drivers to initialize the scripts, pass parameters and
control their execution. SDMA is based on a microRISC
engine that runs channel-specific scripts.
DMAC Both AHB-to-APBH and AHB-to-APBX DMA support AHB-to-APBH Bridge with DMA All
configurable DMA descript chain. (APBH-Bridge-DMA)
Low-level PM The low-level power management driver is responsible |Low-level Power Management All
Drivers for implementing hardware-specific operations to meet |(PM) Driver
power requirements and also to conserve power on the
development platforms. Driver implementations are
often different for different platforms. It is used by the
DPM layer.
CPU Frequency |The CPU frequency scaling device driver allows the CPU Frequency Scaling All
Scaling clock speed of the CPUs to be changed on the fly. (CPUFREQ) Driver
Dynamic Bus In order to improve power consumption, the Bus Dynamic Bus Frequency Driver All
Frequency Driver |Frequency driver dynamically manages the various
system frequencies.
Multimedia Drivers
LCD The LCD interface driver supports the Samsung ELCDIF Frame Buffer Driver i.MX
LMS430xx 4.3" WQVGA LCD panel. 6SoloLite,
i.MX
6UltraLite,
i.MX 7Dual
EPDC The Electrophoretic Display Controller (EPDC) is a Electrophoretic Display Controller |i.MX
direct-drive active matrix EPD controller designed to (EPDC) Frame Buffer 6DualLite,
drive E Ink EPD panels supporting a wide variety of i.MX 6Solo,
TFT backplanes. i.MX
6SoloLite,
i.MX 7Dual
PxP The Pixel Pipeline (PxP) DMA-ENGINE driver provides |PXP DMA-ENGINE Driver i.MX
a unique API, which are implemented as a DMA engine 6DuallLite,
client that smooths over the details of different i.MX 6Solo,
hardware offload engine implementations. i.MX
6SoloLite,
i.MX
6UltralLite,
i.MX 7Dual

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

35

Overview
Table 2-1. Linux BSP Supported Features (continued)
Feature Description Chapter Source Applicable
Platform
IPU The Image Processing Unit (IPU) is designed to Image Processing Unit (IPU) i.MX 6Quad,
support video and graphics processing functions and to | Drivers i.MX 6Dual,
interface with video/still image sensors and displays. i.MX
The IPU driver is a self-contained driver module in the 6DuallLite,
Linux kernel. It contains a custom kernel-level API to i.MX 6Solo,
manipulate logical channels. A logical channel i.MX
represents a complete IPU processing flow. The IPU 6UltraLite,
driver includes a frame buffer driver, a V4L2 device i.MX 7Dual
driver, and low-level IPU drivers.
HDMI This driver provides the support HDMI module HDMI Driver All
V4L2 Qutput The Video for Linux 2 (V4L2) output driver uses the IPU | Video for Linux Two (V4L2) Driver |All
post-processing functions for video output. The driver
implements the standard V4L2 API for output devices.
V4L2 Capture The Video for Linux 2 (V4L2) capture device includes | Video for Linux Two (V4L2) Driver |All
two interfaces: the capture interface and the overlay
interface. The capture interface records the video
stream. The overlay interface displays the preview
video.
VPU The Video Processing Unit (VPU) is a multistandard Video Processing Unit (VPU) i.MX 6Quad,
video decoder and encoder that can perform decoding |Driver i.MX 6Dual,
and encoding of various video formats. i.MX
6DuallLite,
i.MX 6Solo
Sound Drivers
ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a ALSA Sound Driver All
sound driver that provides ALSA and OSS compatible
applications with the means to perform audio playback
and recording functions using the audio components
provided by Freescale's PMIC chips. ALSA has a user-
space component called ALSAlib that can extend the
features of audio hardware by emulating the same in
software (user space), such as resampling, software
mixing, snooping, and so on. The ASoC Sound driver
supports stereo CODEC playback and capture through
SSI.
S/PDIF The S/PDIF driver is designed under the Linux ALSA | The Sony/Philips Digital Interface | All
subsystem. It implements one playback device for Tx | (S/PDIF) Driver
and one capture device for Rx. MX35 supports the S/
PDIF transceiver.MX37 MX51 only supports S/PDIF
transmitter.
Memory Drivers
SPINOR MTD |The SPI NOR MTD driver provides the support to the | SPI NOR Flash Memory All
Atmel data Flash using the SPI interface. Technology Device (MTD) Driver
NAND MTD The NAND MTD driver interfaces with the integrated " NAND GPMI Flash Driver i.MX 6Quad,
NAND controller. It can support various file systems, i.MX 6Dual,
such as UBIFS, CRAMFS and JFFS2UBI and i.MX
UBIFSCRAMFS and JFFS2. The driver implementation 6DuallLite,
supports the lowest level operations on the external i.MX 6Solo,
NAND Flash chip, such as block read, block write and
block erase as the NAND Flash technology only
Table continues on the next page...
i.MX Linux® Reference Manual, Rev. 0, 10/2016
36 NXP Semiconductors

4
Chapter 2 Introduction

Table 2-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform
supports block access. Because blocks in a NAND i.MX
Flash are not guaranteed to be good, the NAND MTD 6UltralLite,
driver is also able to detect bad blocks and feed that i.MX 7Dual
information to the upper layer to handle bad block
management.
SATA The SATA AHCI driver is based on the LIBATA layer of |SATA Driver i.MX 6Quad,
the block device infrastructure of the Linux kernel i.MX 6Dual

Input Device Drivers

Networking Drivers

ENET The ENET Driver performs the full set of IEEE 802.3/ Fast Ethernet Controller (FEC) All
Ethernet CSMA/CD media access control and channel |Driver
interface functions. The FEC requires an external
interface adaptor and transceiver function to complete
the interface to the Ethernet media. It supports half or
full-duplex operation on 10M\100M\1G-related Ethernet
networks.

Bus Drivers

[2C The 12C bus driver is a low-level interface that is used |Inter-IC (I12C) Driver All
to interface with the 12C bus. This driver is invoked by
the 12C chip driver; it is not exposed to the user space.
The standard Linux kernel contains a core 12C module
that is used by the chip driver to access the bus driver
to transfer data over the 12C bus. This bus driver
supports:

¢ Compatibility with the 12C bus standard

* Bit rates up to 400 Kbps

» Standard 12C master mode

* Power management features by suspending and
resuming 12C.

CSPI The low-level Enhanced Configurable Serial Peripheral |Enhanced Configurable Serial All
Interface (ECSPI) driver interfaces a custom, kernel- Peripheral Interface (ECSPI) Driver
space API to both ECSPI modules. It supports the
following features:

* Interrupt-driven transmit/receive of SPI frames
¢ Multiclient management

* Priority management between clients

* SPI device configuration per client

MMC/SD/SDIO - |The MMC/SD/SDIO Host driver implements the MMC/SD/SDIO Host Driver All
uSDHCeSDHC |standard Linux driver interface to eSDHC.

UART Drivers

MXC UART The Universal Asynchronous Receiver/Transmitter Universal Asynchronous Receiver/ |All
(UART) driver interfaces the Linux serial driver APl to | Transmitter (UART) Driver
all of the UART ports. A kernel configuration parameter
gives the user the ability to choose the UART driver
and also to choose whether the UART should be used
as the system console.

General Drivers

USB The USB driver implements a standard Linux driver CHIPIDEA USB Driver All
interface to the ARC USB-OTG controller.

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 37

Overview
Table 2-1. Linux BSP Supported Features (continued)
Feature Description Chapter Source Applicable
Platform
FlexCAN The FlexCAN driver is designed as a network device FlexCAN Driver i.MX 6Quad,
driver. It provides the interfaces to send and receive i.MX 6Dual,
CAN messages. The CAN protocol was primarily i.MX
designed to be used as a vehicle serial data bus, 6DuallLite,
meeting the specific requirements of this field: real-time i.MX 6Solo,
processing, reliable operation in the EMI environment i.MX
of a vehicle, cost-effectiveness and required bandwidth. 6UltralLite
ASRC The Asynchronous Sample Rate Converter (ASRC) Asynchronous Sample Rate i.MX 6Quad,
driver provides the interfaces to access the Converter (ASRC) Driver i.MX 6Dual,
asynchronous sample rate converter module. i.MX
6DualLite,
i.MX 6Solo
WatchDog The Watchdog Timer module protects against system |Watchdog (WDOG) Driver All
failures by providing an escape from unexpected hang
or infinite loop situations or programming errors. This
WDOG implements the following features:
* Generates a reset signal if it is enabled but not
serviced within a predefined time-out value
* Does not generate a reset signal if it is serviced
within a predefined time-out value
MXC PWM driver | The MXC PWM driver provides the interfaces to access | Pulse-Width Modulator (PWM) All
MXC PWM signals Driver
Thermal Driver | Thermal driver is a necessary driver for monitoring and | Thermal Driver All
protecting the SoC. The thermal driver will monitor the
SoC's temperature in a certain frequency. It defines
three trip points: critical, hot, and active.
OProfile OProfile is a system-wide profiler for Linux systems, OProfile All
capable of profiling all running code at low overhead.

i.MX Linux® Reference Manual, Rev. 0, 10/2016

38

NXP Semiconductors

Chapter 3
Machine-Specific Layer (MSL)

3.1 Introduction

The Machine-Specific Layer (MSL) provides the Linux kernel with the machine-
dependent components found here.

* Interrupts including GPIO and EDIO (only on certain platforms)

e Timer

* Memory map

General Purpose Input/Output (GPIO) including IOMUX on certain platforms
Shared Peripheral Bus Arbiter (SPBA)

Smart Direct Memory Access (SDMA)

These modules are normally available in the following directory (In later sections, mach-
<xxx> 1s used to indicate the corresponding MSL platform folder):

<ltib dirs/rpm/BUILD/linux/arch/arm/mach-mx25 for MX25 platform
<ltib_dirs>/rpm/BUILD/linux/arch/arm/mach-mx27 for MX27 platform

<ltib dir>/rpm/BUILD/linux/arch/arm/mach-mx3 for MX31/MX32 platform
<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx35 for MX35 platform

<ltib dir>/rpm/BUILD/linux/arch/arm/mach-mx37 for MX37 platform
<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5 for MX5 platform
<ltib_dirs>/rpm/BUILD/linux/arch/arm/mach-mx6 for MX6 platform

<Yocto_ BuildDirs/linux/arch/arm/mach-imx for the i.MX 6 and i1i.MX 7 platforms

<litb dirs/rpm/BUILD/linux/arch/arm/mach-mx23 for imx23 platform
<litb_dir>/rpm/BUILD/linux/arch/arm/mach-mx28 for imx28 platform

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 39

A
Interrupts (Operation)

The MSL layer contains not only the modules common to all the boards using the same
processor, such as the interrupts and timer, but it also contains modules specific to each
board, such as the memory map. The following sections describe the basic hardware and
software operation and the software interfaces for MSL modules. First, the common
modules, such as Interrupts and Timer are discussed. Next, the board-specific modules,
such as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX on
some platforms) are detailed. Because of the complexity of the SDMA module, its design
is explained in SDMA relevant chapter.

Each of the following sections contains an overview of the hardware operation. For more
information, see the corresponding device documentation.

3.2 Interrupts (Operation)

This section describes the hardware and software operation of interrupts on the device.

3.2.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 128 internal and external
interrupt sources.

Each source can be enabled or disabled by configuring the Interrupt Enable Register or
using the Interrupt Enable/Disable Number Registers. When an interrupt source is
enabled and the corresponding interrupt source is asserted, the Interrupt Controller asserts
a normal or a fast interrupt request depending on the associated Interrupt Type Register
setting.

Interrupt Controller registers can only be accessed in supervisor mode. The Interrupt
Controller interrupt requests are prioritized in the following order: fast interrupts and
normal interrupts in order of highest priority level, then highest source number with the
same priority. There are sixteen normal interrupt levels for all interrupt sources, with
level zero being the lowest priority. The interrupt levels are configurable through eight
normal interrupt priority level registers. Those registers, along with the Normal Interrupt
Mask Register, support software-controlled priority levels for normal interrupts and
priority masking.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
40 NXP Semiconductors

4
Chapter 3 Machine-Specific Layer (MSL)

3.2.2 Interrupt Software Operation

For ARM architecture-based processors, normal interrupt and fast interrupt are two
different exception types. The exception vector addresses can be configured to start at
low address (0x0) or high address (OxFFFF0000).

The Linux OS implementation running on ARM architecture chooses the high-vector
address model.

The following file has a description of the ARM interrupt architecture.

<Yocto BuildDirs>/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

3.2.3 Interrupt Features
The interrupt implementation supports the following features:

e Interrupt Controller interrupt disable and enable

* Functions required by the Linux interrupt architecture as defined in the standard
ARM interrupt source code (mainly the <Yocto_BuildDir>/linux/arch/arm/kernel/
irq.c file)

3.2.4 Interrupt Source Code Structure

The interrupt module is implemented in the following file (located in the directory
<Yocto_BuildDir>/linux/arch/arm/plat-mxc):

irg.c (If CONFIG MXC TZIC is not selected)
tzic.c (If CONFIG MXC TZIC is selected)
gic.c (If CONFIG_ARM GIC is selected)
gpc.c (If CONFIG MXC is selected)

There are also two header files (located in the include directory specified at the beginning
of this chapter):

hardware.h
irgs.h

Table below lists the source files for interrupts.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 41

Interrupts
Table 3-1. Interrupt Files
File Description
hardware.h Register descriptions
irgs.h Declarations for number of interrupts supported
irg.c Actual interrupt functions
tzic.c Actual interrupt functions for TZIC modules
gic.c Actual interrupt functions for GIC modules

3.2.5 Interrupt Programming Interface
The machine-specific interrupt implementation exports a single function.

This function initializes the Interrupt Controller hardware and registers functions for
interrupt enable and disable from each interrupt source.

This is done with the global structure irq_desc of type struct irqdesc. After the
initialization, the interrupt can be used by the drivers through the request_irq() function to
register device-specific interrupt handlers.

In addition to the native interrupt lines supported from the Interrupt Controller, the
number of interrupts is also expanded to support GPIO interrupt and (on some platforms)
EDIO interrupts. This allows drivers to use the standard interrupt interface supported by
ARM device running Linux OS, such as the request_irq() and free_irq() functions.

3.3 Interrupts

The 1.MX231.MX28 uses an Interrupt Collector module. The following sections explain
the hardware and software operation for the interrupts.

3.3.1 Interrupt Hardware Operation 3780,MX28

The Interrupt Collector module controls and prioritizes a maximum of 128 internal and
external interrupt sources. Each source can be enabled and disabled by configuring the
ENABLE bit in the dedicated Hardware Interrupt Collector Interrupt register. When an
interrupt source is enabled and the corresponding interrupt source is asserted, the
Interrupt Collector asserts a normal or a fast interrupt request to the ARM core depending
on the ENFIQ bit value in the dedicated Hardware Interrupt Collector Interrupt register.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
42 NXP Semiconductors

L __4

Chapter 3 Machine-Specific Layer (MSL)
The Interrupt Collectors interrupt requests are prioritized in the order of fast interrupts
and normal interrupts in order of highest priority level. There are four normal interrupt
levels, with zero level being the lowest priority. The interrupt levels are configurable
through the PRIORITY bits of the Hardware Interrupt collector Interrupt register. Only in
supervisor mode can the Interrupt Collector registers be accessed. A number of IRQ
sources can be expanded by using GPIO lines to assert interrupts.

3.3.2 Interrupt Software Operation 3780, MX28

In ARM based processors, normal interrupt and fast interrupt are two different
exceptions. The exception vector addresses can be configured to start at a low address
(0x0) or at a high address (OxFFFF0000). The ARM Linux implementation chooses the
high vector address model. The following file has a detailed description about the ARM
interrupt architecture:

<ltib dir>/rpm/BUILD/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

3.3.3 Interrupt Requirements
The interrupt implementation meets the following requirements:

* The MSL shall use the Linux kernel Interrupt API to register and manage the
interrupts. This will allow drivers to register ISRs using the kernel API (request_irq,
free_irq)

3.3.4 Interrupt Source Code Structure Implementation

The MSL interrupt layer is implemented in the source files shown in table below, located
in the directories indicated at the beginning of this chapter:

Table 3-2. Interrupt Files List

File Description

icoll.c Interrupt manipulation functions

irgs.h Interrupt source numbers

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 43

Timer
Table 3-2. Interrupt Files List (continued)
File Description
regs-icoll.h Interrupt Collector registers
entry-macro.S Interrupt source detection

3.3.5 Interrupt Programming Interface, 3780, MX28

The Machine Specific Layer implementation exports a single function that initializes the
Interrupt Collector and register interrupt manipulation routines for each interrupt source
in the system. This performs with the structures irq_chip and mxs_gpio_chip of the
irq_chip type that contain functions to enable, disable, and acknowledge interrupt
sources.

The irq_chip is associated with 1.MX231.MX28 normal 128 interrupt sources while
mxs_gpio_chi is used for external GPIO interrupts. Each interrupt source is associated
with one of the irq_chip structures with the set_irq_chip call. After initialization, the
interrupt can be used by the drivers through the request_irq() and free_irq() functions to
register device-specific interrupt handlers. Upon receiving the interrupt, the interrupt
code uses get_irqnr_and_base to detect the interrupt source, acknowledges the interrupt
using the registered irq_chip structure set by the MSL, and calls the registered device-
specific interrupt handler. Depending on the flags passed to the request_irq function, the
code may disable the interrupt using an irq_chip call before executing the device-specific
handler.

3.3.6 Interrupt Unit Test

As this module provides the utility functions and services for the whole system, it is
tested through the proper operation of other modules and drivers.

3.4 Timer

The Linux kernel relies on the underlying hardware to provide support for both the
system timer (which generates periodic interrupts) and the dynamic timers (to schedule
events).

After the system timer interrupt occurs, it does the following:
e Updates the system uptime

i.MX Linux® Reference Manual, Rev. 0, 10/2016
44 NXP Semiconductors

L __4
Chapter 3 Machine-Specific Layer (MSL)
e Updates the time of day
» Reschedules a new process if the current process has exhausted its time slice
* Runs any dynamic timers that have expired
e Updates resource usage and processor time statistics

The timer hardware on most i.MX platforms consists of either Enhanced Periodic
Interrupt Timer (EPIT) or general purpose timer (GPT) or both. GPT is configured to
generate a periodic interrupt at a certain interval (every 10 ms) and is used by the Linux
kernel. The timer hardware consists of four 16-bit 32 KHz timers.

The timer hardware consists of four 32-bit 32 KHz timers.

3.4.1 Timer Hardware Operation

The General Purpose Timer (GPT) has a 32 bit up-counter. The timer counter value can
be captured in a register using an event on an external pin. The capture trigger can be
programmed to be a rising or falling edge. The GPT can also generate an event on
ipp_do_cmpout pins, or can produce an interrupt when the timer reaches a programmed
value. It has a 12-bit prescaler providing a programmable clock frequency derived from
multiple clock sources.

3.4.2 Timer Hardware Operation 3780, MX28

Each of the four timers consists of a 1632-bit fixed count value and a 1632-bit free-
running count value. In most cases, the free-running count decrements to 0. When it
decrements to 0, it sets an interrupt status bit associated with the counter, which causes:

« If the RELOAD bit is set to 1, the count is automatically copied to the free-running
counter and the count continues
e If the RELOAD bit is not set, the timer stalls when it reaches O

Each timer has an UPDATE bit that controls whether the free-running-counter is loaded
at the same time that the fixed-count register is written from the CPU. The output of each
timer's source select has a polarity control that allows the timer to operate on either edge.
The timers have multiple clock sources that include the PWM output signals, the rotary
encoder inputs and the on-chip 32 KHz XTAL that, in turn, can be programmed to 32
KHz, 8 KHz, 4 KHz or 1 KHz timer update cycles.

Each of the four times have compare match register. When free-running counter equal
match value, it issue a interrupt.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 45

Timer

3.4.3 Timer Software Operation

The timer software implementation provides an initialization function that initializes the
GPT with the proper clock source, interrupt mode and interrupt interval.

The timer then registers its interrupt service routine and starts timing. The interrupt
service routine is required to service the OS for the purposes mentioned in Timer.
Another function provides the time elapsed as the last timer interrupt.

3.4.4 Timer Features
The timer implementation supports the following features:

* Functions required by Linux OS to provide the system timer and dynamic timers.
* Generates an interrupt every 10 ms.

3.4.5 Timer Source Code Structure

The timer module is implemented in the arch/arm/mach-imx/time.carch/arm/plat-mxs/
time-nomatch.carch/arm/plat-mxs/timer-match.c file.

3.4.6 Timer Programming Interface 3780

The timer module utilizes two hardware timers, 0 and 1, to implement clock source and
clock event objects. This is done with the cksrc_mxs_nomatch structure of struct
clocksource type and ckevt_timrot structure of struct clock_event type. Both structures
provide routines required for reading current timer values and scheduling the next timer
event. The module implements a timer interrupt routine that services the Linux OS with
timer events for the purposes mentioned in the beginning of this chapter.

3.4.7 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock
event objects.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
46 NXP Semiconductors

L __4

Chapter 3 Machine-Specific Layer (MSL)
This 1s done with the mxs_clocksource structure of struct clocksource type and
mxs_clockevent structure of struct mxs_clockevent type. Both structures provide routines
required for reading current timer values and scheduling the next timer event. The
module implements a timer interrupt routine that services the Linux OS with timer events
for the purposes mentioned in the beginning of this chapter.

3.4.8 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock
event objects.

This is done with the clocksource_mxc structure of struct clocksource type and
clockevent_mxc structure of struct clockevent_device type. Both structures provide
routines required for reading current timer values and scheduling the next timer event.
The module implements a timer interrupt routine that services the Linux OS with timer
events for the purposes mentioned in the beginning of this chapter.

3.4.9 Timer Unit Test

The timer's operation can be verified through the proper operation of the Linux kernel
itself. The timer must be programmed correctly before the Linux kernel boots.

3.5 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to
access to the device registers since the Linux kernel is running under the virtual address
space with the Memory Management Unit (MMU) enabled.

3.5.1 Memory Map Hardware Operation

The MMU, as part of the ARM core, provides the virtual to physical address mapping
defined by the page table. For more information, see the ARM Technical Reference
Manual (TRM) from ARM Limited.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 47

A ————
Memory Map

3.5.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for 1.MX
platforms as defined in the <Yocto_BuildDir>/arch/arm/mach-imx/pm-imx*.cfile.

3.5.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the
physical to virtual memory map for all the I/O modules.

3.5.4 Memory Map Source Code Structure

The Memory Map module implementation is in pm-imx*.c or mx23evk.cmx28evk.c
under the platform-specific MSL directory. The hardware.h header file is used to provide
macros for all the I/O module physical and virtual base addresses and physical to virtual
mapping macros. All of the memory map source code is in the in the following file:

<Yocto_BuildDirs/arch/arm/mach-imx/pm-imx*.c
<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs/include/mach
<ltib dir>/rpm/BUILD/linux/arch/arm/mach-imx

<ltib dir>/rpm/BUILD/linux/arch/arm/mach-mx56
<platform>

Table below lists the source file for the memory map.

Table 3-3. Memory Map Files

File Description
mx31.h Header files for the 1/0O module physical addresses
mx35.h Header files for the I/0 module physical addresses
mx27.h Header files for the 1/0 module physical addresses
mx37.h Header files for the 1/0 module physical addresses
mx51.h Header files for the 1/0 module physical addresses
mx53.h Header files for the 1/0 module physical addresses
mx6.h, mx7.h Header files for the I/0O module physical addresses
mx25.h Header files for the 1/0O module physical addresses
hardware.h Macro header file
hardware.h, platform.h Header files
hardware.h Memory map definition file
mx23evk.c Memory map definition file

i.MX Linux® Reference Manual, Rev. 0, 10/2016
48 NXP Semiconductors

4
Chapter 3 Machine-Specific Layer (MSL)

3.6 IOMUX

The limited number of pins of highly integrated processors can have multiple purposes.

The IOMUX module controls a pin usage so that the same pin can be configured for
different purposes and can be used by different modules.

This is a common way to reduce the pin count while meeting the requirements from
various customers. Platforms that do not have the IOMUX hardware module can do pin
muxing through the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be
configured either as a functional pin or as a GPIO pin. A functional pin can be subdivided
into either a primary function or alternate functions. The pin operation is controlled by a
specific hardware module. A GPIO pin, is controlled by the user through software with
further configuration through the GPIO module. For example, the TXD1 pin might have
the following functions:

e TXD1-internal UART1 Transmit Data. This is the primary function of this pin.
e UART2 DTR-alternate mode 3

 LCDC_CLS-alternate mode 4

* GPIO4[22]-alternate mode 5

e SLCDC_DATA[8]-alternate mode 6

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose and cannot be changed by software. Otherwise, the [IOMUX module
needs to be configured to serve a particular purpose that is dictated by the system (board)
design. If the pin is connected to an external UART transceiver and therefore to be used
as the UART data transmit signal, it should be configured as the primary function. If the
pin is connected to an external Ethernet controller for interrupting the ARM core, then it
should be configured as GPIO input pin with interrupt enabled. Again, be aware that the
software does not have control over what function a pin should have. The software only
configures pin usage according to the system design.

3.6.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware
module.

The IOMUX controller registers are briefly described in this section.

For detailed information, see the pin multiplexing section of the IC Reference Manual.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 49

A
IOMUX
« SW_MUX_CTL-Selects the primary or alternate function of a pin. Also enables
loopback mode when applicable.
 SW_SELECT_INPUT-Controls pin input path. This register is only required when
multiple pads drive the same internal port.
* SW_PAD_CTL-Control pad slew rate, driver strength, pull-up/down resistance, and
SO on.

3.6.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functionality and
pad features.

3.6.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are
supported by the hardware.

3.6.4 IOMUX Source Code Structure

Table below lists the source files for the [IOMUX module. The files are in the following
directories:

* <Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx.c

* <Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6sl.c
e <Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6q.c

* <Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6sx.c
* <Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6ul.c
e <Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx7d.c

Table 3-4. IOMUX Files

File Description
pinctrl-imx.c i.MX pinctrl core driver
pinctrl-imésl.c i.MX 6SoloLite pinctrl driver
pinctrl-imx6q.c i.MX 6Quad/DualLite pinctrl driver
pinctrl-imx6sx.c i.MX 6SoloX pinctrl driver
pinctrl-imx6ul.c i.MX 6UltralLite pinctrl driver
pinctrl-imx7d.c i.MX 7Dual pinctrl driver

i.MX Linux® Reference Manual, Rev. 0, 10/2016
50 NXP Semiconductors

4
Chapter 3 Machine-Specific Layer (MSL)

3.6.5 IOMUX Programming Interface
See pinctrl binding documents:

* imx-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl
e imx6sl-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl

3.6.6 IOMUX Control Through GPIO Module

For a multipurpose pin, the GPIO controller provides the multiplexing control so that
each pin may be configured either as a functional pin, or a GPIO pin.

The operation of the functional pin, which can be subdivided into either major function or
one alternate function, is controlled by a specific hardware module. If it is configured as a
GPIO pin, the pin is controlled by the user through software with further configuration
through the GPIO module. In addition, there are some special configurations for a GPIO
pin (such as output based A_IN, B_IN, C_IN or DATA register, but input based A_OUT
or B_OUT).

The following discussion applies to those platforms that control the muxing of a pin
through the general purpose input/output (GPIO) module.

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose which cannot be changed by software. Otherwise, the GPIO module
needs to be configured properly to serve a particular purpose that is dictated with the
system (board) design. If this pin is connected to an external UART transceiver, it should
be configured as the primary function or if this pin is connected to an external Ethernet
controller for interrupting the core, then it should be configured as GPIO input pin with
interrupt enabled. The software does not have control over what function a pin should
have. The software only configures a pin for that usage according to the system design.

3.6.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub
modules. The following sections briefly describe the hardware operation. For detailed
information, see the relevant device documentation.

3.6.6.1.1 Muxing Control
The GPIO In Use Registers control a multiplexer in the GPIO module.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 51

A ————
General Purpose Input/Output(GPIO)

The settings in these registers choose if a pin is utilized for a peripheral function or for its
GPIO function. One 32-bit general purpose register is dedicated to each GPIO port.
These registers may be used for software control of [OMUX block of the GPIO.

3.6.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control
every pin of that port.

3.6.6.2 GPIO Software Operation (general)

The GPIO software implementation provides an API to setup pin functionality and pad
features.

3.6.6.3 GPIO Implementation

The GPIO implementation programs the GPIO module to configure the pins that are
supported by the hardware.

3.7 General Purpose Input/Output(GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs
or outputs.

When configured as an output, the pin state (high or low) can be controlled by writing to
an internal register. When configured as an input, the pin input state can be read from an
internal register.

3.7.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the 1.MX
processor external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly
accessing the GPIO registers. The GPIO interrupt implementation contains functions,
such as the interrupt service routine (ISR) registration/un-registration and ISR
dispatching once an interrupt occurs. All driver-specific GPIO setup functions should be

i.MX Linux® Reference Manual, Rev. 0, 10/2016
52 NXP Semiconductors

L __4

Chapter 3 Machine-Specific Layer (MSL)
made during device initialization in the MSL layer to provide better portability and
maintainability. This GPIO interrupt is initialized automatically during the system
startup.

If a pin is configured as GPIO by the IOMUX, the state of the pin should also be set since
it is not initialized by a dedicated hardware module. Setting the pad pull-up, pull-down,
slew rate and so on, with the pad control function may be required as well.

3.7.1.1 API for GPIO
API for GPIO lists the features supported by the GPIO implementation.
The GPIO implementation supports the following features:

* An API for registering an interrupt service routine to a GPIO interrupt. This is made
possible as the number of interrupts defined by NR_IRQS is expanded to
accommodate all the possible GPIO pins that are capable of generating interrupts.

* Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of
request/free function calls are provided. The user should check the return value of the
request calls to see if the pin has already been reserved before modifying the pin
state. The free function calls should be made when the pin is not needed. See the API
document for more details.

 Aligned parameter passing for both IOMUX and GPIO function calls. In this
implementation the same enumeration for iomux_pins is used for both IOMUX and
GPIO calls and the user does not have to figure out in which bit position a pin is
located in the GPIO module.

* Minimal changes required for the public drivers such as Ethernet and UART drivers
as no special GPIO function call is needed for registering an interrupt.

3.7.2 GPIO Features

This GPIO implementation supports the following features:

e Implements the functions for accessing the GPIO hardware modules
* Provides a way to control GPIO signal direction and GPIO interrupts

3.7.3 GPIO Module Source Code Structure

All of the GPIO module source code is in the GPIO framework, in the following files,
located in the directories indicated at the beginning of this chapter:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 53

General Purpose Input/Output(GPIO)

Table 3-5. GPIO Files

File

Description

drivers/gpio/gpio-mxc.c

Function implementation

3.7.4 GPIO Programming Interface 2

For more information, see the Documentation/gpio.txt under Linux source code directory
for the programming interface.

i.MX Linux® Reference Manual, Rev. 0, 10/2016

54

NXP Semiconductors

Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview
The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware.

It provides an API to other drivers for transferring data between MCU memory space,
DSP memory space and the peripherals. It supports the following features:

 Loading channel scripts from the MCU memory space into SDMA internal RAM
» Loading context parameters of the scripts

» Loading buffer descriptor parameters of the scripts

» Controlling execution of the scripts

* Callback mechanism at the end of script execution

4.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space, the DSP memory space and peripherals and includes the following features:

e Multichannel DMA supporting up to 32 time-division multiplexed DMA channels.

e Powered by a 16-bit Instruction-Set micro-RISC engine.

» Each channel executes specific script.

* Very fast context-switching with two-level priority based preemptive multitasking.

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts.

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 55

Overview

4.1.2 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels
run dedicated scripts according to peripheral and transfer types. The SDMA API driver is
responsible for loading the scripts into SDMA memory, initializing the channel
descriptors, and controlling the buffer descriptors and SDMA registers.

The table below provides a list of drivers that use SDMA and the number of SDMA
physical channels used by each driver. A driver can specify the SDMA channel number
that it wishes to use, static channel allocation, or can have the SDMA driver provide a
free SDMA channel for the driver to use, dynamic channel allocation. For dynamic
channel allocation, the list of SDMA channels is scanned from channel 32 to channel 1.
Upon finding a free channel, that channel is allocated for the requested DMA transfers.

Table 4-1. SDMA Channel Usage

Driver Name Number of SDMA Channel Used
SDMA Channels
SDMA CMD 1 Static Channel allocation-uses SDMA channels 0
SSI 2 per device Dynamic channel allocation
UART 2 per device Dynamic channel allocation
SPDIF 2 per device Dynamic channel allocation
ESAI 2 per device Dynamic channel allocation

4.1.3 Source Code Structure

The dmaengine.h (header file for SDMA API) is available in the directory linux/include/
linux

The table below shows the source files available in the directory /<Yocto_BuildDir>/
linux/drivers/dma

Table 4-2. SDMA API Source Files

File Description

dmaengine.c SDMA management routine

imx-sdma.c SDMA implement driver

The table below shows the image files available in the directory /<Yocto_BuildDir>/
linux/firmware/imx/sdma

i.MX Linux® Reference Manual, Rev. 0, 10/2016
56 NXP Semiconductors

Chapter 4 Smart Direct Memory Access (SDMA) API

Table 4-3. SDMA Script Files

File

Description

sdma-mx6qg-to1.bin.ihex

SDMA RAM scripts

sdma-mx53-to1.bin.ihex

SDMA RAM scripts

sdma-mx51-to1.bin.ihex

SDMA RAM scripts

sdma-mx50-to1.bin.ihex

SDMA RAM scripts

4.1.4 Programming Interface

The module implements standard DMA API. See the API documents, which are included
in the Linux documentation package, for more information on the functions implemented
in the driver. For additional information, see the ESAI driver.

4.1.5 Usage Example

See one of the drivers, such as SPDIF driver, UART driver or SSI driver, that uses the
SDMA API driver for a usage example.

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

57

Overview

i.MX Linux® Reference Manual, Rev. 0, 10/2016
58 NXP Semiconductors

Chapter 5
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

5.1 Overview

The AHB-to-APBH bridge provides the processor with an inexpensive peripheral
attachment bus running on the AHB's HCLK.

(The H in APBH denotes that the APBH is synchronous to HCLK.)

The AHB-to-APBH bridge includes the AHB-to-APB PIO bridge for a memory-mapped
I/0O to the APB devices, as well as a central DMA facility for devices on this bus and a
vectored interrupt controller for the ARM core. Each one of the APB peripherals,
including the vectored interrupt controller, is documented in their own chapters elsewhere
in this document.

There is no separate DMA bus for these devices. Contention between the DMA's use of
the APBH bus and the AHB-to-APB bridge functions' use of the APBH is mediated by an
internal arbitration logic. For contention between these two units, the DMA is favored
and the AHB slave will report "not ready" through its HREADY output until the bridge
transfer can complete. The arbiter tracks repeated lockouts and inverts the priority,
guaranteeing the ARM platform every fourth transfer on the APB

5.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space, the DSP memory space and peripherals and includes the following features.

* Multichannel DMA supporting up to 32 time-division multiplexed DMA channels
* Powered by a 16-bit Instruction-Set micro-RISC engine

» Each channel executes a specific script

* Very fast context-switching with two-level priority based preemptive multitasking

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 59

Overview

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

5.1.2 Software Operation

The DMA supports sixteen channels of DMA services, as shown in the following table.
The shared DMA resource allows each independent channel to follow a simple chained
command list. Command chains are built up using the general structure.

Table 5-1. APBH DMA Channel Assignments

APBH DMA CHANNEL # USAGE
GPMIO
GPMI1
GPMI2
GPMI3
GPMI4
GPMI5
GPMI6
GPMI7
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

Ol N[O ND|—=|O

—_
o

—_
—_

—_
n

—_
w

—
N

—
o

5.1.3 Source Code Structure

The table below shows the source files available in the directory, drivers/dma/

Table 5-2. APBH DMA Source Files

File Description

mxs-dma.c APBH DMA implement driver

i.MX Linux® Reference Manual, Rev. 0, 10/2016
60 NXP Semiconductors

4
Chapter 5 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

5.1.4 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

 MXS_DMA -This is the configuration option for the APBH DMA driver. In
menuconfig, this option is available under:
* Device Drivers > DMA Engine support > MXS DMA support.

5.1.5 Programming Interface

The module implements standard DMA API. See the API documents, which are located
in the Linux documentation package, for more information on the functions implemented
in the driver such as GPMI NAND driver.

5.1.6 Usage Example

See one of the drivers, such as GPMI NAND driver, that uses the APBH DMA driver for
a usage example.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 61

Overview

i.MX Linux® Reference Manual, Rev. 0, 10/2016
62 NXP Semiconductors

Chapter 6
Image Processing Unit (IPU) Drivers

6.1 Revision history

This text and the following table are tagged Editor_Notes. The table lists the conditional
text tags defined in the PDK chapter from which this was created. Some chapters may
contain additional tags. Note that some of these tags are defined but may not be used.
These unused tags are provided to maintain consistency with other chapters and to avoid
conditional text tag conflicts when copying and pasting information from one chapter to
another. Note that these chapters contain some legacy tags. While the table was created
for PDK, there may be legacy tags or a lack of tagging throughout the reference manuals.

WARNING: Do not to use two conditional tags on the same item if one of the tags is set
to show and the other tag is set to hide. This will cause the tag to show.

Copy this table (and these instructions if you like), under the chapter title for each

chapter. We use this table in two ways: the next authors can see at a glance what
platforms are in the chapter; also, marking Hide/Show in the table indicates the content
for a release. The writer zips and backs up the book files. If a question arises, the content
release in always indicated in the table. This is important to FSL for legal reasons, and we
need to maintain the tables within the chapters.

Table 6-1. Conditional Text Settings

Conditional Text

Conditional Text

Manual

i.MX25 | i.MX27 | i.MX31 | i.MX32

i.MX35

i.MX37

i.MX51

3780

91131

91131

91221/MXC275-20

91221/MXC275-20

91231/MXC275-30

91231/MXC275-30

91311/MXC300-20

91311/MXC300-20

91321/MXC300-30

91321/MXC300-30

91331/MXC300-30

91331/MXC300-30

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

63

Introduction

Table 6-1. Conditional Text Settings (continued)

Conditional Text | Conditional Text Manual
i.MX25 | i.MX27 | i.MX31 | i.MX32 | i.MX35 | i.MX37 | i.MX51 3780

i.MX25 i.MX25 Show Hide Hide Hide Hide Hide Hide Hide
i.MX27 i.MX27 Hide Show Hide Hide Hide Hide Hide Hide
i.MX31 i.MX31 Hide Hide Show Hide Hide Hide Hide Hide
i.MX32 i.MX32 Hide Hide Hide Show Hide Hide Hide Hide
i.MX35 i.MX35 Hide Hide Hide Hide Show Hide Hide Hide
i.MX37 i.MX37 Hide Hide Hide Hide Hide Show Hide Hide
i.MX51 i.MX51 Hide Hide Hide Hide Hide Hide Show Hide
3780 3780 Hide Hide Hide Hide Hide Hide Hide Show
unit_test unit_test
Cust_info Cust_info Show if present
Editor_Notes Editor_Notes Internal versions only-Hide
non_cust non_cust Internal versions only-Hide
Footer:Confidential |Confidential All NDA doc's-Show
Footer:Preliminary |Preliminary All NDA doc's-Show
Footer:Security Footer:Security Internal versions only-Hide
Review_Q&A Review_Q&A Internal versions only-Hide
statement statement Internal versions only-Hide

6.2 Introduction

The image processing unit (IPU) is designed to support video and graphics processing
functions and to interface with video and still image sensors and displays. The IPU driver
provides a kernel-level API to manipulate logical channels. A logical channel represents
a complete IPU processing flow. For example, a complete IPU processing flow (logical
channel) might consist of reading a YUV buffer from memory, performing post-
processing, and writing an RGB buffer to memory. A logical channel maps one to three
IDMA channels and maps to either zero or one IC tasks. A logical channel can have one
input, one output, and one secondary input IDMA channel. The IPU API consists of a set
of common functions for all channels. Its functions are to initialize channels, set up
buffers, enable and disable channels, link channels for auto frame synchronization, and
set up interrupts.

There are two main IPU versions:
IPUvI used in iMX.31 and iMX.35 platform;

IPUV3D used in iMX.37 platform, [IPUv3EX used in iMX.51 platform and IPUv3H used
in iMX.6q platform.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
64 NXP Semiconductors

4
Chapter 6 Image Processing Unit (IPU) Drivers

Typical logical channels include:

» CSI direct to memory

e CSI to viewfinder pre-processing to memory or ADC

* Memory to viewfinder pre-processing to memory or ADC

* Memory to viewfinder rotation to memory

* Previous field channel of memory to video deinterlacing and viewfinder pre-
processing to memory or ADC

* Current field channel of memory to video deinterlacing and viewfinder pre-
processing to memory or ADC

 Next field channel of memory to video deinterlacing and viewfinder pre-processing
to memory or ADC

» CSI to encoder pre-processing to memory

* Memory to encoder pre-processing to memory

* Memory to encoder rotation to memory

* Memory to post-processing to memory or ADC

* Memory to post-processing rotation to memory

* Memory to post filter (Y buffer) to memory (IPUvI)

* Memory to post filter (U buffer) to memory (IPUv1)

e Memory to post filter (V buffer) to memory (IPUv1)

* Memory to synchronous frame buffer background

* Memory to synchronous frame buffer foreground

e Memory to synchronous frame buffer DC

* (IPUV3)

* Memory to synchronous frame buffer mask

* Memory to ADC system channel 1

* Memory to ADC System channel 2

The IPU API has some additional functions that are not common across all channels, and
are specific to an IPU sub-module. The types of functions for the IPU sub-modules are as
follows:

e Synchronous frame buffer functions
e Panel interface initialization

* Set foreground positions

* Set local/global alpha and color key
* Set gamma

e CSI functions

e Sensor interface initialization

e Set sensor clock

 Set capture size

e ADC Functions

e Panel interface initialization

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 65

Software Operation

e Send commands to panel
* Enable or disable prefetching linear frames by using PRE/PRG
* Enable or disable resolving tiled frames by using PRE/PRG

The higher level drivers are responsible for memory allocation, chaining of channels, and
providing user-level API.

6.2.1 Hardware Operation

The detailed hardware operation of the IPU is discussed in the Applications Processor
Reference Manual. The following figure shows the IPU hardware modules.

a

Figure 6-1. IPUV3EX/IPUvV3H IPU Module Overview

6.3 Software Operation
The IPU driver is a self-contained driver module in the Linux kernel.
It consists of a custom kernel-level API for the following blocks:

* Synchronous frame buffer driver

* Asynchronous frame buffer driver (in IPUv1)
* Display Interface (DI)

* Display Processor (DP)

* Image DMA Controller IDMAC)

* CMOS Sensor Interface (CSI)

* Image Converter (IC)

 Post-Filter (PF) (in IPUv1)
 Prefetch/Resolve Engine/Gasket (PRE/PRG)

Figure below shows the interaction between the different graphics/video drivers and the
IPU.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
66 NXP Semiconductors

Chapter 6 Image Processing Unit (IPU) Drivers

Came @ App Wideo ConTApp MedB PlTyer
App

Lpplication
[Tser Mode)

w ¥

MyltmedB Fram ewok

a k3

MELR gD

VAl LD

IPU Lib

Uger Oruenh

Middlewr ave
[User Maode)

L 3 ¥ L]
M wil IP U Uge mpace P ooy S0DC SOC oOC WAL ke el
Caoptm Drer Frame Bat FrameBat Frame Bnt Orlue 1
E Nirkern Mirker i E
Cam era Eemel Mode
Se wsor Druer
+ . * -+
122 sl IPU Commaw &P | J S0C I 8 0C]
D rue 1
FREENC [FHF'U'F]PP] RE ol
r1
|] Hardware
(o] ‘ P U J WAL
came @
—p [DM A channel transfer — Other Data Flow
—=—p Ophonal — Comtrol Calls

Figure 6-2. Graphics/Video Drivers Software Interaction for IPUv1

Separator text

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

67

Software Operation

— PR = Lypplication
era fpp o ConfApp | IEPPE'!.EF ——p Oher Data Flow (LITjspe]i Ivbde)

e Comitrol Calls

¥ ¥ r Biiddk ware
[hutimedia Framework] i User Ivbde)

¥ ¥ “wPU Plugin J
AL WL Wideo Sink ¥
Capurz Augin Plgin

- | “PU Library
[. ipu l (Ll-serst:la-:he Dm,:
[3 ¥ N “h F
WALZ Output Cherlay ST Sy e WLl
Diriver FrameBuf | FmmeBuf | FameBuf | |5 kamel
Driwer Driwer = rinier
oo (oo (011 L%
I:arnel:“ﬁi Sen=zor e Eerrel Iviode
= driver "‘--..__‘____
3 | r ¥ wic
B C3l | IPLJ Comman APl | IPU Display AR | di=play
Driver driver
| PRPENC J_FRF'U'FJ PP | OR/DCOI]
L& J

& | [IPU 1 WP Hatrbarare
.l

Figure 6-3. Graphics/Video Drivers Software Interaction for IPUv3

The drivers for [IPUv1 are named simply ipu. Drivers for IPUv3 contain 3 or v3 in the
name. The IPU drivers are sub-divided as follows:

* Device drivers-include the frame buffer driver for the synchronous frame buffer, the
frame buffer driver for the displays, V4L2 capture drivers for IPU pre-processing, the
V4L2 output driver for IPU post-processing, and the ipu processing driver which
provide system interface to user space or V4L2 drivers. The frame buffer device
drivers are available in the <Yocto_BuildDir>/linux/drivers/video/mxc directory of
the Linux kernel. The V4L2 device drivers are available in the <Yocto_BuildDir>/
linux/drivers/media/platform/mxc directory of the Linux kernel.

* MXC display driver is introduced as a simple framework to manage interaction
between IPU and display device drivers (e.g., LCD, LVDS, HDMI, MIPI, etc.)

* Low-level library routines-interface to the IPU hardware registers. They take input
from the high-level device drivers and communicate with the IPU hardware. The
low-level libraries are available in the <ltib_dir>/rpm/BUILD/linux/drivers/mxc/
ipuor <ltib_dir>/rpm/BUILD/linux/drivers/mxc/ipu3directory of the Linux kernel.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
68 NXP Semiconductors

4
Chapter 6 Image Processing Unit (IPU) Drivers

6.3.1 IPU Frame Buffer Drivers Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware, and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters
in the kernel configuration. To supplement the frame buffer driver, the kernel builder
may also include support for fonts and a startup logo. This device depends on the virtual
terminal (VT) console to switch from serial to graphics mode. The device is accessed
through special device nodes, located in the /dev directory, as /dev/fb*. fb0 is generally
the primary frame buffer.

Other than the physical memory allocation and LCD panel configuration, the common
kernel video API is utilized for setting colors, palette registration, image blitting, and
memory mapping. The IPU reads the raw pixel data from the frame buffer memory and
sends it to the panel for display.

6.3.1.1 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the [PU hardware driver module.

6.3.1.2 IPU Frame Buffer Software Operation

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

/dev/fb* also interacts with several IOCTLs, which allows users to query and set
information about the hardware. The color map is also handled through IOCTLs. For
more information on what IOCTLs exist and which data structures they use, see
<Yocto_BuildDir>/linux/include/uapi/linux/fb.h. The following are a few of the IOCTLs
functions:

* Request general information about the hardware, such as name, organization of the
screen memory (planes, packed pixels, and so on), and address and length of the
screen memory.

* Request and change variable information about the hardware, such as visible and
virtual geometry, depth, color map format, timing, and so on. The driver suggests

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 69

A
Software Operation
values to meet the hardware capabilities (the hardware returns EINVAL if that is not
possible) if this information is changed.

* Get and set parts of the color map. Communication is 16 bits-per-pixel (values for
red, green, blue, transparency) to support all existing hardware. The driver does all
the calculations required to apply the options to the hardware (round to fewer bits,
possibly discard transparency value).

The hardware abstraction makes the implementation of application programs easier and
more portable. The only thing that must be built into the application programs is the
screen organization (bitplanes or chunky pixels, and so on), because it works on the
frame buffer image data directly.

The MXC frame buffer driver (<Itib_dir>/rpm/BUILD/linux/drivers/video/mxc/mxcfb.c
or <lItib_dir>/rpm/BUILD/linux/drivers/video/mxc/mxc_ipuv3_fb.c) interacts closely
with the generic Linux frame buffer driver (<Yocto_BuildDir>/linux/drivers/video/fbdev/
core/fbmem.c).

6.3.1.3 Synchronous Frame Buffer Driver

The synchronous frame buffer screen driver (SDC in version 1) implements a Linux
standard frame buffer driver API for synchronous LCD panels or those without memory.
The synchronous frame buffer screen driver is the top level kernel video driver that
interacts with kernel and user level applications. This is enabled by selecting the
Synchronous Panel Frame buffer option under the graphics support device drivers in the
kernel configuration. To supplement the frame buffer driver, the kernel builder may also
include support for fonts and a startup logo. This depends on the VT console for
switching from serial to graphics mode.

Except for physical memory allocation and LCD panel configuration, the common kernel
video API is utilized for setting colors, palette registration, image blitting and memory
mapping. The IPU reads the raw pixel data from the frame buffer memory and sends it to
the panel for display.

The frame buffer driver supports different panels as a kernel configuration option.
Support for new panels can be added by defining new values for a structure of panel
settings.

The frame buffer interacts with the IPU driver using custom APIs that allow:

* Initialization of panel interface settings
* Initialization of IPU channel settings for LCD refresh
* Changing the frame buffer address for double buffering support

The following features are supported:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
70 NXP Semiconductors

L __4
Chapter 6 Image Processing Unit (IPU) Drivers
 Configurable screen resolution
* Configurable RGB 16, 24 or 32 bits per pixel frame buffer
» Configurable panel interface signal timings and polarities
* Palette/color conversion management
* Power management
* LCD power off/on
* Enable/disable PRE/PRG features

User applications utilize the generic video API (the standard Linux frame buffer driver
API) to perform functions with the frame buffer. These include the following:

* Obtaining screen information, such as the resolution or scan length
 Allocating user space memory using mmap for performing direct blitting operations

A second frame buffer driver supports a second video/graphics plane.

6.3.1.4 Asynchronous Display Controller (ADC) Frame Buffer Driver

The IPU version 1 asynchronous display controller frame buffer screen driver
implements a Linux standard frame buffer driver API for asynchronous or smart LCD
panels. The asynchronous frame buffer screen driver is the top level kernel video driver
that interacts with the kernel and user level applications. This is enabled by selecting the
corresponding frame buffer option under the graphics parameters in the kernel
configuration. To supplement the Frame buffer driver, the kernel builder may also
include support for fonts and a startup logo. This depends on the VT console for
switching from serial to graphics mode.

The frame buffer interacts with the IPU driver using custom APIs that allow:

* Initialization of panel interface settings for serial or parallel mode

e Initialization of IPU channel settings for asynchronous commands and data

 Control of IPU auto-refresh and/or bus snooping for automatic update of panel
memory

The following features are supported:

* Configurable RGB 16, 24 or 32 bits per pixel frame buffer
* Palette/color conversion management

* Power management
* LCD power off/on

User applications utilize the generic video API (the standard Linux frame buffer driver
API) to perform functions with the frame buffer. These include the following:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 71

A
Software Operation

 Obtaining screen information, such as the resolution or scan length

» Allocating user space memory using mmap for performing direct blitting operations

6.3.2 IPU Backlight Driver

IPU drivers also control the backlight. The IPU backlight driver implements IPU PWM
backlight control for panels. It exports a sys control file under /sys/class/backlight/pwm-
backlight.0/brightness to user space. The default backlight intensity value is 128.

6.3.3 MPEGA4/H.264 Post Filter Driver

The Post-filtering driver provides a custom user API for IPU post-filtering functions for
IPU version 1. The following features are supported by the driver:

* Support for MPEG4 dering and/or deblock

* Support for H264 deblock

* Support for intra-frame pause and resume (H.264 only)
* Synchronous and asynchronous operation

 Support for driver-allocated or user-allocated buffers

The post-filter driver implements ioctls for initialization, release, buffer allocation, and
beginning the processing for a frame.

6.3.4 IPU Device Driver

IPU (processing) device driver provide image processing features: resizing/rotation/CSC/
combination/deinterlacing based on IC/IRT modules in [PUV3.

The IPU device driver is task based, user just need prepare task setting, queue task, then
block wait task finish. The driver now support blocking method only, non-block method
will be added in the future. The task structures are like below:

struct ipu task {
struct ipu input input;
struct ipu output output;

bool overlay en;
struct ipu overlay overlay;

#define IPU TASK PRIORITY NORMAL 0
#define IPU TASK PRIORITY HIGH 1
us priority;

#define IPU TASK ID ANY 0
#define IPU TASK ID VF 1

i.MX Linux® Reference Manual, Rev. 0, 10/2016
72 NXP Semiconductors

4
Chapter 6 Image Processing Unit (IPU) Drivers

#define IPU TASK ID PP 2
#define IPU TASK ID MAX 3
us8 task _id;

int timeout;

Vi

struct ipu_input {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
dma_addr_t paddr;

struct ipu deinterlace deinterlace;
dma_addr_t paddr _n; /*valid when deinterlace enable*/

Vi

struct ipu overlay {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
struct ipu alpha alpha;
struct ipu colorkey colorkey;
dma_addr_t
paddr;

Vi

struct ipu output

{

u32 width;

u32 height;

u32 format;

u8 rotate;

struct ipu crop crop;
dma_addr t paddr;

Vi

To prepare task, user just needs to fill task.input, task.overlay(if need combine) and
task.output parameters, then queue task either by:

int ipu queue task(struct ipu task *task);

if from kernel level (V4L2 driver for example), or by IPU_QUEUE_TASK ioctl
under /dev/mxc_ipu if from application level.

6.4 Source Code Structure
This topic lists source files associated with the IPU, Sensor, V4L2, and Panel Drivers.

Table 6-2 lists the source files associated with the IPU, Sensor, V4L2, and Panel drivers.
These files are available in the following directories:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 73

Source Code Structure

Yocto BuildDir/linux/drivers/mxc/ipu3

Yocto BuildDir/linux/drivers/video/mxc

Yocto BuildDir/linux/drivers/video/fbdev/mxc
Yocto BuildDir/linux/drivers/video/backlight

Table 6-2. IPU Driver Files

File

Description

ipu_common.c

IPU common library functions

ipu_ic.c

IPU IC base driver

ipu_device.c

IPU driver device interface and fops functions

ipu_capture.c

IPU CSI capture base driver

ipu_disp.c

IPU display functions

ipu_calc_stripes_sizes.c

Multistripes method functions for ipu_device.c

pre.c

Prefetch/Resolve the engine driver

prg.c

Prefetch/Resolve the Gasket driver

mxc_ipuv3_fb.c

Driver for synchronous frame buffer

mxc_lcdif.c Display Driver for CLAA-WVGA and SEIKO-WVGA LCD support
mxc_hdmi.c Display Driver for HDMI interface
ldb.c Driver for synchronous frame buffer for on chip LVDS

mxc_dispdrv.c

Display Driver framework for synchronous frame buffer

mxc_edid.c

Driver for EDID

vdoa.c

VDOA post-processing driver, used by ipu_device.c

Table 6-3 lists the global header files associated with the IPU and Panel drivers. These
files are available in the following directories:

Yocto BuildDir/linux/drivers/mxc/ipu3/
Yocto BuildDir/linux/include/linux/
Yocto BuildDir/linux/drivers/media/platform/mxc/

Table 6-3. IPU Global Header Files

File

Description

ipu_param_mem.h

Helper functions for IPU parameter memory access

ipu_prv.h Header file for Pre-processing drivers
ipu_regs.h IPU register definitions

pre-regs.h Prefetch/Resolve Engine register definitions
prg-regs.h Prefetch/Resolve Gasket register definitions
vdoa.h Header file for VDOA drivers

mxc_dispdrv.h

Header file for display driver

mxcfb.h

Header file for the synchronous framebuffer driver

ipu.h

Header file for IPU basic driver

i.MX Linux® Reference Manual, Rev. 0, 10/2016

74

NXP Semiconductors

4
Chapter 6 Image Processing Unit (IPU) Drivers

6.4.1 Menu Configuration Options
The following Linux kernel configuration options are provided for the IPU module.

To get to these options use the command bitbake linux-imx -c menuconfig in the Yocto
build directory. On the screen displayed, select Configure the kernel and exit. When the
next screen appears select the options to configure.

* CONFIG_MXC_IPU_V3 - Includes support for the Image Processing Unit. In
menuconfig, this option is available under:

Device Drivers > MXC support drivers > Image Processing Unit Driver
By default, this option is Y for all architectures.
If ARCH_MXC is true, CONFIG_MXC_IPU_V3 will be set.

* CONFIG_MXC_IPU_V3_PRG - This enables support for the IPUv3 prefetch gasket
engine to support double buffer handshake control bewteen IPUv3 and prefetch
engine (PRE), snoop the AXI interface for display refresh requests to memory, and
modify the request address to fetch the double buffered row of blocks in OCRAM.

Device Drivers > MXC support drivers > i.MX IPUv3 prefetch gasket engine

This option depends on CONFIG_MXC_IPU_V3 and
CONFIG_MXC_IPU_V3_PRE.

* CONFIG_MXC_IPU_V3_PRE - This enables support for the IPUv3 prefetch engine
to improve the system memory performance. The engine has the capability to resolve
framebuffers in tile pixel format to linear.

Device Drivers > MXC support drivers > 1.MX IPUv3 prefetch engine

This option depends on CONFIG_MXC_IPU_V3. Enabling this option selects
CONFIG_MXC_IPU_V3_PRG.

* CONFIG_MXC_CAMERA_0OV5640_MIPI - Option for both the OV 5640 mipi
sensor driver and the use case driver. This option is dependent on the
VIDEO_MXC_CAPTURE option. In menuconfig, this option is available under:

Device Drivers > Multimedia support > V4L platform devices > MXC Video For
Linux Video Capture > MXC Camera/V4L2 PRP Features support > OmniVision
5640 Camera support using mipi

* CONFIG_MXC_CAMERA_0OV5640 - Option for both the OV5640 sensor driver
and the use case driver. This option is dependent on the VIDEO_MXC_CAPTURE
option. In menuconfig, this option is available under:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 75

Source Code Structure

Device Drivers > Multimedia platform > V4L platform devices > MXC Video For
Linux Video Capture > MXC Camera/V4L2 PRP Features support > OmniVision
ov5640 camera support

Only one sensor should be installed at a time.

CONFIG_MXC_IPU_PRP_VF_SDC - Option for the IPU (here the > symbols
illustrates data flow direction between HW blocks):

CSI > IC > MEM MEM > IC (PRP VF) > MEM

Use case driver for dumb sensor or

CSI > IC(PRP VF) > MEM

for smart sensors. In menuconfig, this option is available under:

Multimedia devices > Video capture adapters > MXC Video For Linux Camera >
MXC Camera/V4L2 PRP Features support > Pre-Processor VF SDC library

By default, this option is M for all.
CONFIG_MXC_IPU_PRP_VF_ADC - Options for the IPU:
Use case driver for the rotation

CSI > IC > MEM MEM > IC (ROT) > MEM MEM > ADC
or for smart sensors

CSI>1C > ADC.

In menuconfig, this option is available under: (Asynchronous Panels must be selected
under Graphics support for PP VF ADC library to appear)

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > Pre-Processor VF
ADC library

By default, this option is M for all.
CONFIG_MXC_IPU_PRP_ENC - Option for the IPU:
Use case driver for dumb sensors

CSI > IC > MEM MEM > IC (PRP ENC) > MEM

or for smart sensors

CSI > IC(PRP ENC) > MEM.

In menuconfig, this option is available under:

i.MX Linux® Reference Manual, Rev. 0, 10/2016

76

NXP Semiconductors

4
Chapter 6 Image Processing Unit (IPU) Drivers

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > Pre-processor Encoder
library

By default, this option is set to M for all.
* CONFIG_MXC_IPU_CSI_ENC - Option for the IPU:
Use case driver for dumb sensors
CSI > MEM
In menuconfig, this option is available under:

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > IPU CSI Encoder
library

By default, this option is set to M for all.

* CONFIG_MXC_IPU_PF - This is configuration option for MXC MPEG4/H.264
Post Filter Driver. This option is dependent on the MXC_IPU option. In menuconfig,
this option is available under:

Device Drivers > MXC support drivers > MXC MPEG4/H.264 Post Filter Driver
By default, this option is Y for all.

* CONFIG_VIDEO_MXC_CAMERA - This is configuration option for V4L2 capture
Driver. This option is dependent on the following expression:

VIDEO_DEV && MXC_IPU && MXC_IPU_PRP_VF_SDC &&
MXC_IPU_PRP_ENC

In menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera

By default, this option is M for all.

* CONFIG_VIDEO_MXC_OUTPUT - This is configuration option for V4L2 output
Driver. This option is dependent on VIDEO_DEV & & MXC_IPU option. In
menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video for
Linux Video Output

By default, this option is Y for all.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 77

AR
Unit Test

e CONFIG_FB - This 1s the configuration option to include frame buffer support in the
Linux kernel. In menuconfig, this option is available under:

Device Drivers > Graphics support > Support for frame buffer devices
By default, this option is Y for all architectures.

* CONFIG_FB_MXC - This is the configuration option for the MXC Frame buffer
driver. This option is dependent on the CONFIG_FB option. In menuconfig, this
option is available under:

Device Drivers > Graphics support > MXC Framebuffer support
By default, this option is Y for all architectures.

 CONFIG_FB_MXC_SYNC_PANEL - This is the configuration option that chooses
the synchronous panel framebuffer. This option is dependent on the
CONFIG_FB_MXC option. In menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer

By default this option is Y for all architectures.

 CONFIG_FB_MXC_LDB - This configuration option selects the LVDS module on
1.MX 6 chip. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL and
CONFIG_MXC_IPUV3 |l FB_MXS options. In menuconfig, this option is available
under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > MXC LDB

* CONFIG_FB_MXC_SII9022 - This configuration option selects the SI19022 HDMI
chip. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL option. In
menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > Si Image S119022 DVI/HDMI Interface Chip

6.5 Unit Test
NOTE

In order to execute the tests properly, make sure you have the
util-linux package selected and load the following modules:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
78 NXP Semiconductors

4
Chapter 6 Image Processing Unit (IPU) Drivers

insmod ipu_ prp_enc.ko

insmod ipu_bg overlay sdc.ko
insmod ipu_ fg overlay sdc.ko
insmod ipu csi_enc.ko

insmod ov5640_ camera.ko
insmod mxc_v412 capture.ko

6.5.1 Framebuffer Tests

There is a test application named mxc_fb_test.c under the <Yocto_BuildDir>/imx-
test-"version"/test/mxc_fb_test directory.

Execute the fb test as follows:
Jmxc_fb_test.out

The result should be Exiting PASS. The test includes fbO(background) and
fbl(foreground) devices open, framebuffer parameters configure, global alpha blending,
fb pan display test and gamma test.

Redirect an image directly to the framebuffer device as follows:

cat image.bin > /dev/fb0

6.5.2 Video4Linux API test

There are test applications named mxc_v412_test.c and mxc_v412_output.c under the
<Yocto_BuildDir>/imx-test-"version"/test/mxc_v412_test directory.

Before running the v412 capture test application, you should be able see that the /dev/v4l/
videoO has been created.

Test ID: FSL-UT-V4L2-capture-0010

mxc_v412 capture.out -iw 640 -ih 480 -m 0 -r 0 -c 50 -fr 30 test.yuv

Capture the camera and store the 50 frames of YUV420 (VGA size)to a file called
test.yuv and set the frame rate to 30 fps. Look at mxc v412 capture.out -help to see
usage.

Test ID: FSL-UT-V4L2-overlay-sdc-0010

mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
0 -t 50 -d 0 -fg -fr 30

Direct preview the camera to SDC foreground, and set frame rate to 30 fps, window
of
interest is 640 X 480 with starting offset(0,0), the preview size is 160 X 160 with
starting offset (20,20). mxc _v41l2 overlay.out -help to see the usage.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 79

Unit Test

Test ID: FSL-UT-V4L2-overlay-sdc-0020

mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il
4 -t 50 -d 0 -fr 30

Direct preview(90 degree rotation) the camera to
to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0010

mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il
0 -t 50 -d 1 -fg -fr 30

Direct preview the camera to foreground, and set

Test ID: FSL-UT-V4L2-overlay-adc-0020

mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il
4 -t 50 -d 1 -fg -fr 30

Direct preview (90 degree rotation) the camera to

30
fps.

Test ID: FSL-UT-V4L2-output-0010

0 -ow 160 -oh 160 -ot 20 -ol 20 -r

SDC background, and set frame rate

0 -ow 120 -oh 120 -ot 40 -ol 40 -r

frame rate to 30 fps.

0 -ow 120 -oh 120 -ot 40 -ol 40 -r

foreground, and set frame rate to

mxc_v412_ output.out -iw 640 -ih 480 -ow 1024 -oh 768 -r 0 -fr 60 test.yuv

Read the YUV420 stream file on test.yuv created by the mxc v41l2 capture test as run
in test FSL-UT-V4L2-capture-0010. Apply color space conversion and resize, then

display on the framebuffer.

NOTE

The PRP channels require the stride line to be a multiple of 8§,
for example with no rotation, the width needs to be 8 bit
aligned; and with 90 degree rotation, the height needs to be 8
bit aligned. Downsizing cannot exceed 8:1. For example, for a
VGA sensor, the smallest downsize 1s 80 X 60.

6.5.3 Post-Filter Test
NOTE

These tests do not apply to the 1.MX31 PDK (3-Stack) board.

i.MX Linux® Reference Manual, Rev. 0, 10/2016

80

NXP Semiconductors

4
Chapter 6 Image Processing Unit (IPU) Drivers

Test ID: FSL-UT-PF-0010
Execute the auto test as follows:
Jautorun-pf.sh

The result should be Exiting PASS.
End of Test FSL-UT-PF-0010

Build the mxc_pf_test.out in the imx-test directory. Before performing tests, obtain the
MPEG4 and H.264 clips.

Test ID: FSL-UT-IPU-PF-SDC-0010

mxc pf test.out -w 352 -h 240 -m 3 mpeg4 in.yuv mpeg4 in.gp
mpeg4 out dering deblock.yuv
The result should be Exiting PASS.
End of Test FSL-UT-IPU-PF-SDC-0010
Test ID: FSL-UT-IPU-PF-SDC-0020

mxc pf test.out -w 352 -h 240 -m 3 -async mpeg4 in.yuv mpeg4 in.gp
mpeg4 out dering deblock.yuv
The result should be Exiting PASS
End of Test FSL-UT-IPU-PF-SDC-0020
Test ID: FSL-UT-IPU-PF-SDC-0030

mxc pf test.out -w 176 -h 144 -m 4 h264 in.yuv h264 in.gp h264 out.yuv

The result should be Exiting PASS

End of Test FSL-UT-IPU-PF-SDC-0030

Test ID: FSL-UT-1PU-PF-ADC-0010

Test on ADC Epson panel: mxc_mpegddec_test.out -ow width -oh height -d 0 test.mp4.
The result should be Exiting PASS

End of Test FSL-UT-IPU-PF-ADC-0010

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 81

AR
Unit Test

6.5.4 IPU Device Unit test

There is a test application named mxc_ipudev_test.c under the <Yocto_BuildDir>/imx-
test-"version"/test/mxc_ipudev_test directory.

Before running the IPU device test application, you should be able see that the /dev/
mxc_ipu has been created.

Run test like:

./mxc_ipudev_test.out -C config file raw _data_file

./mxc_ipudev_ test.out -command line options raw_data file

See <Yocto_BuildDir>/imx-test-"version"/test/ipudev_config_file for configure file
instruction.

Below is a simple test source code of IPU device overlay which use alpha(global/local)
blending to combine two layers:

NOTE: the overlay width and height must be same as output's. For example, the input is
240x320, output is 1024x768 which using rotation 90 degree, the overlay must be same
as output, said, 1024x768.

static unsigned int fmt_ to bpp (unsigned int pixelformat)
unsigned int bpp;

switch (pixelformat) ({
case IPU PIX FMT RGB565:
/*interleaved 422%*/
case IPU PIX FMT YUYV:
case IPU PIX FMT UYVY:
/*non-interleaved 422%*/
case IPU PIX FMT YUV422P:
case IPU PIX FMT YVU422P:
bpp = 16;
break;
case IPU PIX FMT BGR24:
case IPU_PIX FMT RGB24:
case IPU PIX FMT YUV444:
bpp = 24;
break;
case IPU_PIX FMT BGR32:
case IPU PIX FMT BGRA32:
case IPU PIX FMT RGB32:
case IPU PIX FMT RGBA32:
case IPU_PIX FMT ABGR32:
bpp = 32;
break;
/*non-interleaved 420%*/
case IPU PIX FMT YUV420P:
case IPU PIX FMT YVU420P:
case IPU PIX FMT YUV420P2:
case IPU PIX FMT NV12:
bpp = 12;
break;

i.MX Linux® Reference Manual, Rev. 0, 10/2016
82 NXP Semiconductors

default:
bpp = 8;
break;

}

return bpp;

}

static void dump_ ipu_ task(struct ipu task *t)

printf ("====== ipu task ======\n");

printf ("input:\n") ;

printf ("\twidth: %d\n", t->input.width) ;
printf ("\theight: %d\n", t->input.height);
printf ("\tcrop.w = %d\n", t->input.crop.w) ;
printf ("\tcrop.h = %d\n", t->input.crop.h);
printf ("\tcrop.pos.x = %d\n",

printf ("output:\n") ;

printf ("\twidth: %d\n", t->output.width);
printf ("\theight: %d\n", t->output.height);
printf ("\tcrop.w = %d\n", t->output.crop.w);
printf ("\tcrop.h = %d\n", t->output.crop.h);

Chapter 6 Image Processing Unit (IPU) Drivers

t->input.crop.pos.x)

printf ("\tcrop.pos.x = %d\n", t->output.crop.pos.X);
printf ("\tcrop.pos.y = %d\n", t->output.crop.pos.y);

if (t-soverlay en) {
printf ("overlay:\n") ;

(

(

(

(

(

(

(H
printf ("\tcrop.pos.y = %d\n", t->input.crop.pos.y);

(

(

(

(

(

(

(

printf ("\twidth: %d\n", t->overlay.width) ;

printf ("\theight: %d\n", t->overlay.height) ;

printf ("\tcrop.w = %$d\n", t-s>overlay.crop.w);

printf ("\tcrop.h = %d\n", t-soverlay.crop.h);

printf ("\tcrop.pos.x = %d\n", t->overlay.crop.pos.x)
printf ("\tcrop.pos.y = %d\n", t-s>overlay.crop.pos.y) ;

}

int main(int argc, char *argv([])
{
int fd, fd_fb,
int blank, ret;
FILE * file in = NULL;
struct ipu task task;
struct fb_var_ screeninfo fb_var;
struct fb fix screeninfo fb fix;
void *inbuf, *ovbuf, *alpbuf, *vdibuf;

fd = open("/dev/mxc_ipu", O _RDWR, O0);
fd fb = open("/dev/fbl", O RDWR, 0);
file in = fopen(argv[argc-1], "rb");
memset (&task, 0, sizeof (task));

/* input setting */

task.input.width = 320;
task.input.height = 240;
task.input.crop.pos.x = 0;
task.input.crop.pos.y = 0;
task.input.crop.w = 0;

task.input.crop.h = 0;

task.input.format = IPU_PIX FMT_YUV420P;

isize = task.input.paddr =
task.input.width * task.input.height
* fmt to bpp(task.input.format)/8;
ioctl (fd, IPU ALLOC, &task.input.paddr);
inbuf = mmap(0, isize, PROT READ | PROT WRITE,
MAP_SHARED, fd, task.input.paddr) ;

isize, ovsize, alpsize, cnt = 50;

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

83

AR
Unit Test

/*overlay setting */
task.overlay en = 1;
task.overlay.width = 1024;
task.overlay.height = 768;
task.overlay.crop.pos.x = 0;
task.overlay.crop.pos.y = 0
task.overlay.crop.w = 0;
task.overlay.crop.h = 0;
task.overlay.format = IPU_PIX FMT RGB24;

#ifdef GLOBAL ALP
task.overlay.alpha.mode = IPU ALPHA MODE GLOBAL;
task.overlay.alpha.gvalue = 255;
task.overlay.colorkey.enable = 1;
task.overlay.colorkey.value = 0x555555;
ftelse
task.overlay.alpha.mode = IPU ALPHA MODE LOCAL;
alpsize = task.overlay.alpha.loc_alp paddr =
task.overlay.width * task.overlay.height;
ioctl (fd, IPU ALLOC, &task.overlay.alpha.loc_alp paddr) ;
alpbuf = mmap (0, alpsize, PROT READ | PROT WRITE,
MAP_SHARED, fd, task.overlay.alpha.loc_alp paddr) ;
alpbuf, 0x00, alpsize/4);
alpbuf+alpsize/4, 0x55, alpsize/4);
alpbuf+alpsize/2, 0x80, alpsize/4);
alpbuf+alpsize*3/4, Oxff, alpsize/4);

memset
memset
memset
memset

#endif

ovsize = task.overlay.paddr =
task.overlay.width * task.overlay.height
* fmt to bpp(task.overlay.format)/8;
ioctl (fd, IPU ALLOC, &task.overlay.paddr) ;
ovbuf = mmap (0, ovsize, PROT READ | PROT_WRITE,
MAP_SHARED, fd, task.overlay.paddr) ;
#ifdef GLOBAL_ALP
memset (ovbuf, 0x55, ovsize/4) ;
memset (ovbuf+ovsize/4, Oxff, ovsize/4);
memset (ovbuf+ovsize/2, 0x55, ovsize/4);
memset (ovbuf+ovsize*3/4, 0x00, ovsize/4);
#else
memset (ovbuf, 0x55, ovsize);
#endif
#endif

/* output setting*/
task.output.width = 1024;
task.output.height = 768;
task.output.crop.pos.x = 0;
task.output.crop.pos.y = 0
task.output.crop.w = 0;
task.output.crop.h = 0;
task.output.format = IPU PIX FMT RGB565;
task.output.rotate = IPU ROTATE NONE;

ioctl (fd fb, FBIOGET VSCREENINFO, &fb var);
fb_var.xres = task.output.width;
fb_var.xres virtual = fb var.xres;
fb_var.yres = task.output.height;
fb_var.yres_virtual = fb var.yres * 3;
fb_var.activate |= FB_ACTIVATE FORCE;
fb_var.nonstd = task.output.format;
fb_var.bits_per_pixel = fmt_to_ bpp (task.output.format) ;
ioctl (fd fb, FBIOPUT VSCREENINFO, &fb var);
ioctl (fd_fb, FBIOGET VSCREENINFO, &fb var) ;
ioctl (fd fb, FBIOGET FSCREENINFO, &fb fix);
task.output.paddr = fb_fix.smem start;
blank = FB_BLANK UNBLANK;

ioctl (fd fb, FBIOBLANK, blank);

task.priority = IPU TASK PRIORITY NORMAL;
task.task_id = TIPU TASK TD ANY;

i.MX Linux® Reference Manual, Rev. 0, 10/2016
84 NXP Semiconductors

again:

task.timeout = 1000;

Chapter 6 Image Processing Unit (IPU) Drivers

ret = ioctl(fd, IPU CHECK TASK, &task);
if (ret != IPU_CHECK OK) ({
if (ret > IPU CHECK ERR MIN) {
if (ret == IPU CHECK ERR SPLIT INPUTW OVER) {
task.input.crop.w -= 8;

goto again;
if (ret
goto again;
if (ret
goto again;
if (ret
} goto again;

ret = -1;
return ret;

dump_ipu task (&task) ;

(--cnt > 0) {
fread(inbuf, 1, isize, file in);
ioctl(fd, IPU _QUEUE_TASK, &task);

while

}

munmap (ovbuf, ovsize);

ioctl (fd, IPU FREE, task.input.paddr);
ioctl (fd, IPU FREE, task.overlay.paddr);
close (f4d) ;

close (fd_fb) ;
fclose(file in);

8;

8;

8;

== IPU CHECK ERR SPLIT INPUTH OVER) ({
task.input.crop.h -

== IPU CHECK ERR SPLIT OUTPUTW_OVER) {
task.output.crop.w -

== IPU _CHECK ERR SPLIT OUTPUTH OVER) {
task.output.crop.h -

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

85

A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 10/2016
86 NXP Semiconductors

Chapter 7
MIPI DSI Driver

7.1 Introduction
The MIPI DSI driver for Linux OS is based on the IPU framebuffer driver.
This driver has two parts:

e MIPI DSI IP driver-low level interface used to communicate with MIPI device
controller on the display panel

e MIPI DSI display panel driver provides an interface to configure the display panel
through MIPI DSI

7.1.1 MIPI DSI IP Driver Overview

The MIPI DSI IP driver is registered through IPU framebuffer driver interface and it is
not exposed to the user space.

The driver enables the platform-related regulators and clocks. It requests OS-related
system resources and registers framebuffer event notifier for blank/unblank operation.
Next, the driver initializes MIPI D-PHY and configures the MIPI DSI IP according to the
MIPI DSI display panel. MIPI DSI driver supports the following features:

* Compatibility with MIPI Alliance Specification for DSI, Version1.01.00

» Compatibility with MIPI Alliance Specification for D-PHY, Version 1.00.00

 Supports up to 2 D-PHY data lanes

 Bidirectional Communication and Escape Mode Support through Data Lane 0

* Programmable display resolutions, from 160x120(QQVGA) to 1024x768(XVGA)

* Video Mode Pixel Formats, 16bpp(565RGB),18bpp(666RGB)packed,
18bpp(666RGB)loosely, 24bpp(888RGB).

» Supports the transmission of all generic commands

 Supports ECC and checksum capabilities

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 87

A
Software Operation

* End-of-Transmission Packet(EoTp) support

* Supports ultra low power mode

7.1.2 MIPI DSI Display Panel Driver Overview

The MIPI DSI display panel driver implements MIPI DSI display panel-related
configuration.

It uses the APIs provided by the MIPI DSI IP driver to read/write the display module
registers. Usually, there is a MIPI DSI slave controller integrated on the display panel.
After power on reset, the MIPI DSI display panel needs to be configured through
standard MIPI DCS command or MIPI DSI Generic command according to the
manufacturer's specification.

7.1.3 Hardware Operation

The MIPI DSI module provides a high-speed serial interface between a host processor
and a display module.

It has higher performance, lower power, less EMI and fewer pins compared with legacy
parallel bus. It is designed to be compatible with the standard MIPI DSI protocol. MIPI
DSI is built on exisiting MIPI DPI-2, MIPI DBI-2 and MIPI DCS standards. It sends
pixels or commands to the peripheral and reads back status or pixel information from the
peripheral. MIPI DSI serializes all pixels data, commands and events, and contains two
basic modes: command mode and video mode. It uses command mode to read/write
register and memory to the display controller while reading display module status
information. On the other hand, it uses video mode to transmit a real-time pixel streams
from host to peripheral in high-speed mode. It also generates an interrupt when error
occurs.

7.2 Software Operation

The MIPI DSI driver for Linux OS has two parts: MIPI DSI IP driver and MIPI DSI
display panel driver.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
88 NXP Semiconductors

4
Chapter 7 MIPI DSI Driver

7.2.1 MIPI DSI IP Driver Software Operation

The MIPI DSI IP driver has a private structure called mipi_dsi_info. The IPU instance to
which the MIPI DSI IP is attached is described in field int ipu_id while the DI instance
inside IPU is described in the field int disp_id.

During startup, the MIPI DSI IP driver is registered with the IPU framebuffer driver
through the field struct mxc_dispdrv_entry when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_Ilcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
infomation to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from IPU through DPI-2 interface and serializes pixel data and
video event through high-speed data links for display. When there is an framebuffer
blank/unblank event, the registered notifier will be called to enter/leave low power mode.

The MIPI DSI IP driver provides 3 APIs for MIPI DSI display panel driver to configure
display module.

7.2.2 MIPI DSI Display Panel Driver Software Operation

The MIPI DSI Display Panel driver enables a particular display panel through MIPI DSI
interface. The driver should provide struct fb_videomode configuration and struct
mipi_lcd_config data: some MIPI DSI parameters for the display panel such as maximum
D-PHY clock, numbers of data lanes and DPI-2 pixel format. Finally, the display driver
needs to setup display panel initialize routine by calling the APIs provided by MIPI DSI
IP drivers.

7.3 Driver Features
The list of the features which MIPI_DSI supports can be found here.
The MIPI DSI driver supports the following features:

» MIPI DSI communication protocol
* MIPI DSI command mode and video mode
* MIPI DCS command operation

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 89

Driver Features

NOTE
The MIPI DSI driver does not support the DBI-2 mode, since
the DBI-2 and DPI-2 cannot be enabled at the same time on this
controller.

7.3.1 Source Code Structure
MIPI_DSI driver source files which are available in the directory can be found here.
Table below shows the MIPI DSI driver source files available in the directory:

<Yocto_BuildDir>/linux/drivers/video/mxc.
Table 7-1. MIPI DSI Driver Files

File Description
mipi_dsi.c MIPI DSI IP driver source file
mipi_dsi.h MIPI DSI IP driver header file
mxcfb_hx8369_wvga.c MIPI DSI Display Panel driver source file

7.3.2 Menu Configuration Options
The Linux kernel configuration option for this module is provided here.

The following Linux kernel configuration option is provided for this module. To get to
this option, use the bitbake linux-imx -¢c menuconfigcommand. On the screen displayed,
select Configure the Kernel and exit. When the next screen appears, select the following
options to enable this module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI

7.3.3 Programming Interface

The MIPI DSI Display Panel driver can use the API interface to read and write the
registers of the display panel device connected to MIPI DSI link.

For more information, see<Yocto_BuildDir>/linux/drivers/video/fbdev/mxc/mipi_dsi.h.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
90 NXP Semiconductors

Chapter 8
LVDS Display Bridge (LDB) Driver

8.1 Introduction

This section describes the LVDS Display Bridge(LDB) driver which controls LDB
module to connect with external display devices with LVDS interface.

8.1.1 Hardware Operation

The purpose of the LDB is to support flow of synchronous RGB data from IPU or LCDIF
to external display devices through LVDS interface.

This support covers all aspects of these activities:

1. Connectivity to relevant devices - Displays with LVDS receivers.

2. Arranging data as required by the external display receiver and by LVDS display
standards.

3. Synchronization and control capabilities.

For detailed information about LDB, see the LDB chapter of the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

8.1.2 Software Operation

LDB driver is functional if the driver is built-in.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 91

A
Introduction

When LDB device is probed properly, the driver will configure LDB reference resistor
mode and LDB regulator by using platform data information. LDB driver probe function
will also try to match video modes for external display devices to LVDS interface. The
display signal polarities control bits of LDB are set according to the matched video
modes. LVDS channel mapping mode and bit mapping mode of LDB are set according to
the LDB device tree node set by the user. LDB is fully enabled in probe function if the
driver identifies a display device with LVDS interface as the primary display device.

The steps the driver takes to enable a LVDS channel are:

1. Set 1db_di_clk's parent clk and the parent clk's rate.

2. Set 1ldb_di_clk's rate.

3. Enable both 1db_di_clk and its parent clk.

4. Set the LDB in a proper mode including display signals' polarities, LVDS channel
mapping mode, bit mapping mode, and reference resistor mode.

5. Enable related LVDS channels.

See <Yocto BuildDirs>/linux/drivers/video/mxc/ldb.c for more information.

8.1.3 Source Code Structure

The source code is available in the following location:

<Yocto BuildDirs>/linux/drivers/video/fbdev/mxc/1ldb.c

8.1.4 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

To get to these options, use the bitbake linux-imx -c menuconfig cOmmand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options as build-in status to enable this module:

Device Drivers -> Graphics support -> MXC Framebufer support ->
Synchronous Panel Framebuffer -> MXC LDB

i.MX Linux® Reference Manual, Rev. 0, 10/2016
92 NXP Semiconductors

Chapter 9
Video for Linux Two (V4L2) Driver

9.1 Revision History

This text and the following table are tagged Editor_Notes. The table lists the conditional
text tags defined in the PDK chapter from which this was created. Some chapters may
contain additional tags. Note that some of these tags are defined but may not be used.
These unused tags are provided to maintain consistency with other chapters and to avoid
conditional text tag conflicts when copying and pasting information from one chapter to
another. Note that these chapters contain some legacy tags. While the table was created
for PDK, there may be legacy tags or a lack of tagging throughout the reference manuals.

WARNING: Do not to use two conditional tags on the same item if one of the tags is set
to show and the other tag is set to hide. This will cause the tag to show.

Copy this table (and these instructions if you like), under the chapter title for each

chapter. We use this table in two ways: the next authors can see at a glance what
platforms are in the chapter; also, marking Hide/Show in the table indicates the content
for a release. The writer zips and backs up the book files. If a question arises, the content
release in always indicated in the table. This is important to FSL for legal reasons, and we
need to maintain the tables within the chapters.

Table 9-1. Conditional Text Settings

Conditional Text

Conditional Text

Manual

i.MX25

i.MX27

i.MX31

i.MX32

i.MX35

i.MX37

i.MX51

3780

91131

91131

91221/MXC275-20

91221/MXC275-20

91231/MXC275-30

91231/MXC275-30

91311/MXC300-20

91311/MXC300-20

91321/MXC300-30

91321/MXC300-30

91331/MXC300-30

91331/MXC300-30

i.MX25

i.MX25

Show

Hide

Hide

Hide

Hide

Hide

Hide

Hide

i.MX27

i.MX27

Hide

Show

Hide

Hide

Hide

Hide

Hide

Hide

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

93

Introduction

Table 9-1. Conditional Text Settings (continued)

Conditional Text | Conditional Text Manual
i.MX25 | i.MX27 | i.MX31 | i.MX32 | i.MX35 | i.MX37 | i.MX51 3780

i.MX31 i.MX31 Hide Hide Show Hide Hide Hide Hide Hide
i.MX32 i.MX32 Hide Hide Hide Show Hide Hide Hide Hide
i.MX35 i.MX35 Hide Hide Hide Hide Show Hide Hide Hide
i.MX37 i.MX37 Hide Hide Hide Hide Hide Show Hide Hide
i.MX51 i.MX51 Hide Hide Hide Hide Hide Hide Show Hide
3780 3780 Hide Hide Hide Hide Hide Hide Hide Show
unit_test unit_test
Cust_info Cust_info Show if present
Editor_Notes Editor_Notes Internal versions only-Hide
non_cust non_cust Internal versions only-Hide
Footer:Confidential |Confidential All NDA doc's-Show
Footer:Preliminary |Preliminary All NDA doc's-Show
Footer:Security Footer:Security Internal versions only-Hide
Review_Q&A Review_Q&A Internal versions only-Hide
statement statement Internal versions only-Hide

9.2 Introduction

The Video for Linux Two (V4L2) drivers are plug-ins to the V4L2 framework that enable
support for camera and preprocessing functions, as well as video and post-processing
functions.

The V4L2 camera driver implements support for all camera-related functions. The V412
capture device takes incoming video images, either from a camera or a stream, and
manipulates them. The output device takes video and manipulates it, then sends it to a
display or similar device. The V4L2 Linux standard API specification is available at
v412spec.bytesex.org/spec

The features supported by the V4L2 driver are as follows:

* Direct preview and output to SDC foreground overlay plane (with synchronized to
LCD refresh)

Direct preview to graphics frame buffer (without synchronized to LCD refresh)
Color keying or alpha blending of frame buffer and overlay planes

Streaming (queued) capture from IPU encoding channel

Direct (raw Bayer) still capture (sensor dependent)

Programmable pixel format, size, frame rate for preview and capture
Programmable rotation and flipping using custom API

i.MX Linux® Reference Manual, Rev. 0, 10/2016
94 NXP Semiconductors

http://v4l2spec.bytesex.org/spec

L __4
Chapter 9 Video for Linux Two (V4L2) Driver
* RGB 16-bit, 24-bit, and 32-bit preview formats
* Raw Bayer (still only, sensor dependent), RGB 16, 24, and 32-bit, YUV 4:2:0 and
4:2:2 planar, YUV 4:2:2 interleaved, and JPEG formats for capture
 Control of sensor properties including exposure, white-balance, brightness, contrast,
and so on
* Plug-in of different sensor drivers
 Link post-processing resize and CSC, rotation, and display IPU channels
» Streaming (queued) input buffer
* Double buffering of overlay and intermediate (rotation) buffers
 Configurable 3+ buffering of input buffers
* Programmable input and output pixel format and size
* Programmable scaling and frame rate
* RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved
input formats
e TV output

The driver implements the standard V4L2 API for capture, output, and overlay devices.
The command modprobe mxc_v412_capture must be run before using these functions.

9.3 V4L2 Capture Device

V4L.2 capture device includes two interfaces:capture interface and overlay interface.

MX53 START board doesn't support V4L capture devices. The user can ignore V4L
capture sections for MX53 START.

The V4L2 capture device includes two interfaces:

 Capture interface-uses IPU pre-processing ENC channels to record the YCrCb video
stream

* Overlay interface-uses the IPU device driver to display the preview video to the SDC
foreground and background panel.

V4L.2 capture support can be selected during kernel configuration. The driver includes
two layers. The top layer is the common Video for Linux driver, which contains chain
buffer management, stream API and other ioctl interfaces. The files for this device are
located in <Yocto_BuildDir>/linux/drivers/media/platform/mxc/capture/.

The V4L2 capture device driver is in the mxc_v412_capture.c file. The low level overlay
driver is in the ipu_fg_overlay_sdc.c, ipu_bg_overlay_sdc.c

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 95

A
V4L2 Capture Device

This code (ipu_prp_enc.c) interfaces with the IPU ENC hardware, and ipu_still.c
interfaces with the IPU CSI hardware. Sensor frame rate control is handled by
VIDIOC_S_PARM ioctl. Before the frame rate is set, the sensor turns on the AE and
AWRB turn on. The frame rate may change depending on light sensor samples.

Drivers for specific cameras can be found in <Yocto_BuildDir>/linux/drivers/media/
platform/mxc/capture/.

9.3.1 V4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_REQBUFS

e VIDIOC_QUERYBUF
e VIDIOC_QBUF

e VIDIOC_DQBUF

e VIDIOC_STREAMON
* VIDIOC_STREAMOFF
e VIDIOC_OVERLAY
e VIDIOC_G_FBUF

e VIDIOC_S_FBUF

e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

e VIDIOC_G_CROP

e VIDIOC_S_CROP

e VIDIOC_S_PARM

e VIDIOC_G_PARM

e VIDIOC_ENUMSTD
e VIDIOC_G_STD

e VIDIOC_S_STD

e VIDIOC_ENUMOUTPUT
e VIDIOC_G_OUTPUT
e VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is
V4L2_CID_PRIVATE_BASE. Supported values include:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
96 NXP Semiconductors

L __4
Chapter 9 Video for Linux Two (V4L2) Driver
e 0-Normal operation
* 1-Vertical flip
 2-Horizontal flip
* 3-180° rotation
* 4-90° rotation clockwise
* 5-90° rotation clockwise and vertical flip
* 6-90° rotation clockwise and horizontal flip
* 7-90° rotation counter-clockwise

Figure below shows a block diagram of V4L2 Capture API interaction.

Figure 9-1. Video4Linux2 Capture API Interaction

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 97

A ————
V4L2 Output Device

9.3.2 Use of the V4L2 Capture APIs

This section describes a sample V4L2 capture process. The application completes the
following steps:

1. Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.

2. Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.

3. Requests a buffer using [IOCTL VIDIOC_REQBUFS. The common V4L2 driver

creates a chain of buffers (currently the maximum number of frames is 3).

Memory maps the buffer to its user space.

Queues buffers using the IOCTL command VIDIOC_QBUF.

Starts the stream using the [OCTL VIDIOC_STREAMON. This IOCTL enables the

IPU tasks and the IDMA channels. When the processing is completed for a frame,

the driver switches to the buffer that is queued for the next frame. The driver also

signals the semaphore to indicate that a buffer is ready.

7. Takes the buffer from the queue using the IOCTL VIDIOC_DQBUF. This IOCTL

blocks until it has been signaled by the ISR driver.

Stores the buffer to a YCrCb file.

9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF
again.

AN

*®

For the V412 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the [IOCTL VIDIOC_S_FMT.
2. Reads one frame still image with YUV422.

FOr the V412 overlay support use case, the application completes the following steps:

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.
2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.
3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

9.4 V4L2 Output Device

The V4L2 output driver uses the IPU post-processing functions for video output.

The driver implements the standard V4L2 API for output devices. V4L2 output device
support can be selected during kernel configuration. The driver is available at
<Yocto_BuildDir>/linux/drivers/media/platform/mxc/output/mxc_vout.c.

The following V4L2 features are supported by the driver:
» Support post-processing resize and CSC, rotation

* Support multi outputs based on frame buffer

i.MX Linux® Reference Manual, Rev. 0, 10/2016
98 NXP Semiconductors

L __4
Chapter 9 Video for Linux Two (V4L2) Driver
 Streaming (queued) input buffer
* Configurable 3+ buffering of input buffers
e Programmable input and output pixel format and size
* Programmable scaling and frame rate
* Support for RGB 16, 24, and 32 bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2
interleaved input formats
* Support for de interlacing is provided in IPU version 3
* Support MMAP buffers
* Support USERPTR buffers
* Programmable rotation

These features are supported using custom APIs:

* Programmable de interlacing motion level

9.4.1 VA4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_REQBUFS

e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_QUERYBUF
* VIDIOC_QBUF

* VIDIOC_DQBUF

e VIDIOC_STREAMON
e VIDIOC_STREAMOFF
e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

e VIDIOC_G_CROP

e VIDIOC_S_CROP

e VIDIOC_ENUM_FMT

The V4L2 control code has been extended to provide support for de-interlace motion. For
this use, the ID is V4L2_CID_MXC_MOTION. Supported values include the following:

¢)-Medium motion
e 1-Low motion
* 2-High motion

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 99

Source Code Structure

9.4.2 Use of the V4L2 Output APIs

This section describes a sample V4L2 output process that uses the V4L2 output APIs.
The application completes the following steps:

1. Sets the input pixel format and size using IOCTL VIDIOC_S_FMT.

2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation, de-
interlace motion(if need).

Sets the output information using IOCTL VIDIOC_S_CROP.

Requests a buffer using [IOCTL VIDIOC_REQBUFS. The common V4L2 driver
creates a chain of buffers (not allocated yet)

Memory maps the buffer to its user space.

Executes the IOCTL VIDIOC_QUERYBUF to query buffers.

Passes the data that requires post-processing to the buffer.

Queues the buffer using the IOCTL command VIDIOC_QBUF.

Executes the IOCTL VIDIOC_DQBUF to dequeue buffers.

Starts the stream by executing [OCTL VIDIOC_STREAMON.

Stop the stream by excuting IOCTL VIDIOC_STREAMOFF

W

oYX W

o

9.5 Source Code Structure
Table below lists the source and header files associated with the V4L.2 drivers.

These files are available in the following directory:

<Yocto_ BuildDirs/linux/drivers/media/platform/mxc

Table 9-2. V4L2 Driver Files

File

Description

capture/mxc_v4l2_capture.c

V4L2 capture device driver

output/mxc_vout.c

V4L2 output device driver

capture/mxc_v4l2_capture.h

Header file for V4L2 capture device driver

capture/ipu_prp_enc.c

Pre-processing encoder driver

capture/ipu_prp_vf_adc.c

Pre-processing view finder (asynchronous) driver

capture/ipu_prp_vf_sdc.c

Pre-processing view finder (synchronous foreground) driver

capture/ipu_prp_vf_sdc_bg.c

Pre-processing view finder (synchronous background) driver

capture/ipu_fg_overlay_sdc.c

synchronous forground driver

capture/ipu_bg_overlay_sdc.c

synchronous background driver

capture/ipu_still.c

Pre-processing still image capture driver

i.MX Linux® Reference Manual, Rev. 0, 10/2016

100

NXP Semiconductors

4
Chapter 9 Video for Linux Two (V4L2) Driver

Drivers for specific cameras can be found in <Yocto_BuildDir>/linux/drivers/media/
platform/mxc/capture/.

Drivers for specific output can be found in <Yocto_BuildDir>/linux/drivers/media/
platform/mxc/output/.

9.5.1 Menu Configuration Options
The Linux kernel configuration options are provided in the chapter on the IPU module.

See Menu Configuration Options.

9.5.2 V4L2 Programming Interface

For more information, see the V412 Specification and the APl Documents for the
programming interface.

The API Specification is available at LINUX MEDIA INFRASTRUCTURE API.

9.6 Unit Test
NOTE

In order to execute the tests properly, make sure you have the
util-linux package selected and load the following modules:

insmod ipu prp_enc.ko

insmod ipu bg overlay sdc.ko
insmod ipu_ fg overlay sdc.ko
insmod ipu csi _enc.ko

insmod ov5642 camera.ko
insmod mxc v412 capture.ko

9.6.1 Framebuffer Tests

The IPU has been tested with the SDC and ADC framebuffer.
Test ID: FSL-UT-FB-0010

Execute the auto test as follows:

Jautorun-fb.sh

The result should be Exiting PASS.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 101

http://v4l2spec.bytesex.org/spec/

AR
Unit Test

End of Test FSL-UT-FB-0010
Test ID: FSL-UT-FB-0020

Execute a GUI application (Qtopia with Qt/Embedded). The output is sent to the
framebuffer device /dev/fb0

End of Test FSL-UT-FB-0020

Test ID: FSL-UT-FB-0030

Redirect an image directly to the framebuffer device as follows:
cat image.bin > /dev/fb0

End of Test FSL-UT-FB-0030

Write a simple test application to blit some pixels to the device by allocating memory
space through mmap

9.6.2 Video4Linux API test

There is a test application named mxc_v412_test.c under the <ltib_dir>/rpm/BUILD/imx-
test-11.05.01/test/mxc_v412_test directory.

Before running the V412 capture test application, you should be able see that
the /dev/v4l/videoO has been created.

Test ID: FSL-UT-V4L2-capture-0010

mxc_v412 capture.out -w 352 -h 288 -r 0 -c 50 -fr 30 test.yuv

Capture the camera and store the 50 frames of YUV420 (QQVGA size)to a file called
test.yuv and set the frame rate to 30 fps. Look at mxc v412 capture.out -help to see
usage.

Test ID: FSL-UT-V4L2-capture-0020

mxc v412 still.out -w 640 -h 480 -f YUV422P

Do a still image capture of the camera and store the YUV422P (VGA size)to a file
called ./still.yuv.

Test ID: FSL-UT-V4L.2-overlay-sdc-0010

mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
0 -t 50 -d 0 -fg -fr 30

i.MX Linux® Reference Manual, Rev. 0, 10/2016
102 NXP Semiconductors

4
Chapter 9 Video for Linux Two (V4L2) Driver

Direct preview the camera to SDC foreground, and set frame rate to 30 fps, window
of
interest is 640 X 480 with starting offset(0,0), the preview size is 160 X 160 with
starting offset (20,20). mxc v41l2 overlay.out -help to see the usage.

Test ID: FSL-UT-V4L2-overlay-sdc-0020
mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
4 -t 50 -d 0 -fr 30

Direct preview(90 degree rotation) the camera to SDC background, and set frame rate
to 30 fps.

Test ID: FSL-UT-V4L2-output-0010

mxc v41l2 output.out -iw 352 -ih 288 -ow 176 -oh 144 -r 0 -fr 20 test.yuv

Read the YUV420 stream file on test.yuv created by the mxc v412 capture test as run
in test FSL-UT-V4L2-capture-0010. Apply color space conversion and resize, then
display on the framebuffer.

NOTE
The PRP channels require the stride line to be a multiple of 8,
for example with no rotation, the width needs to be 8 bit
aligned; and with 90 degree rotation, the height needs to be 8
bit aligned. Downsizing cannot exceed 8:1, for example, for a
VGA sensor, the smallest downsize 1s 80X 60.

9.6.3 Post-Filter Test

NOTE
These tests do not apply to the .MX31 PDK (3-Stack) board.

Test ID: FSL-UT-PF-0010
Execute the auto test as follows:
Jautorun-pf.sh

The result should be Exiting PASS.
End of Test FSL-UT-PF-0010

Build the mxc_pf_test.out in the imx-test directory. Before performing tests, obtain the
MPEG4 and H.264 clips.

Test ID: FSL-UT-IPU-PF-SDC-0010

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 103

AR
Unit Test

mxc pf test.out -w 352 -h 240 -m 3 mpeg4 in.yuv mpeg4 in.gp
mpeg4 out dering deblock.yuv
The result should be Exiting PASS.
End of Test FSL-UT-IPU-PF-SDC-0010
Test ID: FSL-UT-IPU-PF-SDC-0020

mxc pf test.out -w 352 -h 240 -m 3 -async mpeg4 in.yuv mpeg4 in.gp
mpeg4 out dering deblock.yuv
The result should be Exiting PASS
End of Test FSL-UT-IPU-PF-SDC-0020
Test ID: FSL-UT-IPU-PF-SDC-0030

mxc_pf test.out -w 176 -h 144 -m 4 h264_in.yuv h264_in.gp h264_out.yuv

The result should be Exiting PASS

End of Test FSL-UT-IPU-PF-SDC-0030

Test ID: FSL-UT-IPU-PF-ADC-0010

Test on ADC Epson panel: mxc_mpeg4ddec_test.out -ow width -oh height -d O test.mp4.
The result should be Exiting PASS

End of Test FSL-UT-IPU-PF-ADC-0010

i.MX Linux® Reference Manual, Rev. 0, 10/2016
104 NXP Semiconductors

Chapter 10
Electrophoretic Display Controller (EPDC) Frame
Buffer Driver

10.1 Introduction

The Electrophoretic Display Controller (EPDC) is a direct-drive active matrix EPD
controller designed to drive E Ink EPD panels supporting a wide variety of TFT
backplanes. The EPDC framebuffer driver acts as a standard Linux frame buffer device
while also supporting a set of custom API extensions, accessible from user space (via
IOCTL) or another kernel module (via direct function call) in order to provide the user
with access to EPD-specific functionality. The EPDC driver is abstracted from any
specific E Ink® panel type, providing flexibility to work with a range of E Ink panel types
and specifications.

The EPDC driver supports the following features:

* Support for EPDC driver as a loadable or built-in module.

Support for RGB565 and Y8 frame buffer formats.

Support for full and partial EPD screen updates.

Support for up to 256 panel-specific waveform modes.

Support for automatic optimal waveform selection for a given update.

Support for synchronization by waiting for a specific update request to complete.

Support for screen updates from an alternate (overlay) buffer.

Support for automated collision handling.

Support for 1664 simultaneous update regions.

Support for pixel inversion in a Y8 frame buffer format.

Support for 90, 180, and 270 degree HW-accelerated frame buffer rotation.

* Support for panning (y-direction only).

* Support for automated full and partial screen updates through the Linux
fb_deferred_io mechanism.

* Support for three EPDC driver display update schemes: Snapshot, Queue, and Queue
and Merge.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 105

A
Hardware Operation
 Support for setting the ambient temperature through either a one-time designated API
call or on a per-update basis.

» Support for user control of the delay between completing all updates and powering
down the EPDC.

10.2 Hardware Operation
For the detailed hardware operation of the EPDC, see the following documents:
* i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

10.3 Software Operation

The EPDC frame buffer driver is a self-contained driver module in the Linux kernel. It
consists of a standard frame buffer device API coupled with a custom EPD-specific API
extension, accessible through the IOCTL interface. This combined functionality provides
the user with a robust and familiar display interface while offering full control over the
contents and update mode of the E Ink display.

This section covers the software operation of the EPDC driver, both through the standard
frame buffer device architecture, and through the custom E Ink API extensions.
Additionally, panel intialization and framebuffer formats are discussed.

10.3.1 EPDC Frame Buffer Driver Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers. The EPDC driver supports this model
with one key caveat: the contents of the frame buffer are not automatically updated to the
E Ink display. Instead, a custom API function call is required to trigger an update to the E
Ink display. The details of this process are explained in the EPDC Frame Buffer Driver
Extensions.

The frame buffer driver is enabled by selecting the frame buffer option under the graphics
parameters in the kernel configuration. To supplement the frame buffer driver, the kernel
builder may also include support for fonts and a startup logo. The frame buffer device

i.MX Linux® Reference Manual, Rev. 0, 10/2016
106 NXP Semiconductors

L __4

Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver
depends on the virtual terminal (VT) console to switch from serial to graphics mode. The
device is accessed through special device nodes, located in the /dev directory, as /dev/fb*.
fb0 is generally the primary frame buffer.

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

The EPDC frame buffer driver (drivers/video/fbdev/mxc/mxc_epdc_fb.c on 1.MX
6SoloLite or i.MX 6DualLite or drivers/video/fbdev/mxc/mxc_epdc_v2_fb.c for
generation-II EPDC on 1.MX 7Dual) interacts closely with the generic Linux frame
buffer driver (drivers/video/fbmem.c).

For additional details on the frame buffer device, see documentation in the Linux kernel
found in Documentation/fb/framebuffer.txt.

10.3.2 EPDC Frame Buffer Driver Extensions

E Ink display technology, in conjunction with the EPDC, has several features that
distinguish it from standard LCD-based frame buffer devices. These differences
introduce the need for API extensions to the frame buffer interface. The EPDC refreshes
the E Ink display asynchronously and supports partial screen updates. Therefore, the
EPDC requires notification from the user when the frame buffer contents have been
modified and which region needs updating. Another unique characteristic of EPDC
updates to the E Ink display is the long screen update latencies (between 300-980ms),
which introduces the need for a mechanism to allow the user to wait for a given screen
update to complete.

The custom API extensions to the frame buffer device are accessible both from user
space applications and from within kernel space. The standard device IOCTL interface
provides access to the custom API for user space applications. The IOCTL extensions,
along with relevant data structures and definitions, can be found in include/linux/
mxcfb_epdc.h. A full description of these IOCTLs can be found in the Programming
Interface section Programming Interface.

For kernel mode access to the custom API extensions, the IOCTL interface should be
bypassed in favor of direct access to the underlying functions.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 107

Software Operation
10.3.3 EPDC Panel Configuration

The EPDC driver is designed to flexibly support E Ink panels with a variety of panel
resolutions, timing parameters, and waveform modes. The EPDC driver is kept panel-
agnostic through the use of an EPDC panel mode structure, imx_epdc_fb_mode, which
can be found in include/linux/mxcfb_epdc.h.
struct imx_epdc_ fb mode {

struct fb videomode *vmode;

int vscan:holdoff;

int sdoed width;

int sdoed delay;

int sdoez width;

int sdoez:delay;

int gdclk hp offs;

int gdsp offs;

int gdoe offs;

int gdclk offs;

int num ce;
bi
The imx_epdc_fb_mode structure consists of an fb_videomode structure and a set of EPD
timing parameters. The fb_videomode structure defines the panel resolution and the basic
timing parameters (pixel clock frequency, hsync and vsync margins) and the additional
timing parameters in imx_epdc_fb_mode define EPD-specific timing parameters, such as
the source and gate driver timings. For details on how to configure E Ink panel timing
parameters, see the EPDC programming model section in the i. MX 6SoloLite
Applications Processor Reference Manual IMX6SLRM), i. MX 6DualLite Applications
Processor Reference Manual (IMX6DLRM), or i. MX 7Dual Applications Processor

Reference Manual (IMX7DRM).

In addition to the EPDC panel mode data, functions may be passed to the EPDC driver to
define how to handle the EPDC pins when the EPDC driver is enabled or disabled. These
functions should disable the EPDC pins for purposes of power savings.

10.3.3.1 Boot Command Line Parameters

Additional configuration for the EPDC driver is provided through boot command line
parameters. The format of the command line option is as follows:

epdc video=mxcepdcfb: [panel name] ,h bpp=16

The EPDC driver parses these options and tries to match panel_name to the name of
video mode specified in the imx_epdc_fb_mode panel mode structure. If no match is
found, then the first panel mode provided in the platform data is used by the EPDC
driver. The bpp setting from this command line sets the initial bits per pixel setting for
the frame buffer. A setting of 16 selects RGB565 pixel format, while a setting of 8 selects
8-bit grayscale (Y8) format.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
108 NXP Semiconductors

4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

10.3.4 EPDC Waveform Loading

The EPDC driver requires a waveform file for proper operation. This waveform file
contains the waveform information needed to generate the waveforms that drive updates
to the E Ink panel. A pointer to the waveform file data is programmed into the EPDC
before the first update is performed.

There are two options for selecting a waveform file:

1. Select one of the default waveform files included in this BSP release.
2. Use a new waveform file that is specific to the E Ink panel being used.

The waveform file is loaded by the EPDC driver using the Linux firmware APIs.

10.3.4.1 Using a Default Waveform File

The quickest and easiest way to get started using an E Ink panel and the EPDC driver is
to use one of the default waveform files provided in the Linux BSP. This should enable
updates to several different types of E Ink panel without a panel-specific waveform file.
The drawback is that optimal quality should not be expected. Typically, using a non-
panel-specific waveform file for an E Ink panel results in more ghosting artifacts and
overall poorer color quality.

The following default waveform files included in the BSP reside in /lib/firmware/imx/
epdc:

e epdc_E60_V110.fw - Default waveform for the 6.0 inch V110 E Ink panel.

e epdc_E60_V220.fw - Default waveform for the 6.0 inch V220 E Ink panel (supports
animation mode updates).

e epdc_E97_V110.fw - Default waveform for the 9.7 inch V110 E Ink panel.

e epdc_E060SCM.fw - Default waveform for the 6.0 inch Pearl E Ink panel (supports
animation mode updates).

* epdc_EDO60XH2CI1.fw - Default waveform for the 6.0 inch E Ink panel (No Reagl/-
D Support by default. For Reagl/-D support, contact NXP support.)

The EPDC driver attempts to load a waveform file with the name
"epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where
panel_name refers to the string specified in the fb_videomode name field. This
panel_name information should be provided to the EPDC driver through the kernel
command line parameters described in the preceding chapter. For example, to load the
epdc_E060SCM.fw default firmware file for a Pearl panel, set the EPDC kernel
command line paratmeter to the following:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 109

Software Operation

video=mxcepdcfb:E060SCM, bpp=16

10.3.4.2 Using a Custom Waveform File

To ensure the optimal E Ink display quality, use a waveform file specific to E Ink panel
being used. The raw waveform file type (.wbf) requires conversion to a format that can
be understood and read by the EPDC. This conversion script is not included as part of the
BSP. Therefore, contact NXP to acquire this conversion script.

Once the waveform conversion script has been run on the raw waveform file, the
converted waveform file should be renamed so that the EPDC driver can find it and load
it. The driver is going to search for a waveform file with the name
"epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where
panel_name refers to the string specified in the fb_videomode nare field. For example, if
the panel is named "E60_ABCD", then the converted waveform file should be named
epdc_E60_ABCD.fw.

NOTE
If the EPDC driver is searching for a firmware waveform file
that matches the names of one of the default waveform files
(see preceding chapter), it will choose the default firmware files
that are built into the BSP over any firmware file that has been
added in the firmware search path. Thus, if you leave the BSP
so that it uses the default firmware files, be sure to use a panel
name other than those associated with the default firmware
files, since those default waveform files will be preferred and
selected over a new waveform file placed in the firmware
search path.

10.3.5 EPDC Panel Initialization

The framebuffer driver will not typically (see note below for exceptions) go through any
hardware initialization steps when the framebuffer driver module is loaded. Instead, a
subsequent user mode call must be made to request that the driver initialize itself for a
specific EPD panel. To initialize the EPDC hardware and E Ink panel, an
FBIOPUT_VSCREENINFO ioctl call must be made, with the xres and yres fields of the
fb_var_screeninfo parameter set to match the X and Y resolution of a supported E Ink
panel type. To ensure that the EPDC driver receives the initialization request, the activate
field of the fb_var_screeninfo parameter should be set to FB_ACTIVATE_FORCE.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
110 NXP Semiconductors

4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver
NOTE
The exception is when the FB Console driver is included in the
kernel. When the EPDC driver registers the framebuffer device,
the FB Console driver will subsequently make an
FBIOPUT_ VSCREENINFO ioctl call. This will in turn
initialize the EPDC panel.

10.3.6 Grayscale Framebuffer Selection

The EPDC framebuffer driver supports the use of 8-bit grayscale (Y8) and 8-bit inverted
grayscale (Y8 inverted) pixel formats for the framebuffer (in addition to the more
common RGB565 pixel format). In order to configure the framebuffer format as 8-bit
grayscale, the application would call the FBIOPUT_VSCREENINFO framebuffer ioctl.
This ioctl takes an fb_var_screeninfo pointer as a parameter. This parameter specifies the
attributes of the framebuffer and allows the application to request changes to the
framebuffer format. There are two key members of the fb_var_screeninfo parameter that
must be set in order to request a change to 8-bit grayscale format: bits_per_pixel and
grayscale. bits_per_pixel must be set to 8 and grayscale must be set to one of the 2 valid
grayscale format values: GRAYSCALE_8BIT or GRAYSCALE_8BIT_INVERTED.

The following code snippet demonstrates a request to change the framebuffer to use the
Y8 pixel format:

fb_screen info screen info;

screen_info.bits per pixel = 8;

screen_info.grayscale = GRAYSCALE 8BIT;
retval = ioctl(fd fb0, FBIOPUT VSCREENINFO, &screen_info);

10.3.7 Enabling an EPDC Splash Screen

By default, the EPDC support in U-Boot is disabled, and therefore splash screen support
is also disabled. To enable splash screen support, edit the configuration file /include/
configs/mx50_rdp.h/include/configs/mx6sl_evk.h/include/configs/mx6dl_arm?2.h,
include/configs/mx6sabresd.h, or include/configs/mx7dsabresd.h, and enable the
following defines:

#define CONFIG SPLASH SCREEN

#define CONFIG MXC EPDC

Once this change has been made, rebuild the U-Boot image and flash it to your SD card.
Then perform the following steps to flash a waveform file to an SD card where U-Boot
can find it:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 111

A
Source Code Structure

1. Identify the EPDC waveform file from the Linux kernel firmware directory that is
the best match for the panel you are using. For the DC2/DC3 boards, that would be
the waveform file epdc_E060SCM.fw.ihex. For the DC4 boards, that would be the
waveform file epdc_EDO60XH2C1.fw.ihex.

If only the *.fw" format waveform is obtained, e.g., epdc_EO060SCM.fw, then use the
objcopy command as follows on the Linux OS host to do the conversion.

objcopy -I binary -O ihex epdc_E060SCM.fw epdc_E060SCM.fw.ihex
2. Convert the ihex firmware file to a stripped-down binary using the script
thex2bin.py. Contact Freescale to acquire this script.

python ihex2bin.py -i epdc E060SCM.fw.ihex -o epdc E060SCM splash.bin

3. Write the firmware file to the SD card at the FAT partition.

cp epdc_E060SCM.bin [FAT partition on SD card]

10.4 Source Code Structure

Table below lists the source files associated with the EPDC driver. These files are
available in the following directory:

drivers/video/fbdev/mxc/

Table 10-1. EPDC Driver Files

File Description
mxc_epdc_v2_fb.c EPDC V2 frame buffer driver. It is targeted for EPDC on i.MX 7Dual.
epdc_v2_regs.h Register definitions for the EPDC V2 module.
mxc_epdc_fb.c Generation-l EPDC frame buffer driver. It is targeted for EPDC on i.MX 6Sololite or i.MX
6DualLite.
epdc_regs.h Register definitions for the Generation-l EPDC module.

Table below lists the global header files associated with the EPDC driver. These files are
available in the following directory:

include/linux
Table 10-2. EPDC Global Header Files
File Description
mxcfb.h Header file for the MXC framebuffer drivers
mxcfb_epdc.h Header file for direct kernel access to the EPDC API extension

i.MX Linux® Reference Manual, Rev. 0, 10/2016
112 NXP Semiconductors

4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

10.5 Menu Configuration Options
The following Linux kernel configuration options are provided for the EPDC module:

* CONFIG_MXC_EINK_PANEL includes support for the Electrophoretic Display
Controller. In menuconfig, this option is available under:
* Device Drivers > Graphics Support > E Ink Panel Framebuffer
* CONFIG_MXC_EINK_AUTO_UPDATE_MODE enables support for auto-update
mode, which provides automated EPD updates through the deferred I/O framebuffer
driver. This option is dependent on the MXC_EINK_PANEL option. In menuconfig,
this option is available under:
* Device Drivers > Graphics Support > E Ink Auto-update Mode Support

NOTE
This option only enables the use of auto-update mode.
Turning on auto-update mode requires an additional
IOCTL call using the
MXCFB_SET_AUTO_UPDATE_MODE IOCTL.

e CONFIG_FB to include frame buffer support in the Linux kernel. In menuconfig,
this option is available under:

* Device Drivers > Graphics support > Support for frame buffer devices
* By default, this option is Y for all architectures.

* CONFIG_FB_MXC is a configuration option for the MXC Frame buffer driver. This
option is dependent on the CONFIG_FB option. In menuconfig, this option is
available under:

* Device Drivers > Graphics support > MXC Framebuffer support
* By default, this option is Y for all architectures.

 CONFIG_MXC_PXP_V2 enables support for the PxP. The PxP is required by the
EPDC driver for processing (color space conversion, rotation, auto-waveform
selection) framebuffer update regions. This option must be selected for the EPDC
framebuffer driver to operate correctly. In menuconfig, this option is available under:

* Device Drivers > DMA Engine support > MXC PxP support

* CONFIG_MXC_PXP_V3 enables support for new-generation PxP, which is required
by generation-II EPDC driver for processing framebuffer update regions. This option
must be selected for the EPDC framebuffer driver to operate correctly. In
menuconfig, this option is available under:

e Device Drivers -> DMA Engine support -> MXC PxP V3 support

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 113

Programming Interface

10.6 Programming Interface

10.6.1 I0CTLs/Functions

The EPDC Frame Buffer is accessible from user space and from kernel space. A single
set of functions describes the EPDC Frame Buffer driver extension. There are, however,
two modes for accessing these functions. For user space access the IOCTL interface
should be used. For kernel space access the functions should be called directly. For each
function below both the IOCTL code and the corresponding kernel function is listed.

MXCFB_SET_WAVEFORM_MODES / mxc_epdc_fb_set_waveform_modes()
Description:

Defines a mapping for common waveform modes.

Parameters:

mxcfb_waveform_modes *modes

Pointer to a structure containing the waveform mode values for common waveform
modes. These values must be configured in order for automatic waveform mode selection
to function properly.

MXCFB_SET_TEMPERATURE / mxc_epdc_fb_set_temperature
Description:

Set the temperature to be used by the EPDC driver in subsequent panel updates.
Parameters:

Int32_t temperature

Temperature value, in degrees Celsius. Note that this temperature setting may be
overridden by setting the temperature value parameter to anything other than
TEMP_USE_AMBIENT when using the MXCFB_SEND_UPDATE ioctl.

MXCFB_SET_AUTO_UPDATE_MODE / mxc_epdc_fb_set_auto_update
Description:
Select between automatic and region update mode.

Parameters:

_ u32 mode

i.MX Linux® Reference Manual, Rev. 0, 10/2016
114 NXP Semiconductors

4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

In region update mode, updates must be submitted via the MXCFB_SEND_UPDATE
IOCTL.

In automatic mode, updates are generated automatically by the driver by detecting pages
in frame buffer memory region that have been modified.

MXCFB_SET_UPDATE_SCHEME / mxc_epdc_fb_set_upd_scheme
Description:

Select a scheme that dictates how the flow of updates within the driver.
Parameters:

_u32 scheme

Select of the following updates schemes:

UPDATE_SCHEME_SNAPSHOT - In the Snapshot update scheme, the contents of the
framebuffer are immediately processed and stored in a driver-internal memory buffer. By
the time the call to MXCFB_SEND_UPDATE has completed, the framebuffer region is
free and can be modified without affecting the integrity of the last update. If the update
frame submission is delayed due to other pending updates, the original buffer contents
will be displayed when the update is finally submitted to the EPDC hardware. If the
update results in a collision, the original update contents will be resubmitted when the
collision has cleared.

UPDATE_SCHEME_QUEUE - The Queue update scheme uses a work queue to
aynchronously handle the processing and submission of all updates. When an update is
submitted via MXCFB_SEND_UPDATE, the update is added to the queue and then
processed in order as EPDC hardware resources become available. As a result, the
framebuffer contents processed and updated are not guaranteed to reflect what was
present in the framebuffer when the update was sent to the driver.

UPDATE_SCHEME_QUEUE_AND_MERGE - The Queue and Merge scheme uses the
queueing concept from the Queue scheme, but adds a merging step. This means that,
before an update is processed in the work queue, it is first compared with other pending
updates. If any update matches the mode and flags of the current update and also overlaps
the update region of the current update, then that update will be merged with the current
update. After attempting to merge all pending updates, the final merged update will be
processed and submitted.

MXCFB_SEND_UPDATE / mxc_epdc_fb_send_update
Description:

Request a region of the frame buffer be updated to the display.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 115

Programming Interface
Parameters:
mxcfb_update_data *upd_data

Pointer to a structure defining the region of the frame buffer, waveform mode, and
collision mode for the current update. This structure also includes a flags field to select
from one of the following update options:

EPDC_FLAG_ENABLE_INVERSION - Enables inversion of all pixels in the update
region.

EPDC_FLAG_FORCE_MONOCHROME - Enables full black/white posterization of all
pixels in the update region.

EPDC_FLAG_USE_ALT_BUFFER - Enables updating from an alternate (non-
framebuffer) memory buffer.

If enabled, the final upd_data parameter includes detailed configuration information for
the alternate memory buffer.

MXCFB_WAIT_FOR_UPDATE_COMPLETE /
mxc_epdc_fb_wait_update_complete

Description:

Block and wait for a previous update request to complete.
Parameters:

__u32 update_marker

User-defined value used to identify a particular update (passed as a parameter in
MXCFB_SEND_UPDATE IOCTL call). The marker value should be re-used here to
wait for the update to complete.

mxfb_update_marker_data marker_data

The update_marker value used to identify a particular update (passed as a parameter in
MXCFB_SEND_UPDATE IOCTL call) should be re-used here to wait for the update to
complete. If the update was a collision test update, the collision_test variable will return
the result indicating whether a collision occurred.

MXCFB_SET_PWRDOWN_DELAY / mxc_epdc_fb_set_pwrdown_delay
Description:

Set the delay between the completion of all updates in the driver and when the driver
should power down the EPDC and the E Ink display power supplies.

Parameters:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
116 NXP Semiconductors

4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

int32_t delay

Input delay value in milliseconds. To disable EPDC power down altogether, use
FB_POWERDOWN_DISABLE (defined below).

MXCFB_GET_PWRDOWN_DELAY / mxc_epdc_fb_get_pwrdown_delay
Description:

Retrieve the driver's current power down delay value.

Parameters:

int32_t delay

Output delay value in milliseconds.

10.6.2 Structures and Defines

#define GRAYSCALE_ 8BIT 0x1
#define GRAYSCALE 8BIT INVERTED 0x2
#define AUTO UPDATE MODE REGION MODE 0
#define AUTO UPDATE MODE AUTOMATIC MODE 1
#define UPDATE SCHEME SNAPSHOT 0
#define UPDATE SCHEME QUEUE 1
#define UPDATE SCHEME QUEUE AND MERGE 2
#define UPDATE MODE PARTIAL 0x0
#define UPDATE MODE_ FULL ox1
#define WAVEFORM MODE AUTO 257
#define TEMP USE AMBIENT 0x1000
#define EPDC_FLAG ENABLE INVERSION 0x01
#define EPDC_FLAG FORCE_MONOCHROME 0x02
#define EPDC_FLAG USE_ALT BUFFER 0x100

#define EPDC_FLAG TEST COLLISION 0x200
#define FB_ POWERDOWN DISABLE -1

struct mxcfb rect
_u32 left; /* Starting X coordinate for update region */
__u32 top; /* Starting Y coordinate for update region */
__u32 width; /* Width of update region */
__u32 height; /* Height of update region */

Vi

struct mxcfb waveform modes {
int mode_init; /* INIT waveform mode */
int mode_du; /* DU waveform mode */
int mode gc4; /* GC4 waveform mode */
int mode gc8; /* GC8 waveform mode */
int mode gclé6; /* GCl6 waveform mode */
int mode_gc32; /* GC32 waveform mode */

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 117

A ————
Programming Interface

struct mxcfb alt buffer data {
__u32 phys addr; /* physical address of alternate image buffer */
__u32 width; /* width of entire buffer */
__u32 height; /* height of entire buffer */
struct mxcfb_rect alt_update_region; /* region within buffer to update */

Vi

struct mxcfb update data {

struct mxcfb_rect update region; /* Rectangular update region bounds */

__u32 waveform mode; /* Waveform mode for update */

__u32 update mode; /* Update mode selection (partial/full) */

__u32 update marker; /* Marker used when waiting for completion */

int temp; /* Temperature in Celsius */

uint flags; /* Select options for the current update */

struct mxcfb alt buffer data alt buffer data; /* Alternate buffer data */
};

struct mxcfb update marker data { _ u32 update marker; _ u32 collision test; };

i.MX Linux® Reference Manual, Rev. 0, 10/2016
118 NXP Semiconductors

Chapter 11
Pixel Pipeline (PxP) DMA-ENGINE Driver

11.1 Introduction

The Pixel Pipeline (PxP) DMA-ENGINE driver provides a unique API, which are
implemented as a dmaengine client that smooths over the details of different hardware
offload engine implementations. Typically, the users of PxP DMA-ENGINE driver
include EPDC driver, V4L2 Output driver, and the PxP user-space library.

11.2 Hardware Operation
The PxP driver uses PxP registers to interact with the hardware. For detailed hardware

operations, see the following documents:
* i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

* i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM)

11.3 Software Operation

There are different versions of PxP IP. To ease the maintenance for the new version of
PxP used on i.MX 7Dua,l which has new features mainly for EPDC like hardware
collision detection, E Ink Gen-II waveform algorithm (REAGL/-D) processing in
hardware, and hardware dithering support, there are different drivers (drivers/dma/pxp/
pxp_dma_v3.c). However, each version uses the DMA Engine framework.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 119

Software Operation

11.3.1 Key Data Structs

The PxP DMA Engine driver implementation depends on the DMA Engine Framework.
There are three important structs in the DMA Engine Framework which are extended by
the PxP driver: struct dma_device, struct dma_chan, struct dma_async_tx_descriptor. The
PxP driver implements several callback functions which are called by the DMA Engine
Framework (or DMA slave) when a DMA slave (client) interacts with the DMA Engine.

The PxP driver implements the following callback functions in struct dma_device:
device_alloc_chan_resources /* allocate resources and descriptors */
device_free_chan_resources /* release DMA channel's resources */
device_tx_status /* poll for transaction completion */

device_issue_pending /* push pending transactions to hardware */

and,

device_prep_slave_sg /* prepares a slave DMA operation */

device_terminate_all/* manipulate all pending operations on a channel, returns zero or
error code */

The first four functions are used by the DMA Engine Framework, the last two are used
by the DMA slave (DMA client). Notably, device_issue_pending is used to trigger the
start of a PxP operation.

The PxP DMA driver also implements the interface tx_submit in struct
dma_async_tx_descriptor, which is used to prepare the descriptor(s) which will be
executed by the engine. When tasks are received in pxp_tx_submit, they are not
configured and executed immediately. Rather, they are added to a task queue and the
function call is allowed to return immediately.

11.3.2 Channel Management

Although ePxP does not have multiple channels in hardware, the virtual channels are
supported in the driver; this provides flexibility in the multiple instance/client design. At
any time, a user can call dma_request_channel() to get a free channel, and then configure
this channel with several descriptors (a descriptor is required for each input plane and for
the output plane). When the PxP is no longer being used, the channel should be released
by calling dma_release_channel(). Detailed elements of channel management are
handled by the driver and are transparent to the client.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
120 NXP Semiconductors

Chapter 11 Pixel Pipeline (PxP) DMA-ENGINE Driver

11.3.3 Descriptor Management

The DMA Engine processes the task based on the descriptor. One DMA channel is
usually associated with several descriptors. Descriptors are recycled resources, under
control of the offload engine driver, to be reused as operations complete. The extended
TX descriptor packet (pxp_tx_desc), allows the user to pass PxP configuration
information to the driver. This includes everything that the PxP needs to execute a
processing task.

11.3.4 Completion Notification

There are two ways for an application to receive notification that a PxP operation has
completed.

* Call dma_wait_for_async_tx(). This call causes the CPU to spin while it polls for the
completion of the operation.
* Specify a completion callback.

The latter method is recommended. After the PxP operation completes, the PxP output
buffer data can be retrieved.

For general information for DMA Engine Framework, see Documentation/dmaengine.txt
in the Linux kernel source tree.

11.3.5 Limitations

* The driver currently does not support scatterlist objects in the way they are
traditionally used. Instead of using the scatterlist parameter object to provide a chain
of memory sources and destinations, the driver currently uses it to provide the input
and output buffers (and overlay buffers, if needed) for one transfer.

e The PxP driver may not properly execute a series of transfers that is queued in rapid
sequence. It is recommended to wait for each transfer to complete before submitting
a new one.

11.4 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

Device Drivers --->

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 121

Source Code Structure

DMA Engine support --->
[*] MXC PxP V2 support
[*] MXC PxP V3 support
[*] MXC PxP Client Device

11.5 Source Code Structure

The PxP driver source code is located in drivers/dma/pxp and include/linux/.

11.6 Unit Testing
The PxP test application can be found in /usr/bin/pxp test. Run the following command
to test the output overlay capability of the driver:

pxp_test -a0 -w10 /usr/share/pxp_test/large.sO /usr/share/pxp_test/tux.s1
* drivers/dma/pxp/pxp_dma_v2.c

PxP DMA driver source file. Implements the DMA Engine APL.
* drivers/dma/pxp/pxp_device.c

PxP interface driver for the user-space library to access
* drivers/dma/pxp/Makefile

Makefile to build pxp_dma
e include/linux/pxp_dma.h

Public include file for MXC pxp_dma driver.
* drivers/dma/Makefile

Added MXC pxp_dma to build
* drivers/dma/Kconfig

Added entry for MXC pxp_dma

i.MX Linux® Reference Manual, Rev. 0, 10/2016
122 NXP Semiconductors

Chapter 12
ELCDIF Frame Buffer Driver

12.1 Introduction

The ELCDIF frame buffer driver is designed using the Linux kernel frame buffer driver
framework. It implements the platform driver for a frame buffer device. The
implementation uses the ELCDIF API for generic LCD low-level operations. The
ELCDIF APl is also defined in the ELCDIF frame buffer driver to realize low level
hardware control. Only DOTCLK mode of the ELCDIF API is tested, so theoretically the
ELCDIF frame buffer driver can work with a sync LCD panel driver to support a frame
buffer device. The sync LCD driver is organized in a flexible and extensible manner and
1s abstracted from any specific sync LCD panel support. To support another sync LCD
panel, the user can write a sync LCD driver by referring to the existing one.

12.2 Hardware Operation
For detailed hardware operations, see the following documents:
* i.MX 6Solo/6DuallLite Applications Processor Reference Manual IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

12.3 Software Operation

A frame buffer device is a memory device similar to /dev/mem and it has the same

features. It can be read from, written to, or some location in it can be sought and maped
using mmap(). The difference is that the memory that appears is not the whole memory,
but only the frame buffer of the video hardware. The device is accessed through special

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 123

A
Menu Configuration Options

device nodes, usually located in the /dev directory, /dev/fb*. /dev/fb* also has several
IOCTLs which act on it and through which information about the hardware can be
queried and set. The color map handling operates through IOCTLs as well. See linux/fb.h
for more information on which IOCTLs there are and which data structures they use.

The frame buffer driver implementation for 1.MX501.MX 6 is abstracted from the actual
hardware. The default panel driver is picked up by video mode defined in platform data
or passed in with 'video=mxc_elcdif_fb:resolution, bpp=bits_per_pixel' kernel bootup
command during probing, where resolution should be in the common frame buffer video
mode pattern and bits_per_pixel should be the frame buffer's color depth.

12.4 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

 CONFIG_FB_STMP37XX [=MIY] is the configuration option for the STMP37xx/
STMP378x frame buffer driver dependent on the CONFIG_FB option. This option
can found under Device Drivers -> Graphics Support

* CONFIG_FB_STMP37XX_LMS350 [=YIN] is the configuration option to compile
support for the Samsung LMS350GF1X "dot clock" LCD panel into the kernel.

* CONFIG_FB_MXS_LMS430 [=YIN]Configuration option to compile support for
the Samsung LMS430 "dot clock" LCD panel into the kernel.

* CONFIG_FB_MXC_CLAA_WVGA_SYNC_PANEL [=YINIM] Configuration
option to compile support for the CLAA WVGA(800x480) LCD panel into the
kernel (Supported on ARM?2 board).

* CONFIG_FB_STMP37XX [=MIY] is the configuration option for the STMP37xx/
STMP378x frame buffer driver dependent on the CONFIG_FB option. This option
can found under Device Drivers -> Graphics Support

* CONFIG_FB_STMP37XX_1.MS350 [=YIN] is the configuration option to compile
support for the Samsung LMS350GF1X "dot clock” LCD panel into the kernel.

* CONFIG_FB_MXS_L.MS430 [=YIN]Configuration option to compile support for
the Samsung LMS430 "dot clock" LCD panel into the kernel.

* Configuration option to compile support for the SEIKO WVGA(800x480) LCD
panel into the kernel (Supported on RDP board).

* CONFIG_FB_STMP37XX [=MIY] is the configuration option for the STMP37xx/
STMP378x frame buffer driver dependent on the CONFIG_FB option. This option
can found under Device Drivers -> Graphics Support

* CONFIG_FB_STMP37XX_1.MS350 [=YIN] is the configuration option to compile
support for the Samsung LMS350GF1X "dot clock” LCD panel into the kernel.

* CONFIG_FB_MXS_L.MS430 [=YIN]Configuration option to compile support for
the Samsung LMS430 "dot clock" LCD panel into the kernel.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
124 NXP Semiconductors

4
Chapter 12 ELCDIF Frame Buffer Driver

* CONFIG_FB_MXS [=YINIM] Configuration option to compile support for the MXC
ELCDIF frame buffer driver into the kernel.

* CONFIG_FB_STMP37XX_TVOUT [=YIN] is the configuration option to compile
support for TV-out output through the frame buffer driver into the kernel.

12.5 Source Code Structure

The frame buffer driver source code is in drivers/video/fbdev/mxsfb.c.

12.6 Unit Testing

The unit testing for the framebuffer driver concerns the correct boot logo display and
examining/setting the framebuffer parameters using fbset utility:
fbset

mode "320x240-319"

D: 50.000 MHz, H: 97.656 kHz, V: 319.138 Hz

geometry 320 240 320 480 32

timings 20000 64 64 32 32 64 2

rgba 8/16,8/8,8/0,0/0

endmode

fbset -xres 720 -yres 480 -vxres 720 -vyres 480

<switch to TV-out happens>

fbset -xres 320 -yres 240 -vxres 320 -vyres 480

<switch back to the LCD occurs>

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 125

A ————
Unit Testing

i.MX Linux® Reference Manual, Rev. 0, 10/2016
126 NXP Semiconductors

Chapter 13
Graphics Processing Unit (GPU)

13.1 Introduction

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D
graphics applications.

The 3D graphics processing unit (GPU3D) is an embedded engine that accelerates user
level graphics Application Programming Interface (APIs) such as OpenGL ES 1.1,
OpenGL ES 2.0, and OpenGL ES 3.0 and OpenCL 1.1EP. The 2D graphics processing
unit (GPU2D) is an embedded 2D graphics accelerator targeting graphical user interfaces
(GUI) rendering boost. The VG graphics processing unit (GPUVG) is an embedded
vector graphic accelerator for supporting the OpenVG 1.1 graphics API and feature set.
The GPU driver kernel module source is in the kernel source tree, but the libs are
delivered as binary only.

Graphics Processing Unit Hardware Applicable Platform
3D Vivante GC2000 6Quad/6Dual
3D Vivante GC880 6DualLite/6Solo
3D/2D Vivante GC400T 6SoloX
2D Vivante GC320 6Quad/6Dual/6DualLite/6Solo/6SoloLite
Vector Vivante GC355 6Quad/6Dual/6SoloLite
NOTE

GC400T does not support OpenGL ES 3.0.

GC880/GC400T does not support OpenCL 1.1EP, and only
GC2000 supports it.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 127

Introduction

13.1.1 Driver Features

The GPU driver enables this board to provide the following software and hardware
support:

* EGL (EGL is an interface between Khronos rendering APIs such as OpenGL ES or
OpenVG and the underlying native platform window system) 1.4 API defined by
Khronos Group.

* OpenGL ES (OpenGL® ES is a royalty-free, cross-platform API for full-function 2D
and 3D graphics on embedded systems) 1.1 API defined by Khronos Group.

* OpenGL ES 2.0 API defined by Khronos Group.

* OpenGL ES 3.0 API defined by Khronos Group.

* OpenVG (OpenVaG is a royalty-free, cross-platform API that provides a low-level
hardware acceleration interface for vector graphics libraries such as Flash and SVG)
1.1 API defined by Khronos Group.

* OpenCL (OpenCL is the first open, royalty-free standard for cross-platform, parallel
programming of modern processors.) 1.1 EP API defined by Khronos Group.

* OpenGL 2.1 API defined by Khronos Group.

* Automatic 3D core slowing down, when hot notification from thermal driver is
active, 3D core will run at 1/64 clock.

13.1.1.1 Hardware Operation

For detailed hardware operations, seee the GPU chapters in the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

* .MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

13.1.1.2 Software Operation

The GPU driver is divided into two layers: the first one which acts as a base driver, and a
second one which runs in user mode.

The GPU driver is divided into two layers. The first layer is running in kernel mode and
acts as the base driver for the whole stack . This layer provides the essential hardware
access, device management, memory management, command queue management,

i.MX Linux® Reference Manual, Rev. 0, 10/2016
128 NXP Semiconductors

.4
Chapter 13 Graphics Processing Unit (GPU)

context management and power management. The second layer is running in user mode,
implementing the stack logic and providing the following APIs to the upper layer
applications:

* OpenGL ES 1.1, 2.0, and 3.0 API
« EGL 1.4 API

e OpenVG 1.1 API

* OpenCL 1.1 EP API

13.1.1.3 Source Code Structure
Table below lists GPU driver kernel module source structure:

<Yocto_BuildDir>/linux/drivers/mxc/gpu-viv

Table 13-1. GPU Driver Files

File Description
Kconfig Kbuild config Kernel configure file and makefile
hal/kernel/arch Hardware-specific driver code for GC2000, GC880, GC400T, and
GC320
hal/kernel/archvg Hardware-specific driver code for GC355
hal/kernel Kernel mode HAL driver
hal/os/linux/kernel OS layer HAL driver
NOTE

If you replace the whole content in this directory, the GPU
kernel driver can be upgraded.

13.1.1.4 Library Structure

Table below lists GPU driver user mode library structure:

<ROOTFS>/usr/lib
Table 13-2. GPU Library Files
File Description
libCLC.so OpenCL frontend compiler library
libEGL.so** EGL1.4 library
libGAL.so GAL user mode driver
libGLES_CL.so OpenGL ES 1.1 common lite library

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 129

Introduction

Table 13-2. GPU Library Files (continued)

File Description

(without EGL API, no float point support API)
libGL.so** OpenGL 2.1 common library
libGLES_CM.so OpenGL ES 1.1 common library

(without EGL API, include float point support API)
libGLESv1_CL.so** OpenGL ES 1.1 common lite library

(with EGL API, no float point support API)
libGLESv1_CM.so** OpenGL ES 1.1 common library

(with EGL API, include float point support API)
libGLESv2.s0** OpenGL ES 2.0/3.0 library
libGLSLC.so OpenGL ES shader language compiler library
libVSC.so OpenGL front-end compiler library
libVivanteOpenCL.so Vivante
libOpenCL.so OpenCL ICD wrapper library
libOpenVG.so* OpenVG 1.1 library
libVDK.so VDK wrapper library.
libVIVANTE.so Vivante user mode driver.
directfb-1.6-0/gfxdrivers/libdirectfb_gal.so DirectFB 2D acceleration library.
dri/vivante_dri.so DRIl library for OpenGL2.1.
xorg/modules/drivers/vivante_drv.so EXA library for X11 acceleration.
libwayland-viv.so Wayland server-side library for Vivante's EGL driver
libgc_wayland_protocol.so Vivante Wayland Protocol Extension Library

**SONAME is used for ibEGL.so, ibGLESv2.so, ibGLESv1_CM.so,
libGLESv1_CL.so, libGL.so.

*For 1ibOpenVG.so, there are two libraries for the OpenVG feature. libOpenVG.3d.so is
the gc2000/gc880/gc400t based OpenVG library. libOpenVG.2d.so is the gc355 based
OpenVaQ library.

For 1.MX 6Dual/Quad, both libOpenVG.3d.so and 1ibOpenVG.2d.so can be used.
For 1.MX 6DualLite and 1.MX 6SoloX, only libOpenVG.3d.so can be used.

For 1.MX 6SoloLite, only libOpenVG.2d.so can be used.

If no SOC limitation, for the x11 backend, libOpenVG.3d.so is linked by default.

If no SOC limitation, for framebuffer, directFB, and Wayland backends, the default
openVG library is linked to libOpenVG.2d.so.

This can be done by using the following sequence of commands:

cd <ROOTFS>/usr/lib
sudo 1n -s 1libOpenvVG 355.so 1libOpenVG.so

i.MX Linux® Reference Manual, Rev. 0, 10/2016
130 NXP Semiconductors

4
Chapter 13 Graphics Processing Unit (GPU)

13.1.1.5 API References
References for detailed specifications can be found here.
See the following web sites for detailed specifications:

* OpenGL ES 1.1, 2.0, and 3.0 API: www.khronos.org/opengles/
* OpenCL 1.1 EP www.khronos.org/opencl/

* EGL 1.4 API: www.khronos.org/egl/

* OpenVG 1.1 API: www.khronos.org/openvg/

13.1.1.6 Menu Configuration Options
The following Linux kernel configurations are provided for GPU driver:
 CONFIG_MXC_GPU_VIV is a configuration option for GPU driver. In the

menuconfig this option is available under Device Drivers > MXC support drivers >
MXC Vivante GPU support > MXC Vivante GPU support.

To get to the GPU library package in Yocto, use the command bitbake linux-imx -c
menuconfig. On the screen displayed, select Configure the kernel and select "Device
Drivers" > "MXC support drivers" > "MXC Vivante GPU support" > "MXC Vivante
GPU support"and exit. When the next screen appears select the following options to
enable the GPU driver:

 Package list > gpu-viv-bin-mx6q
» This package provides proprietary binary libraries, and test code built from the GPU
for framebuffer

13.2 Unit Test

To run test applications, you have to first load the GPU driver.
To load the GPU driver, use the following command:

"insmod <PATH>/fgalcore.ko"

to un-install GPU driver, run the following command:

"rmmod <PATH>/galcore.ko"

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 131

http://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/egl/
http://www.khronos.org/openvg/

A
Unit Test

Note: The path of galcore.ko can be found by the following command:

nan

"cd / && find . -name "galcore.ko

i.MX Linux® Reference Manual, Rev. 0, 10/2016
132 NXP Semiconductors

Chapter 14
Wayland

14.1 Introduction

Wayland is a protocol for a compositor to talk to its clients as well as a C library
implementation of that protocol. The compositor can be a standalone display server
running on Linux kernel modesetting and evdev input devices, an X application, or a
Wayland client itself. The clients can be traditional applications, X servers or other
display servers.

Part of the Wayland project is also the Weston reference implementation of a Wayland
compositor. The Weston compositor is a minimal and fast compositor and is suitable for
many embedded and mobile use cases.

This chapter describes how to enable Wayland/Weston support on an i.MX 6 series
device.

14.2 Hardware Operation

1.MX 6SoloLite only supports GAL2D acceleration, and other SOCs in 1.MX 6 series
support EGL3D and GAL2D acceleration.

14.3 Software Operation

This release is based on the Wayland 1.6.0 version and Weston 1.6.0 version.

14.4 Yocto Build Instructions

The instructions for Yocto build are as follows:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 133

Customizing Weston

1. Prepare a Yocto build directory and follow the setup instructions in the Freescale
Yocto Project User's Guide IMXLXYOCTOUG) for Wayland.
2. Set up Yocto for Wayland in the build directory:

$ source fsl-setup-release.sh -b build-wayland -e wayland

3. Build an image.

$ bitbake fsl-image-weston

14.5 Customizing Weston

The FSL-Weston includes two compositors. One is the EGL3D compositor, which is
accelerated by the GC2000 3D core. The other is GAL2D compositor accelerated by the
GC320 2D core.

Weston options can be updated in the file “/etc/init.d/weston”.

Table 14-1. Common options for Weston

Weston option Description
tty default to current tty.
device "/dev/fb0", default frame buffer , Multi display supported in
Gal2D compositor.
use-gl EGL accelerated, defaults to be “1”.
use-gal2d GAL2D accelerated, defaults to be “0”.
idle-time Idle time in seconds.

14.5.1 Multi display supported in Weston

Multi display was supported in Gal2D compositor only. Add these options to start
Weston:

weston --tty=1 --device=/dev/£fb0,/dev/fb2 --use-gal2d=1 &

14.5.2 Multi buffer supported in Weston

The Weston server supports both single buffering and multi buffering. In single
buffering, the damage area is rendered to the offscreen surface and blits to front
buffer.The offscreen surface is used to avoid flickering. By default, the Weston server
starts with single buffering.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
134 NXP Semiconductors

L __4

Chapter 14 Wayland
In multi buffering, instead of rendering to offscreen, the damage area is rendered to back
buffer and does the flip, but the frame rate will be restricted to the display rate. A
maximum of three buffers are supported.

Before starting the Weston server, export FB_MULTI_BUFFER to control the number of
buffers to be used.

Environment variables for single buffering:
export FB_MULTI_ BUFFER=1
Environment variables for double buffering:

export FB MULTI_ BUFFER=2

14.6 Running Weston
Perform the following operations to run Weston:

1. Boot the i.MX 6 series device.

2. To run clients, the second button in the top bar will run weston-terminal, from which
you can run clients. There are a few demo clients available in the Weston build
directory, but they are all pretty simple and mostly for testing specific features in the
Wayland protocol:

* 'weston-terminal' is a simple terminal emulator, not very compliant, but works
well enough for bash.

» 'weston-flower' draws a flower on the screen, testing the frame protocol.

» 'weston-smoke' tests SHM buffer sharing.

* 'weston-image' loads the image files passed on the command line and shows
them.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 135

Running Weston

i.MX Linux® Reference Manual, Rev. 0, 10/2016
136 NXP Semiconductors

Chapter 15
On-Chip High-Definition Multimedia Interface (HDMI)

15.1 Introduction

The High-Definition Multimedia Interface (HDMI) driver supports the on-chip
DesignWare HDMI hardware module, which provides the capability to transfer
uncompressed video, audio, and data using a single cable.

The HDMI driver is divided into four sub-components: A video display device driver that
integrates with the Linux Frame Buffer API, an audio driver that integrates with the
ALSA/SoC sub-system, a CEC driver, and a multifunction device (MFD) driver which
manages the shared software and hardware resources of the HDMI driver.

The HDMI driver supports the following features:

* Integration with the MXC Display Device framework (for managing display device
connections with the IPU(s))

» HDMI video output up to 1080p60 resolution

* Support for reading EDID information from an HDMI sink device

* Hotplug detection

* Support CEC

e Automated clock management to minimize power consumption

 Support for system suspend/resume

» HDMI audio playback (2, 4, 6, or 8 channels, 16bit, for sample rates 32KHz to
192KHz)

 IEC audio header information exposed through ALSA using ‘iecset’ utility

15.1.1 Hardware Operation

The HDMI module receives video data from the Image Processing Unit (IPU), audio data
from the external memory interface, and control data from the CPU, as shown in the
figure below.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 137

A
Introduction

Output data is transmitted via three Transition-Minimized Differential Signaling (TMDS)
channels to an HDMI sink device external to the SoC. Additionally, the HDMI carries a
VESA Data Display Channel (DDC). The DDC is an I12C interface which allows the
HDMI source to query the HDMI sink for Extended Display Identification Data (EDID).
A CEC channel provides optional high-level control functions between the source and
sink device.

w HDMI
Image Parallel I/F = ™
Processing > 5
Unit &
TMDS _DATA
External AHB master % HOMI 7 >
Memory | = —> PTHXY TMDS_CLK
Interface =
< HDMI
T
Controller CEC -
‘. DDC(I*C)
AHB Slave 4 "2
» 5
=
<]
5]
J
4]
m
2
» —P & ' HDCP
Clocks —]
> z A A
Inferrupts
Y
HDCP HDCP
Keys Revocation
Storage RAM

Figure 15-1. HDMI HW Integration

The video input to the HDMI is configurable and may come from either of the two IPU
modules in the 1.MX 6 serials and from either of the two Display Interface (DI) ports of
the IPU, DIO or DII. This configuration is controlled through the IOMUX module using
the HDMI_MUX_CTRL register field. See the figure below for an illustration of this
interconnection.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
138 NXP Semiconductors

Chapter 15 On-Chip High-Definition Multimedia Interface (HDMI)

Memory

IPU #1 IPU #2

Do DN DIO DI

——hs

HDMI MUX [e——HDMI_MUX_CTRL

= Y

Parallel LCD,
LVDS, MIPI DPI, HDOMI
etc.
, \

HDMI Out

Figure 15-2. IPU-HDMI Hardware Interconnection

15.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ.

15.2.1 Core

The HDMI core driver manages resources that must be shared between the HDMI audio
and video drivers. The HDMI audio and video drivers depend on the HDMI core driver,
and the HDMI core driver should always be loaded and initialized before audio and
video. The core driver serves the following functions:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 139

A
Software Operation

* Map the HDMI register region and provide APIs for reading and writing to HDMI
registers

* Perform one-time initialization of key HDMI registers

e Initialize the HDMI IRQ and provide shared APIs for enabling and disabling the IRQ

* Provide a means for sharing information between the audio and video drivers (e.g.,
the HDMI pixel clock)

* Provide a means for synchronization between HDMI video and HDMI audio while
blank/unbalnk, plug in/plug out events happen. HDMI audio can't start work while
HDMI cable is in the state of plug out or HDMI is in state of blank. Every time
HDMI audio starts a playback, HDMI audio driver should register its PCM into core
driver and unregister PCM when the playback is finished. Once HDMI video blank
or cable plug out event happens, core driver would pause HDMI audio DMA
controller if its PCM is registered. When HDMI is unblanked or cable plug in event
happens, core driver would firstly check if the cable is in the state of plug in, the
video state is unblank and the PCM is registered. If items listed above are all yes,
core driver would restart HDMI audio DMA.

15.2.2 Video

The following diagram illustrates both the interconnection between the various HDMI
sub-drivers and the interconnection between the HDMI video driver and the Linux Frame
Buffer subsystem.

a

Figure 15-3. HDMI Video SW Architecture

The 1.MX 6Dual/6Quad/6Solo/6DualLite/6SoloLite supports many different types of
display output devices (e.g., LVDS, LCD, HDMI, and MIPI displays) connected to and
driven by the IPU modules. The MXC Display Driver API provides a system for
registering display devices and configuring how they should be connected to each of the
IPU DIs. The HDMI driver registers itself as a display device using this API in order to
receive the correct video input from the IPU.

15.2.3 Display Device Registration and Initialization

The following sequence of software activities occurs in the OS boot flow to connect the
HDMI display device to the IPU FB driver through the MXC Display Driver system:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
140 NXP Semiconductors

4
Chapter 15 On-Chip High-Definition Multimedia Interface (HDMI)

1. During the HDMI video driver initialization, mxc_dispdrv_register () 1S called to
register the HDMI module as a display device and to set the mxc_hdami_disp init ()
function as the display device init callback.

2. When the IPU FB driver is initialized, mxc disparv init () 18 called. This results in an
init call to all registered display devices.

3. The mxc_nami_aisp_init () callback is executed. The HDMI driver receives a structure
from the IPU FB driver containing frame buffer information (fbi). The HDMI driver
also provides return information about which IPU and DI to select and the preferred
output format for video data from the IPU. The HDMI driver registers itself to
receive notifications of FB driver events. Finally, the HDMI driver can complete its
initialization by configuring the HDMI to receive a hotplug interrupt.

NOTE
All display device drivers must be initialized before the IPU FB
driver, in order for all display devices to be registered as MXC
Display Driver devices before the IPU FB driver can initialize
them.

15.2.4 Hotplug Handling and Video Mode Changes

Once the connection between the IPU and the HDMI has been established through the
MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt,
indicating that a valid HDMI sink device is connected and ready to receive HDMI video
data. Subsequent communications between the HDMI and IPU FB are conducted through
the Linux Frame Buffer APIs. The following list demonstrates the software flow to
recognize an HDMI sink device and configure the IPU FB driver to drive video output to
it:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device, constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls tb_set_var () to change the video mode in the IPU FB
driver. The IPU FB driver completes its reconfiguration for the new mode.

3. As aresult of calling fb_set_var(), an FB notification is sent back to the HDMI driver
indicating that an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver
configures the HDMI hardware for the new video mode..

4. In the final step, the HDMI module is enabled to generate output to the HDMI sink
device.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 141

Software Operation

15.2.5 Audio

The HDMI Tx audio driver uses the ALSA SoC framework, so it 1s broken into several
files, as is listed in Table 15-4. Most of the code is in the platform DMA driver
(sound/soc/imx/imx-hdmi-dma.c). The machine driver (sound/soc/fsl/imx-hdmi.c) exists
to allocate the SoC audio device and link all the SoC components together. The DAI
driver (sound/soc/fsl/fsl-hdmi-dai.c) mostly exists because SoC wants there to be a DAI
driver; it gets the platform data, but doesn’t do anything else.

The HDMI codec driver does most of the initialization of the HDMI audio sampler. Note
that the HDMI Tx block only implements the AHB DMA audio and not the other audio
interfaces (SSI, S/PDIF, etc.). The other main function of the HDMI codec driver is to set
up a struct of the IEC header information which needs to go into the audio stream. This
struct is hooked into the ALSA layer, so the IEC settings will be accessible in userspace
using the ‘iecset’ utility.

The platform DMA driver handles the HDMI Tx block’s DMA engine. Note that HDMI
audio uses the HDMI block’s DMA as well as SDMA. SDMA is used to help implement
the multibuffer mechanism. The HDMI Tx block does not automatically merge the IEC
audio header information into the audio stream, so the platform DMA driver does this in
its hdmi_dma_copy()(for no memory map use) or hdmi_dma_mmap_copy()(for memory
map mode use) function before the DMA sends the buffers out. Also note that, due to
IEC audio header adding operation, it is possible that user space application is not able to
get enough CPU periods to feed data into HDMI audio driver in time, especially when
system loading is high. In this situation, some spark noise would be heard. In different
audio framework(ALSA LIB, or PULSE AUDIO), different log about this noise may be
printed. For example, in ALSA LIB, logs like "underrung!!! at least * ms is lost" are
printed.

HDMI audio playback depends on HDMI pixel clock. So while in the state of HDMI
blank and cable plug out, HDMI audio would be stopped or can't be played. See detailed
information in software_operation_core.

Also note that, because HDMI audio driver need to add IEC header, driver need to know
how many data has application already write into HDMI audio driver. If application is
not able to tell how many data is wrote (for example, DMIX plugin in ALSA LIB),
HDMI audio driver is not able to work properly. There would be no sound heard.

The HDMI audio support features below:

* Playback sample rate
» 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
* capability of HDMI sink

i.MX Linux® Reference Manual, Rev. 0, 10/2016
142 NXP Semiconductors

L __4
Chapter 15 On-Chip High-Definition Multimedia Interface (HDMI)
 Playback Channels:
©2,4,6,8
* capability of HDMI sink
 Playback audio formats:
e SNDRV_PCM_FMTBIT_S16_LE

15.2.6 CEC

HDMI CEC is a protocol that provides high-level control functions between all of the
various audiovisual products is a user’s environment. The HDMI CEC driver implements
software part of HDMI CEC low Level protocol. It includes getting Logical address,
CEC message sending and receiving, error handle, message re-transmitting, and etc.

o

Figure 15-4. HDMI CEC SW Architecture

15.3 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI core driver, the HDMI display driver,
and the HDMI audio driver.

Additional platform-specific source code files provide the code for declaring and
registering these HDMI drivers.

The source code for the HDMI core driver is available in the <Yocto_BuildDir>/linux/
drivers/mfd/ directory.

Table 15-1. HDMI Core Driver File List

File Description

mxc-hdmi-core.c HDMI core driver implemention

A public header for the HDMI core driver is available in the <Yocto_BuildDir>/linux/
include/linux/mfd/ directory.

Table 15-2. HDMI Core Display Driver Public Header File List

File Description

mxc-hdmi-core.h HDMI core driver header file

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 143

Source Code Structure
The source code for the HDMI display driver is available in the drivers/video/fbdev/mxc
directory.

Table 15-3. HDMI Display Driver File List

File Description

mxc_hdmi.c HDMI display driver implemention

The source code for the HDMI audio driver is available in the <Yocto_BuildDir>/linux/
sound/soc/ directory. Although the HDMI is one hardware block, the audio driver is
divided into four c files corresponding to the ALSA SoC layers:

Table 15-4. HDMI Audio Driver File List

File Description

HDMI Audio SoC DAI driver implementation
HDMI Audio SoC platform DMA driver implementation
HDMI Audio SoC machine driver implementation

fsl/fsl_hdmi.c
fsl/imx-hdmi-dma.c

fsl/imx-hdmi.c

The source code for the HDMI CEC driver is available in the <Yocto_BuildDir>/linux/
drivers/mxc/ directory.

Table 15-5. HDMI CEC Driver File List

File Description

drivers/mxc/hdmi-cec.c HDMI CEC driver implemention

The source code for the HDMI 1ib is available in the <Yocto_BuildDir>/imx-lib/hdmi-
cec/ directory.
Table 15-6. HDMI CEC lib File List

File Description

hdmi-cec/mxc_hdmi-cec.c

HDMI CEC lib implemention

hdmi-cec/hdmi-cec.h

HDMI CEC lib header file

hdmi-cec/android.mk

HDMI CEC lib make file

The following platform-level source code files provide structures and functions for
registering the HDMI drivers. These files can be found in the <Yocto_BuildDir>/linux/

arch/arm/plat-mxc/ directory.

i.MX Linux® Reference Manual, Rev. 0, 10/2016

144 NXP Semiconductors

Chapter 15 On-Chip High-Definition Multimedia Interface (HDMI)
Table 15-7. HDMI Platform File List

File Description
devices/platform-mxc-hdmi-core.c HDMI core driver platform device code
devices/platform-mxc_hdmi.c HDMI display driver platform device code
devices/platform-imx-hdmi-soc.c HDMI audio driver platform device code
devices/platform-imx-hdmi-soc-dai.c HDMI audio driver platform device code
include/mach/mxc_hdmi.h HDMI register defines

15.3.1 Linux Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_HDMI option provides support for the HDMI video driver, and
can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > MXC HDMI driver support

HDMI video support is dependent on support for the Synchronous Panel Framebuffer and
also on the inclusion of IPUv3 support.

The CONFIG_SND_SOC_IMX_HDMI option provides support for HDMI audio through
the ALSA/SoC subsystem, and can be found in menuconfig at the following location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for
SoC audio support > SoC Audio support for IMX - HDMI

Selecting either of the previous two configuration options will cause the MXC HDMI
Core configuration option, CONFIG_MFD_MXC_HDM]I, to be selected. This option can
also be found in the menuconfig here:

Device Drivers > Multifunction device drivers > MXC HDMI Core

The CONFIG_MXC_HDMI_CEC option provides support for the HDMI CEC driver,
and can be selected in menuconfig at the following menu location:

Device Drivers > MXC support drivers > MXC HDMI CEC (Consumer Electronic
Control) support

15.4 Unit Test

The HDMI video and audio drivers each have their own set of tests.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 145

AR
Unit Test

The HDMI video driver does not lend itself well to automated testing, so a number of
manual tests are required to verify the correct functionality. For audio driver testing, the
aplay audio file player and iecset utility provide confirmation of the the driver's proper
integration into the ALSA framework. The following two section look at unit testing for
both the HDMI audio and video drivers.

15.4.1 Video

The following set of manual tests can be used to verify the proper operation of the HDMI
video driver:

1.

Linux kernel command line-based tests: The initial mode used to display HDMI
video can be specified through the Linux kernel command line boot parameters. Try
several different valid display resolutions through the kernel parameters, re-booting
the system each time and verifying that the desired resolution is displayed on the
connected HDMI display.

Hotplug testing: Connect and disconnect the HDMI cable several times, from either
the end attached to the 1.MX board, or the end attached to the HDMI sink device.
Each time the cable is reconnected, the driver should re-determine the appropriate
video mode, based on the modes read via EDID from the HDMI sink, and display
that mode on the sink device.

HDMI output device testing: Test by dynamically switching the HDMI sink device.
The HDMI driver should be able to detect the valid video modes for each different
HDMI sink device and provide video to that display that is closest to the most recent
video mode configured in the HDMI driver.

15.4.2 Audio

The following sequence of tests can verify the correct operation of the HDMI audio
driver:

1.

2.

Ensure that an HDMI cable is connected between the 1.MX board and the HDMI sink
device, and that the HDMI video image is being properly displayed on the device.
Use 'aplay -I' (that's a single dash and a lower-case L) to list out the audio playback
cards and determine which the card number is. This is different on our various
boards.

. For example, if the HDMI ends up being card 2, use this command line to play out a

pcm audio file "file.wav":

$ aplay -Dplughw:2,0 file.wav

i.MX Linux® Reference Manual, Rev. 0, 10/2016

146

NXP Semiconductors

Chapter 15 On-Chip High-Definition Multimedia Interface (HDMI)

4. Use 'iecset' to list out the IEC information about the device. You will need to specify
card number like:

$ iecset -c2

NOTE
Note that HDMI audio is dependent on a reasonable pixel clock
rate being established. If this is not the case, error messages
indicating “pixel clock not supported” will appear. This is
because there is no clock regenerator cts value that could be
calculated for the current pixel clock.

15.4.3 CEC
The following test can be used to simple verify HDMI CEC function:
$ /unit_ test/mxc_cec_test

Bootup device and connect HDMI sink to board, then run the above command, the HDMI
CEC will send Poweroff command to HDMI sink.

15.4.4 HDCP

The following test can be used to verify the HDMI HDCP function. You need to make
sure that the HDMI HDCP function is supported by the i.MX 6 part.

Use HDCP, specifically DTB imx6qg-sabresd-hdcp.dtb, and boot up the SABRE-SD
board.
Run the following commands:

$ /unit_ tests/mxc_hdcp app.out &
$ echo 1 > /sys/devices/soc0/soc.X/20e0000.hdmi video/hdcp_enable

If the HDCP function is not support by the 1.MX 6 part or TV, the screen displays the
RED picture.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 147

A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 10/2016
148 NXP Semiconductors

Chapter 16
External High-Definition Multimedia Interface (HDMI)
for i.MX 6SoloLite

16.1 Introduction

The High Definition Multimedia Interface (HDMI) driver supports the external S119022
HDMI hardware module, which provides the capability to transfer uncompressed video,
audio, and data using a single cable.

The HDMI driver is divided into two sub-components: a video display device driver that
integrates with the Linux Frame Buffer API and an S/PDIF audio driver that transfers S/
PDIF audio data to Si19022 HDMI hardware module.

The HDMI driver is only for demo application and supports the following features:

* HDMI video output supports 1080p60 and 720p60 resolutions.
* Support for reading EDID information from an HDMI sink device for video.

* Hotplug detection
* HDMI audio playback (2 channels, 16/24 bit, 44.1 KHz sample rate)

16.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The audio output depends on video display.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 149

Source Code Structure

16.2.1 Hotplug Handling and Video Mode Changes

Once the connection between the ELCDIF and the HDMI has been established through
the MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt
indicating that a valid HDMI sink device is connected and ready to receive HDMI video
data. Subsequent communications between the HDMI and LECDIF FB are conducted
through the Linux Frame Buffer APIs. The following list demonstrates the software flow
to recognize a HDMI sink device and configure the ELCDIF FB driver to drive video
output:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls £b_set_var() to change the video mode in the ELCDIF
FB driver. The ELCDIF FB driver completes its reconfiguration for the new mode.

3. As aresult of calling fb_set_var(), a FB notification is sent back to the HDMI driver
indicating that an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver
configures the HDMI hardware for the new video mode.

4. Finally, the HDMI module is enabled to generate output to the HDMI sink device.

16.3 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI display driver, and the HDMI audio
driver.

The source code for the HDMI display driver is available in the <Yocto_BuildDir>/rpm/
BUILD/linux/drivers/video/fbdev/mxc directory.

Table 16-1. HDMI Display Driver File List

File Description

mxsfb_sii902x.c HDMI display driver implementation.

The source code for the HDMI audio driver is available in the <Yocto_BuildDir>/linux/
sound/soc/ directory. HDMI Audio data source comes from S/PDIF TX.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
150 NXP Semiconductors

Chapter 16 External High-Definition Multimedia Interface (HDMI) for i.MX 6SoloL.ite
Table 16-2. HDMI Audio Driver File List

File Description
sound/soc/fsl/imx-spdif.c S/PDIF Audio SoC Machine driver implementation.
sound/soc/fsl/fsl_spdif.c S/PDIF Audio SoC DAI driver implementation.

16.3.1 Linux Menu Configuration Options

There are two main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_SII902X_ELCDIFI option provides support for the S11902x
HDMI video driver and can be selected in menuconfig at the following menu location:

* Device Drivers > Graphics support > MXC Framebuffer support.

HDMI video support is dependent on MXC ELCDIF Framebuffer.

The CONFIG_SND_MXC_SPDIF option provides support for the HDMI Audio driver
and can be selected in menuconfig at the following menu location:

* Device Drivers > Sound card support > Advanced Linux Sound Architecture >
ALSA for SoC audio support > SoC Audio for Freescale 1.MX CPUs > SoC Audio
support for IMX - S/PDIF

16.4 Unit Test

The HDMI video and audio drivers each have their own set of tests.
The preparation for HDMI test:

e Insert the HDMI daughter card into J13 on the 1.MX 6SoloLite EVK board.

* Insert the HDMI cable into the HDMI slots of both HDMI daughter board and the
HDMI sink device.

* Power on the HDMI sink device.

16.4.1 Video

The following set of manual tests can be used to verify the proper operation of the HDMI
video driver:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 151

A ————
Unit Test

1. Hotplug testing: Connect and disconnect the HDMI cable several times, from either
the end attached to the 1.MX board, or the end attached to the HDMI sink device.
Each time the cable is reconnected, the driver should re-determine the appropriate
video mode based on the modes read via EDID from the HDMI sink and display that
mode on the sink device.

2. HDMI output device testing: Test by dynamically switching the HDMI sink device.
The HDMI driver should be able to detect the valid video modes for each different
HDMI sink device and provide video to that display that is closest to the most recent
video mode configured in the HDMI driver.

16.4.2 Audio

The following sequence of tests verifies the correct operation of the HDMI audio driver:

1. Ensure that an HDMI cable is connected between the HDMI daughter board and the
HDMI sink device, and that the HDMI video image is being properly displayed on
the device.

2. Use this command line to play out a pcm audio file "file.wav" to HDMI sink device:

$ aplay -Dplughw:1,0 file.wav

i.MX Linux® Reference Manual, Rev. 0, 10/2016
152 NXP Semiconductors

Chapter 17
X-Windows Acceleration

17.1 Introduction

X-Windows System (aka X11 or X) is a portable, client-server based, graphics display
system.

X-Windows system can run with a default frame buffer driver which handles all drawing
operations to the main display. Since there is a 2D GPU (graphics processing unit)
available, then some drawing operations can be accelerated. High-level X operations may
get decomposed into low level drawing operations which are accelerated for X-Windows
System.

17.2 Hardware Operation
X-Windows System acceleration on 1.MX 6 utilizes the Vivante GC320 2D GPU.

Acceleration is also dependent on the frame buffer memory.

17.3 Software Operation

X-Windows acceleration is supported for X.org X Server version 1.11.x and later
versions supporting the EXA interface version 2.5.

The following list summarizes the types of operations that are accelerated for X11. All
operations involve frame buffer memory which may be on screen or off screen:

* Solid fill of a rectangle.
* Upload image in system memory into video memory.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 153

Software Operation

* Copy of a rectangle with same pixel format with possible source-target rectangle
overlap.
* Copy of a rectangle supporting most XRender compositing operations with these
options:
* Pixel format conversion.
* Repeating pattern source.
* Porter-Duff blending of source with target.
* Source alpha masking.

The following list includes additional features supported as part of the X-Windows
acceleration:

 Allocation of X pixmaps directly in frame buffer memory.
e EGL swap buffers where the EGL window surface is an X-window.

» X-window can be composited into an X pixmap which can be used directly as any
EGL surface.

17.3.1 X-Windows Acceleration Architecture

The following block diagram shows the components that are involved in the acceleration
of X-Windows System:

Applications

s et da mm---

NS B e B ovenctes [lovenci co
Lipraries - 1

__

Figure 17-1. X Driver Architecture

i.MX Linux® Reference Manual, Rev. 0, 10/2016
154 NXP Semiconductors

L __4

Chapter 17 X-Windows Acceleration
The components shown in green are those provided as part of the Vivante 2D/3D GPU
driver support which includes OpenGL/ES and EGL, though some i.MX 6 processors,
such as 1.MX 6SoloLite do not contain 3D HW module. The components shown in light
gray are the standard components in the X-Windows System without acceleration. The
components shown in orange are those added to support X-Windows System acceleration
and briefly described here.

The i.MX X Driver library module (vivante-drv.so) is loaded by the X server and
contains the high-level implementation of the X-Windows acceleration interface for i.MX
platforms containing the GC320 2D GPU core. The entire linearly contiguous frame
buffer memory in /dev/tbo 1s used for allocating pixmaps for X both on screen and off
screen. The driver supports a custom X extension which allows X clients to query the
GPU address of any X pixmap stored in frame buffer memory.

The libGAL.so library module (1ibear.so) contains the register level programming
interface to the GC320 GPU module. This includes the storing of register programming
commands into packets which can be streamed to the device. The functions in the
libGAL.so library are called by the 1.MX X Driver code.

The EGL-X library module (1ipecr.so) contains the X-Windows implementation of the
low level EGL platform-specific support functions. This allows X-window and X pixmap
objects to be used as EGL window and pixmap surfaces. The EGL-X library uses Xlib
function calls in its implementation along with the 1.MX X Driver module's X extension
for querying the GPU address of X pixmaps stored in frame buffer memory.

17.3.2 i.MX 6 Driver for X-Windows System

The 1.MX X Driver, referred to as vivante-drv.so, implements the EXA interface of the X
server in providing acceleration.

The Vivante X Driver, referred to as vivante-drv.so, implements the EXA interface of the
X server to provide acceleration.

The following list describes details particular to this implementation:

* The implementation builds upon the source from the fbdev frame buffer driver for X
so that it can be the fallback when the acceleration is disabled.

e The implementation is based on X server EXA version 2.5.0.

» The EXA solid fill operation is accelerated, except for source/target drawables
containing less than 300x300 pixels in which case fallback is to software rendering.

» The EXA copy operation is accelerated, except for source/target drawables
containing less than 400x120 pixels in which case fallback is to software rendering.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 155

A
Software Operation
* EXA putimage (upload into video memory) is accelerated, except for source
drawables containing less than 400x400 pixels in which case fallback is to software
rendering.For EXA solid fill and copy operations, only solid plane masks and only
GXcopy raster-op operations are accelerated.
» For EXA copy operation, the raster-op operations (GXandInverted, GXnor,
GXorReverse, GXorInverted, and GXnand) are not accelerated.
* EXA composite allows for many options and combinations of source/mask/target for
rendering.
* Most of the (commonly used) EXA composite operations are accelerated.

The following types of EXA composite operations are accelerated:

» Composite operations for source/target drawables containing at least 640 pixels. If
less than 640 pixels, the composite path falls to software.

» Simple source composite operations are used when source/target drawables contain
more than 200x200 pixels (operations with mask not supported).

 Constant source (with or without alpha mask) composite with target.

* Repeating pattern source (with or without alpha mask) composite with target.

* Only these blending functions: SOURCE, OVER, IN, IN-REVERSE, OUT-
REVERSE, and ADD (some of these are needed to support component-alpha
blending which is accelerate).

* In general, the following types of (less commonly used) EXA composite operations
are not accelerated:

» Transformed (that is, scaled, rotated) sources and masks
 Gradient sources
* Alpha masks with repeating patterns

The implementation handles all pixmap allocation for X through the EXA callback
interface. A first attempt is made to allocate the memory where it can be accessed by a
physical GPU address. This attempt can fail if there is insufficient GPU accessible
memory remaining, but it can also fail when the bits per pixel being requested for the
pixmap is less than eight (8). If the attempt to allocate from the GPU accessible memory
fails, then the memory is allocated from the system. If the pixmap memory is allocated
from the system, then this pixmap cannot be involved in a GPU accelerated option. The
number of pitch bytes used to access the pixmap memory may be different depending on
whether it was allocated from GPU accessible memory or from the system. Once the
memory for an X pixmap has been allocated, whether it is from GPU accessible memory
or from the system, the pixmap is locked and can never migrate to the other type of
memory. Pixmap migration from GPU accessible memory to system memory is not
necessary since a system virtual address is always available for GPU accessible memory.
Pixmap migration from system memory to GPU accessible memory is not currently
implemented, but would only help in situations where there was insufficient GPU
accessible memory at initial allocation but more memory becomes available (through de-

i.MX Linux® Reference Manual, Rev. 0, 10/2016
156 NXP Semiconductors

L __4

Chapter 17 X-Windows Acceleration
allocation) at a later time. The GPU accessible memory pitch (horizontal) alignment for
Vivante 2D GPUs is 8 pixels. Because the memory can be allocated from GPU accessible
memory, these pixels could be used in EGL for OpenGL/ES drawing operations. All of
the memory allocated for /dev/fb0 is made available to an internal linear offscreen
memory manager based on the one used in EXA. The portion of this memory beyond the
screen memory is available for allocation of X pixmap, where this memory area is GPU
accessible. The amount of memory allocated to /dev/fb0 needs to be several MB more
than the amount needed for the screen. The actual amount needed depends on the number
of X-Windows and pixmaps used, the possible usage of X pixmaps as textures, and
whether X-Windows are using the XComposite extension. An X extension, i.e., VIVEXT
shown in Fig. 1, 1s provided so that X clients can query the physical GPU address
associated with an X pixmap, if that X pixmap was allocated in the GPU accessible
memory.

17.3.3 i.MX 6 Direct Rendering Infrastructure (DRI) for X-
Windows System

The Direct Rendering Infrastructure, also known as the DRI, is a framework for allowing
direct access to graphics hardware under the X Window System in a safe and efficient
manner. It includes changes to the X server, to several client libraries, and to the kernel
(DRM, Direct Rendering Manager). The most important activity for the DRI is to create
fast OpenGL and OpenGL ES implementations that render to framebuffer memory
directly. Without DRI, the OpenGL driver has to depend on X server for final rendering
(indirect rendering), which degrades the overall performance significantly.

The components of Vivante’s DRI OpenGL implementation include:

* The Direct Rendering Manager (DRM) is a kernel module that provides APIs to
userland to synchronize access to hardware and to manage different classes of video
memory buffers. Vivante’s DRI implementation uses selected DRM APIs for
opening/closing DRI device, and locking/unlocking FB. Most other buffer
management and DMA management functions are handled by Vivante’s specific
kernel module: galcore.ko.

» The EXA driver is a DRI-enabled DDX 2D driver which initializes the DRM when X
server starts. As all X Window pixmap buffers are allocated by the EXA driver from
GPU memory, the GPU can render directly into these buffers if the buffer
information is passed from the X server process to the X client processes (GL or
GLES applications) properly.

* The Vivante-specific X extension “vivext” passes buffer information from X server
to X clients. This Vivante X extension includes the following three interfaces:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 157

A ————
Software Operation
* DrawableFlush, which enables X clients to notify X server to flush the GPU
cache for a drawable surface.
* Drawablelnfo, which enables X clients to query the drawable information
(position, size, physical address, stride, cliplist, etc.) from the X server.
* PixmapPhysAddr, which enables X clients to query the physical address and
stride of a pixmap buffer from X server.

The integration of GL/GLES application windows with Ubuntu Unity2D desktop is
achieved by following steps:

* GL/GLES applications render a frame into the pixmap buffers that are allocated in
the EXA driver.

* In the SwapBuffers implementation, the driver notifies X server that the pixmap
buffer region is damaged through Xdamage and Xfixes APIs.

* Then the X server will present the latest pixmap buffer to the Unity2D desktop while
maintaining the proper window overlap characteristics relative to the other windows
on the desktop.

On a compositing X desktop, such as Ubuntu Unity 2D, GLES/GL applications always
render into the full rectangular back buffer of a window. There is no window clipping
required. So the Vivante DRI implementation can take advantage of the GPU’s resolve
function and render into the window back buffer directly.

On a legacy X window desktop, such as Gnome, Xwin, etc., GLES/GL applications have
to render onto the frame buffer surface directly. Thus, the DRI driver uses the
Drawablelnfo interface in the VIVEXT extension to obtain the cliplist of the window,
then copies the sub-regions of the render target to the frame buffer according to the
cliplist. This will ensure that the GLES/GL windows overlap with other windows on the
desktop properly. However, the copying of the render target sub-regions to the frame
buffer has to be done by the CPU as the sub-regions’ starting address and alignment may
not meet GPU copy requirements.

The Vivante DRI implementation can detect the type of X window manager (compositing
desktop manager or legacy desktop manager) at run-time, and use appropriate DRI
rendering paths for GLES/GL applications.

17.3.4 EGL- X Library

The EGL-X library implements the low level EGL interface when used in X Window
System. The following list describes details particular to this implementation:

» The eglDisplay native display type is “Display*” in X.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
158 NXP Semiconductors

L __4
Chapter 17 X-Windows Acceleration
e The eglWindowSurfacenative window surface type is “Window” in X.
* The eglPixmapSurface native pixmap surface type is “Pixmap” in X.

When an eglWindowSurface is created, the back buffers used for double-buffering can
have different representations from the window surface (based on the selected
eglConfig). An attempt is made to create each back buffer using the representation which
provides the most efficient blit of the back buffer contents to the window surface when
eglSwapBuffers is called.

The back buffer is allocated by creating an X pixmap of the necessary size. Use the X
extension for the Vivante X Driver module to query the physical frame buffer address for
this X pixmap if it was allocated in the offscreen frame buffer memory.

17.3.5 xorg.conf for i.MX 6

The /etc/x11/x0rg.cont file must be properly configured to use the .MX 6 X Driver.

The /etc/X11/xorg.conf file must be properly configured to use the Vivante X Driver.
This configuration appears in a “Device” section of the file which contains some required
entries and some entries that are optional. The following example shows a preferred
configuration for using the Vivante X Driver:

Section "ServerLayout"

Identifier "Default Layout"
Screen "Default Screen"
EndSection

Section "Module"

Load "dbe"

Load "extmod"

Load "freetype"

Load "glx"

Load "dri"
EndSection

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "kbd"

Option "XkbLayout" "us"

Option "XkbModel" "pclO5"

Option "XkbRules" "xorg"
EndSection

Section "InputDevice"

Identifier "Configured Mouse"

Driver "mouse"

Option "CorePointer"
EndSection

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"

Option "fhdev" "/dev/fbo"

Option "vivante fbdev" "/dev/£fbo"

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 159

Software Operation

Option "HWcursor" "false"
EndSection

Section "Monitor"
Identifier "Configured Monitor"
EndSection

Section "Screen"

Identifier "Default Screen"
Monitor "Configured Monitor"
Device "Your Accelerated Framebuffer Device"
DefaultDepth 24
EndSection

Section "DRI"
Mode 0666
EndSection

Mandatory Strings
Some important entries recognized by the Vivante X Driver are described as follows.
Device Identifier and Screen Device String

The mandatory Identifier entry in the Device section specifies the unique name to
associate with this graphics device.

Section "Device"
Identifier "Your Accelerated Framebuffer Device"

The following entry ties a specific graphics device to a screen. The Device Identifier
string must match the Device string in a Screensection of the xorg.conf file. For example:

Section "Screen"
Identifier "Default Screen"
<other entries>
Device "Your Accelerated Framebuffer Device"
<other entries>
EndSection

Device Driver String

The mandatory Driver entry specifies the name of the loadable Vivante X driver.

Driver "vivante"

Device fbdevPath Strings

The mandatory entries fbdev and vivante_dev specify the path for the frame buffer device

to use.

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"
Option "fhdev" "/dev/fbo"
Option "vivante fbdev" "/dev/fbo"
<other entries>
EndSection

i.MX Linux® Reference Manual, Rev. 0, 10/2016
160 NXP Semiconductors

Chapter 17 X-Windows Acceleration

17.3.6 Setup X-Windows System Acceleration on Yocto
Prerequisites:

* xserver-xorg-video-imx-viv-<BSP Version>.tar.gz, which is Vivante EXA plugin
source code based on GPU driver 4.6.9p12

» xserver-xorg, which should be the Xorg 1.11.x or above

* drm-update-arm.patch, which is a patch with adding the ARM lock implementation
for libdrm xf86drm.h. Note that the original xh86drm.h header file from libdrm does
not have lock for supporting ARM architecture. This patch is located in
$YOCTO_BUILDER/sources/meta-fsl-bsp-release/imx/meta-fsl-arm/recipes-
graphics/drm/libdrm/mx6, and shown below: drm-update-arm.patch:

+#elif defined(arm)
#undef DRM DEV MODE

+

+ #define DRM DEV_ MODE (S_IRUSR|S_IWUSR|S_ IRGRP|S_IWGRP|S_IROTH|S_IWOTH)
+

+ #define DRM CAS(lock,old,new, ret) \
+ do { \
+ __asm__ _ volatile (\
+ "1: ldrex %0, [%1]\n" \
+ teq %0, %2\n" \
+ strexeqg %0, %3, [%1]\n" \
+ nyn (_ret) \

+ "r" (lock), "r" (old), "r" (new) \
+ : "cc", "memory") ; \
+ } while (0)

4

#tendif /* architecture */
#endif /* GNUC__ >= 2 */

Build and install instructions:

* Install the prerequisites modules or patches in the appropriate locations and with
right recipes in Yocto environment.

» Build XServer with correct drm header file (xf86drm.h). The purpose is to create
correct dri module

e Build GPU EXA module with the command ‘bitbake x{86-video-imxfb-vivante’.
vivante_drv.so will be generated with successful build, and then install it together
with xorg and libdri library in target board rootfs in /usr/lib/xorg/modules/

e Install the pre-Yocto-built gpu-viv binary which is built based on gpu-viv version
4.6.9p12 in target board rootfs. For accelerating X11, the X11 backend is required

* Now ready to run the X11 applications in target board.

NOTE
x11 applications hangs if the ARM core version xf86drm.h is
not used

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 161

Software Operation

17.3.7 Setup X Window System Acceleration

* Install any packages appropriate for your platform.

Verify that the device file /dev/galcore is present.

Verify that the file /etc/X11/xorg.conf contains the correct entries as described in the
previous section.

Assuming the above steps have been performed, do the following to verify that X
Window System acceleration is indeed operating.

Examine the log file /var/log/Xorg.0.log and confirm that the following lines are
present.

[41.752] (II) Loading /usr/lib/xorg/modules/drivers/vivante drv.so
[41.752] (II) VIVANTE(O0): using default device
[41.752] (II) VIVANTE(O0): Creating default Display subsection in Screen
section "Default Screen" for depth/fbbpp 24/32
[41.752] (**) VIVANTE(0): Depth 24, (--) framebufferbpp 32

)
41.752] (==) VIVANTE(O0): RGB weight 888
41.752] (==) VIVANTE(0): Default visual is TrueColor
41.753] ==) VIVANTE(O0): Using gamma correction (1.0, 1.0, 1.0)
41.753] (II) VIVANTE(O): hardware: DISP3 BG (video memory: 8100kB)

: checking modes against framebuffer device...

: checking modes against monitor...

: Virtual size is 1920x1080 (pitch 1920)
Built-in mode "current": 148.5 MHz, 67.5 kHz,

41.753] (II) VIVANTE (O
41.753] (--) VIVANTE (O

)
)
)
)
)
)
)
41.753] (**) VIVANTE (0)

[
[
[
[41.753] (II) VIVANTE (0
[
[
[

60.0 Hz
[41.753] (II) VIVANTE(O0): Modeline "current"x0.0 148.50 1920 2008 2052
2200 1080 1084 1089 1125 +hsync +
vsync -csync (67.5 kHz)
[41.753] (==) VIVANTE(0): DPI set to (96, 96)
41.753] (II) Loading sub module "fb"
41.753] (II) LoadModule: "fb"
41.754] (II) Loading /usr/lib/xorg/modules/libfb.so
41.755] (II) Module fb: vendor="X.Org Foundation"
41.755] compiled for 1.10.4, module version = 1.0.0
41.755] ABI class: X.Org ANSI C Emulation, version 0.4
41.755] (II) Loading sub module "exa"
41.755] (II) LoadModule: "exa"
41.756] (II) Loading /usr/lib/xorg/modules/libexa.so
41.756] (II) Module exa: vendor="X.Org Foundation"
41.756] compiled for 1.10.4, module version = 2.5.0
41.756] ABI class: X.Org Video Driver, version 10.0
41.756] (--) Depth 24 pixmap format is 32 bpp
41.797] (II) VIVANTE(O0): FB Start = 0x33142000 FB Base = 0x33142000 FB
Offset = (nil)
41.797] (II) VIVANTE(O): test Initializing EXA
41.798] (II) EXA(0): Driver allocated offscreenpixmaps
41.798] (II) EXA(0): Driver registered support for the following

operations:
41.798] (II) Solid
41.798] (II) Copy
41.798] (II) Composite (RENDER acceleration)
41.798] (II) UploadToScreen
42.075] (==) VIVANTE(0): Backing store disabled

e e e B —

)
42.084] (==) VIVANTE (0): DPMS enabled

i.MX Linux® Reference Manual, Rev. 0, 10/2016
162 NXP Semiconductors

Chapter 17 X-Windows Acceleration

17.3.8 Troubleshooting

1. Framebuffer devices can be specified by environment variable. This is especially
useful when there are multiple framebuffer devices.

export FB_FRAMEBUFFER 0=/dev/fb2
2. If the above does not resolve the issue:

 If DRM booted up properly, check the /var/log/X11.n log file (n will represent
instance number) for more information.
 If DRM did not boot properly, check your kernel mode driver installation. (See
sections 6.4.2 and 6.4.3 above).
3. Window is created, but nothing is drawn
e If you run an OpenGL application and find a window was created, but nothing
was drawn, try to export the ${__ GL_DEV_FB} environment variable:

export _ GL _DEV_FB=$FB FRAMEBUFFER 0.
4. Cannot open Display message
* If you have a message similar to “Cannot open Display,” use the following
command to check whether X is running at :0 or at :1 instance, use:

$ ps -ef|grep X
* Then depending on the returned instance number, add the following environment
variable

export DISPLAY=:n
e then run again.
5. UART terminal cannot run GPU application with lightdm
» Use ssh terminal instead.
6. EXA build script failure
* Check the log file and make sure your system time is set correctly.
7. Invalid MIT-MAGIC-COOKIE-1 Key error message
* Some GPU applications are not permitted to run using root. Use an alternate
account instead.
8. Segment fault occurs while running GPU application
* Check the attribute for dev/galcore should be updated to 666.
» To update this attribute automatically on system boot,
 Locate and edit file /etc/udev/rules.d/<bsp-specific.rules>.
* Add: “KERNEL=="galcore”, MODE="0666""
 Lastly, make sure your kernel and GPU drivers are matched.
9. Check whether Compiz is running
e If your host or target has issues after installing the OpenGL Development
Packages in Table 6, above, check whether or not compiz is running with the
following command:

$ ps -ef|grep compiz

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 163

A
Software Operation
e If compiz is running, then Ubuntu is using Unity3D by default. To set the default
window manager to Unity2D:
* Locate and edit file /var/lib/AccountsService/users/<username>.
e Change ubuntu to ubunto-2d.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
164 NXP Semiconductors

Chapter 18
Video Processing Unit (VPU) Driver

18.1 Hardware Operation

The VPU hardware performs all of the codec computation and most of the bitstream
parsing/packeting.

Therefore, the software takes advantage of less control and effort to implement a complex
and efficient multimedia codec system.

The VPU hardware data flow is shown in the MPEG4 decoder example in Figure below.

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 165

Hardware Operation

Figure 18-1. VPU Hardware Data Flow

18.1.1 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space
library as well as the application in user space. The kernel driver takes responsibility for
system control and reserving resources (memory/IRQ). It provides an IOCTL interface
for the application layer in user-space as a path to access system resources. The
application in user-space calls related [OCTLs and codec library functions to implement a
complex codec system.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
166 NXP Semiconductors

4
Chapter 18 Video Processing Unit (VPU) Driver

The VPU kernel driver includes the following functions:

* Module initialization which initializes the module with the device-specific structure

* Device initialization which initializes the VPU clock and hardware and request the

IRQ

* Interrupt servicing routine which supports events that one frame has been finished
* File operation routine which provides the following interfaces to user space:

* File open
* File release
* File synchronization

¢ File IOCTL to provide interface for memory allocating and releasing
* Memory map for register and memory accessing in user space
* Device Shutdown-Shutdowns the VPU clock and hardware, and release the IRQ

The VPU user space driver has the following functions:

e Codec lib

* Downloads executable bitcode for hardware

* Initializes codec system

 Sets codec system configuration

 Controls codec system by command

» Reports codec status and result

* System I/O operation

* Requests and frees memory

* Maps and unmaps memory/register to user space
* Device management

18.1.2 Source Code Structure

Table below lists the kernel space source files available in the following directories:

<Yocto BuildDirs>/linux/arch/arm/plat-mxc/include/mach/

<Yocto BuildDir>/linux/drivers/mxc/vpu/

Table 18-1. VPU Driver Files

File Description
mxc_vpu.h Header file defining IOCTLs and memory structures
MXC_Vpu.c Device management and file operation interface implementation

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors

167

Hardware Operation

Table below lists the user-space library source files available in the <Yocto_BuildDir>/
imx-lib-11.11.00/vpu directory:

Table 18-2. VPU Library Files

File Description
vpu_io.c Interfaces with the kernel driver for opening the VPU device and allocating memory
vpu_io.h Header file for IOCTLs
vpu_lib.c Core codec implementation in user space
vpu_lib.h Header file of the codec
vpu_reg.h Register definition of VPU
vpu_util.c File implementing common utilities used by the codec
vpu_util.h Header file
vpu_gdi.c File implementing GDI related utilities
vpu_gdi.h Header file of GDI related

Table below lists the firmware files available in the following directories:

<Yocto BuildDir>/firmware-imx-11.11.00/1lib/firmware/vpu/ directory
Table 18-3. VPU firmware Files

File Description

vpu_fw_xxx.bin VPU firmware

NOTE
To get the to files in Table 18-2, run the command: bitbake
linux-imx -c¢ menuconfig prep -p imx-lib in the console

18.1.3 Menu Configuration Options

To get to the VPU driver, use the command bitbake linux-imx -¢c menuconfig. On the
screen displayed, select Configure the kernel and exit. When the next screen appears
select the following options to enable the VPU driver:

* CONFIG_MXC_VPU-Provided for the VPU driver. In menuconfig, this option is
available under

e Device Drivers > MXC support drivers > MXC VPU (Video Processing Unit)
support

i.MX Linux® Reference Manual, Rev. 0, 10/2016
168 NXP Semiconductors

4
Chapter 18 Video Processing Unit (VPU) Driver

18.1.4 Programming Interface

There is only a user-space programming interface for the VPU module. A user in the
application layer cannot access the kernel driver interface directly. The VPU library
accesses the kernel driver interface for users.

The codec library APIs are listed below:

RetCode vpu_ Init (void *);
void vpu UnInit (void) ;
RetCode vpu GetVersionInfo (vpu versioninfo * verinfo);

RetCode vpu EncOpen (EncHandle* pHandle, EncOpenParam* pop) ;
RetCode vpu EncClose (EncHandle encHandle) ;
RetCode vpu_ EncGetInitialInfo(EncHandle encHandle, EncInitialInfo* initialInfo);
RetCode vpu EncRegisterFrameBuffer (EncHandle handle, FrameBuffer * bufArray,
int num, int frameBufStride, int
sourceBufStride,
PhysicalAddress subSampBaseAl,
PhysicalAddress subSampBaseB,
ExtBufCfg *scratchBuf) ;
RetCode vpu EncGetBitstreamBuffer (EncHandle handle, PhysicalAddress* prdPrt,
PhysicalAddress* pwrPtr, Uint32*
size) ;
RetCode vpu EncUpdateBitstreamBuffer (EncHandle handle, Uint32 size);
RetCode vpu EncStartOneFrame (EncHandle encHandle, EncParam* pParam) ;
RetCode vpu_ EncGetOutputInfo (EncHandle encHandle, EncOutputInfo* info);
RetCode vpu EncGiveCommand (EncHandle pHandle, CodecCommand cmd, void* pParam) ;
RetCode vpu DecOpen (DecHandle* pHandle, DecOpenParam* pop) ;
RetCode vpu DecClose (DecHandle decHandle) ;
RetCode vpu DecGetBitstreamBuffer (DecHandle pHandle, PhysicalAddress* pRdptr,
PhysicalAddress* pWrptr, Uint32* size);
RetCode vpu DecUpdateBitstreamBuffer (DecHandle decHandle, Uint32 size);
RetCode vpu DecSetEscSeqInit (DecHandle pHandle, int escape);
RetCode vpu DecGetInitialInfo(DecHandle decHandle, DecInitialInfo* info);
RetCode vpu DecRegisterFrameBuffer (DecHandle decHandle, FrameBuffer* pBuffer, int num,
int stride, DecBufInfo* pBuflInfo);
RetCode vpu DecStartOneFrame (DecHandle handle, DecParam* param) ;
RetCode vpu DecGetOutputInfo (DecHandle decHandle, DecOutputInfo* info);
RetCode vpu DecBitBufferFlush (DecHandle handle) ;
RetCode vpu DecClrDispFlag(DecHandle handle, int index) ;
RetCode vpu DecGiveCommand (DecHandle pHandle, CodecCommand cmd, void* pParam) ;
int vpu_IsBusy (void) ;
int vpu_WaitForInt (int timeout_in ms) ;
RetCode vpu_ SWReset (DecHandle handle, int index);

System I/O operations are listed below:

int IOGetPhyMem (vpu mem desc* buff) ;

int IOFreePhyMem(vpu mem desc* buff) ;
int IOGetVirtMem (vpu mem desc* buff) ;
int IOFreeVirtMem(vpu mem desc* buff) ;

18.1.5 Defining an Application

The most important definition for an application is the codec memory descriptor. It is
used for request, free, mmap and munmap memory as follows:

typedef struct vpu mem desc

int size; /*request memory sizex*/

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 169

Hardware Operation

unsigned long phy addr; /*physical memory get from systemx/
unsigned long cpu_addr; /*address for system usage while freeing,

user doesn't need
to handle or use it*/

unsigned long virt uaddr; /*virtual user space address*/
} vpu mem desc;
See the i.MX 6 VPU Application Programming Interface Linux® Reference Manual for
how to use API in the application (document IMXVPUAPI).

i.MX Linux® Reference Manual, Rev. 0, 10/2016
170 NXP Semiconductors

Chapter 19
OmniVision Camera Driver

19.1 OV5640 Using MIPI CSI-2 interface

This is an introduction for ov5640 camera driver which using MIPI CSI-2 interface.

19.1.1 Hardware Operation

The OV5640 is a small camera sensor and lens module with low power consumption.
The camera driver is located under the Linux V4L2 architecture. and it implements the
V4L.2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V412 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5640 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I?C client, V4L2 driver uses I?C bus to control camera
operation.

OV5640 supports two transfer mode: parallel interface and MIPI interface.

When using MIPI mode, OV5640 connects to 1.MX AP chip by MIPI CSI-2 interface.
MIPI receives the sensor data and transfers them to CSI.

See the OV5640 datasheet to get more information on the sensor.

For more information on MIPI CSI-2 and CSI, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

* i.MX 6Solo/6DualLite Applications Processor Reference Manual IMX6SDLRM)
* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX Linux® Reference Manual, Rev. 0, 10/2016

NXP Semiconductors 171

A ————
OV5640 Using MIPI CSI-2 interface

* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

19.1.2 Software Operation

The camera driver implements the V412 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

» Capture stream mode

The supported picture formats are:

e YUV422P
* UYVY
* YUV420

The supported picture sizes are:
* QVGA
* VGA
« 720P
« 1080P

19.1.3 Source Code Structure

There are two different software architectures for the OV5640 driver. One is the V4L.2
internal interface architecture for 1.MX 6Dual/6Quad and i.MX 6Solo/6DualLite IPU
CSI/MIPI CSI. Driver source code is in the directory:

<Yocto_BuildDir>/linux/drivers/media/platform/mxc/capture

The other is the V4L.2 sub-devices architecture for 1. MX 6SoloLite, 1.MX 6SoloX, 1.MX
7Dual CSI/MIPI CSI. Driver source code is in the directory:

<Yocto_BuildDir>/linux/drivers/media/platform/mxc/subdev

The table below shows the camera driver source files available in the directory.

Table 19-1. V4L2 Camera Driver Files

File Description

ov5640_mipi.c Camera driver implementation for OV5640 using MIPI CSI-2 interface

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 10/2016
172 NXP Semiconductors

Chapter 19 OmniVision Camera Driver
Table 19-1. V4L2 Camera Driver Files (continued)

File Description

ov5640.c Camera driver implementation for OV5640 using parallel interface

19.1.4 Linux Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following option to enable this module:

* Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5640

camera support using mipi.

19.1.5 Unit Test

To test the ov5640_mipi camera, use the following commands to install the kernel
modules of the camera driver and V4L2 Capture.

insmod ipu csi_enc.ko

insmod ipu prp_enc.ko

insmod ipu prp vi sdc.ko
insmod ipu prp vf sdc_bg.ko
insmod ipu still.ko

insmod mxc_v412 capture.ko
insmod ov5640 camera mipi.ko

Then run the following test cases to test it.

Test ID: FSL-UT-V4L2-009

mxc v41l2 capture.out -iw 640 -ih 480 -ow 640 -oh 480 -i 1 -c 50 -fr 30 test.yuv

Capture the camera and store the 50 frames of YUV420 (VGA size) to the test.yuv file,
and then set the frame rate to 30 fps.

For information about usage, see mxc_v412_capture.out -help.

For more test cases, see FSL-UT-V4L.2-009.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 173

OV5642 Using parallel interface

19.2 OV5642 Using parallel interface

This is an introduction for ov5642 camera driver which using parallel interface.

19.2.1 Hardware Operation

The OV5642 is a small camera sensor and lens module with low power consumption.
The camera driver is located under the Linux V412 architecture. and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5642 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client, V412 driver uses I2C bus to control camera
operation.

OV5642 supports only parallel interface.
See the OV5642 datasheet to get more information on the sensor.

For more information on IPU CSI, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

19.2.2 Software Operation

The camera driver implements the V412 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

* Capture stream mode
* Capture still mode

i.MX Linux® Reference Manual, Rev. 0, 10/2016
174 NXP Semiconductors

Chapter 19 OmniVision Camera Driver

The supported picture formats are:

* YUV422P
« UYVY
* YUV420

The supported picture sizes are:
* QVGA
* VGA
« 720P
« 1080P
* QSXGA

19.2.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

<Yocto_BuildDir>/linux/drivers/media/platform/mxc/capture

Table 19-2. Camera Driver Files

File Description

ov5642.c Camera driver implementation for OV5642 using parallel interface

19.2.4 Linux Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following option to enable this module:

* Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5642
camera support.

19.2.5 Unit Test

To test the ov5642 camera, use the following commands to install the kernel modules of
the camera driver and V4L.2 Capture.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 175

OV5642 Using parallel interface

modprobe mxc_v412_ capture.ko
modprobe ov5642 camera.ko

Then run the following test cases to test it.

Test ID: FSL-UT-V4L2-009

mxc_v412 capture.out -iw 640 -ih 480 -ow 640 -oh 480 -i 1 -c 50 -fr 30 test.yuv

Capture the camera and store the 50 frames of YUV420 (VGA size) to the test.yuv file,
and then set the frame rate to 30 fps.

For information about usage, see mxc_v412_capture.out -help.

For more test cases, see FSL-UT-V4L.2-009.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
176 NXP Semiconductors

Chapter 20
MIPI CSI2 Driver

20.1 Introduction

MIPI CSI-2 for 1.MX 6 is MIPI-Camera Serial Interface Host Controller. It is a high
performance serial interconnect bus for mobile application which connects camera
sensors to the host system. The CSI-2 Host Controller is a digital core that implements all
protocol functions defined in the MIPI CSI-2 Specification. In doing so, it provides an
interface between the system and the MIPI D-PHY and allows communication with MIPI
CSI-2-compliant Camera Sensor.

The MIPI CSI2 driver is used to manage the MIPI D-PHY and lets it co-work with MIPI
sensor and IPU CSI. MIPI CSI2 driver implements functions as follows:

* MIPI CSI-2 low-level interface for managing the mipi D-PHY register and clock
* MIPI CSI-2 common API for communication between MIPI sensor and MIPI D-
PHY

By calling MIPI common APIs, MIPI sensor can set certain information about sensor
(such as datatype, lanes number, etc.) to MIPI CSI2 driver to configure D-PHY. In order
for the IPU CSI module driver to have the correct configuration, receive appropriate data,
and process it correctly, it is necessary for it to receive information about sensor (such as
datatype, virtual channel, IPU ID, CSI ID, etc.) from the MIPI CSI2 driver.

20.1.1 MIPI CSI2 Driver Overview

MIPI CSI2 driver is invoked only by the MIPI sensor driver and IPU CSI module and is
not exposed to the user space.

MIPI CSI2 driver supports the following features:

e Support 1~4 lanes
* Support IPU(0,1) and CSI(0,1) select

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 177

A
Software Operation
* Support virtual channel select(0~3)
» Support date type includes:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
e YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
* RAW data: RAW6, RAW7, RAWSE, RAWI10, RAWI12, RAWI14

20.1.2 Hardware Operation

There are four blocks in the MIPI CSI-2 D-PHY: PHY adaptation layer, packet analyzer,
image date interface, and register bank.

Functions and operations are listed as follows:

* PHY Adaptation Layer is responsible for managing the D-PHY interface including
PHY error handling;

* Packet Analyzer is responsible for data lane merging if required, together with
header decoding, error detection and correction, frame size error detection and CRC
error detection;

e Image Date Interface separates CSI-2 packet header information and reorders data
according to memory storage format. It also generates timing accurate video
synchronization signals. Several error detections are also performed at frame-level
and line-level;

» Register Bank is accessible through a standard AMBA-APB slave interface and
provides access to the CSI-2 Host Controller register for configuration and control.
There is also a fully programmable interrupt generator to inform the system upon
certain events;

20.2 Software Operation

MIPI CSI2 driver for Linux OS has two parts: MIPI CSI2 driver initialize operation
which initializes mipi_csi2_info struct, and MIPI CSI2 common APIs which exports
APIs for CSI module driver and MIPI sensor driver.

20.2.1 MIPI CSI2 Driver Initialize Operation

The steps for MIPI CSI2 driver initialize operation are located here.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
178 NXP Semiconductors

L __4

Chapter 20 MIPI CSI2 Driver
MIPI CSI driver first initializes mipi_csi2_info struct, some key information about mipi
sensor will be initialized, such as connected IPU ID, CSI ID, the virtual channel and date
type. Then, the driver initializes D-PHY clock and pixel clock (pixel clock is used for
MIPI D-PHY to transfer data to IPU CSI). After these operations, MIPI CSI csi2 driver
waits for sensor connection.

20.2.2 MIPI CSI2 Common API Operation
MIPI CSI2 driver exports many APIs to manage MIPI D-PHY.
The following is the introduction for all APIs:

* mipi_csi2_get_info: get the mipi_csi_info

* mipi_csi2_enable: enable MIPI CSI interface

* mipi_csi2_disable: disable MIPI CSI interface

* mipi_csi2_get_status: get MIPI CSI interface disable/enable status

* mipi_csi2_get_bind_ipu: get the [PU ID which MIPI CSI will connect

* mipi_csi2_get_bind_csi: get the CSI ID which MIPI CSI will connect

* mipi_csi2_get_virtual_channel: get the virtual channel number by which MIPI sensor
transfers data to MIPI D-PHY

* mipi_csi2_set_lanes: set the lanes number by which MIPI sensor transfers data to
MIPI D-PHY

* mipi_csi2_set datatype: set the MIPI sensor data type

* mipi_csi2_get_datatype: get the MIPI sensor data type; This function is called by
CSI module to set the CSI register

* mipi_csi2_dphy_status: get the MIPI D-PHY status

* mipi_csi2_get_errorl: get the MIPI errorl register information

* mipi_csi2_get_error2: get the MIPI error2 register informaiton

* mipi_csi2_pixelclk_enable: enable the pixel clock

* mipi_csi2_pixelclk_disable: disable the pixel clock

* mipi_csi2_reset: reset the MIPI D-PHY for data receiving and transferring

20.3 Driver Features
This topic lists the features which MIPI CSI2 supports.
MIPI CSI2 driver supports the following features:

* Support 1~4 lanes
» Support [PU(0,1) and CSI(0,1) select

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 179

Driver Features

* Support virtual channel select(0~3)

» Support date type includes:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
e YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
« RAW data: RAW6, RAW7, RAWS, RAW10, RAWI12, RAW14

20.3.1 Source Code Structure
Table below shows the MIPI CSI2 driver source files available in the directory.

<Yocto_BuildDir>/linux/drivers/mxc/mipi.

Table 20-1. MIPI CSI2 Driver Files

File Description

mXxC_mipi_csi2.c MIPI CSI driver source file

20.3.2 Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options to enable this module:

Device Drivers > MXC support drivers > MXC MIPI Support > MIPI CSI2 support.

20.3.3 Programming Interface

MIPI CSI2 Common APIs can only be called by mipi sensor driver and IPU CSI module
driver.

Before calling the API, in system initialization stage, use mipi_csi2_platform_data struct
and imx6q_add_mipi_csi2 function to add a MIPI CSI2 driver.

For mipi sensor driver, the initialization steps are:
» get MIPI info by calling mipi_csi2_get_info()
* enable MIPI CSI interface by calling mipi_csi2_enable()
* set the lanes by calling mipi_csi2_set_lanes()
* reset the MIPI D-PHY by calling mipi_csi2_reset()
* configure MIPI sensor

i.MX Linux® Reference Manual, Rev. 0, 10/2016
180 NXP Semiconductors

4
Chapter 20 MIPI CSI2 Driver
e wait for MIPI D-PHY to receive the sensor clock and data until clock and data are
stable by calling mipi_csi2_dphy_status() and mipi_csi2_get_errorl()
* when uninstall the sensor driver, disable MIPI CSI interface by calling
mipi_csi2_disable()

For sample code which explains how mipi sensor uses mipi APIs, reference ov5640_mipi
driver source code.

For IPU CSI module driver, the call steps are:

 get MIPI info by calling mipi_csi2_get_info()

 get IPU 1d and CSI id to assure configuration of the correct CSI module by calling
mipi_csi2_get_bind_ipu() and mipi_csi2_get_bind_csi()

* get datatype and virtual channel from MIPI CSI driver and configure the CSI module
by calling mipi_csi2_get_datatype() and mipi_csi2_get_virtual_channel()

 perform other configure operation for CSI module and enable CSI

* enable the pixel clock to transfer data from MIPI D-PHY to IPU CSI by calling
mipi_csi2_pixelclk_enable()

» when all tasks are done, disable CSI module first, then disable mipi pixel clock by
calling mipi_csi2_pixelclk_disable()

For sample code which explains how the CSI module driver uses MIPI APIs, reference
IPU CSI module driver source code.

20.3.4 Interrupt Requirements
No interrupt is needed for MIPI CSI driver.

20.4 Unit Test

Use the mipi sensor driver tests, such as "Camera" to verify the functionality of the MIPI
CSI2 driver.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 181

A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 10/2016
182 NXP Semiconductors

Chapter 21
Low-level Power Management (PM) Driver

21.1 Hardware Operation

Information found here describes the low-level Power Management (PM) driver which

controls the low-power modes.
The 1.MX 6 supports four low power modes: RUN, WAIT, STOP, and DORMANT.
The 1.MX 7Dual supports five low power modes: RUN, WAIT, STOP, DORMANT, and

LPSR.

Table below lists the detailed clock information for the different low power modes.

Table 21-1. Low Power Modes
Mode Core Modules PLL CKIH/FPM CKIL
RUN Active Active, Idle or Disable On On On
WAIT Disable Active, Idle or Disable On On On
STOP Disable Disable Off On On
LPSR Power off Disable Off Off On
DORMANT Power off Disable Off Off On

For the detailed information about lower power modes, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

i.MX Linux® Reference Manual, Rev. 0, 10/2016

i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

NXP Semiconductors

183

Hardware Operation

21.1.1 Software Operation

The 1.MX 6 and 1.MX 7Dual PM driver maps the low-power modes to the kernel power
management states as listed below:

 Standby-maps to STOP mode, which offers significant power saving, as all blocks in

the system are put into a low-power state, except for ARM® core, which is still
powered on, and memory is placed in self-refresh mode to retain its contents.

Mem (suspend to RAM) maps to DORMANT mode, which offers most significant
power saving, as all blocks in the system are put into a low-power state, except for
memory, which is placed in self-refresh mode to retain its contents. If there is
"fsl,enable-lpsr" defined in DTB ocrams node, mem is mapped to LPSR mode
instead of DORMANT, and all the blocks in the system are put into power off state,
except the LPSR, SNVS, and DRAM power domains.

System idle maps to WAIT mode.

If ARM Cortex®-M4 processor is alive together with ARM Cortex-A processor
before the kernel enters standby/mem mode, and if ARM Cortex-M4 processor is not
in its low power idle mode, ARM Cortex-A processor triggers the SOC to enter
WAIT mode instead of STOP mode to make sure that ARM Cortex-M4 processor
can continue running.

The 1.MX 6 and 1.MX 7Dual PM driver performs the following steps to enter and exit low
power mode:

1.
2.

SNk w

Allow the Cortex-A platform to issue a deep sleep mode request.
If STOP or DORMANT mode:
* Program 1.MX 6 CCM_CLPCR or 1.MX 7Dual GPC_LPCR_A7_BSC and
GPC_SLPCR registers to set low-power control register.
e I[f DORMANT mode, request switching off CPU power when pdn_req is
asserted.
» Request switching off embedded memory peripheral power when pdn_req is
asserted.
* Program GPC mask register to unmask wakeup interrupts.
Call cpu_do_idle to execute WFI pending instructions for wait mode.
Execute imx6_suspend or imx7_suspend in IRAM.
If in DORMANT mode, save ARM context, change the drive strength of DDR PADs
as "low" to minimize the power leakage in DDR PADs. Execute WFI pending
instructions for stop mode.
Generate a wakeup interrupt and exit low power mode. If DORMANT mode, restore
ARM core and DDR drive strength.

i.MX Linux® Reference Manual, Rev. 0, 10/2016

184

NXP Semiconductors

Chapter 21 Low-level Power Management (PM) Driver

In DORMANT mode, the 1.MX 6 and 1.MX 7Dual can assert the VSTBY signal to the
PMIC and request a voltage change. The U-Boot or Machine-Specific Layer (MSL)
usually sets the standby voltage in STOP mode according to i.MX 6 and i.MX 7Dual data
sheet.

21.1.2 Source Code Structure

Table below shows the PM driver source files. These files are available in:

<Yocto BuildDirs>/arch/arm/mach-imx/

Table 21-2. PM Driver Files

File Description
pm-imx6.c or pm-imx7.c Supports suspend operation
suspend-imx6.S or suspend-imx7.S Assembly file for CPU suspend

21.1.3 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to
these options, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options to enable this module:

* CONFIG_PM builds support for power management. In menuconfig, this option is
available under:
* Power management options > Power Management support
* By default, this option is Y.
* CONFIG_SUSPEND builds support for suspend. In menuconfig, this option is
available under:
e Power management options > Suspend to RAM and standby

21.1.4 Programming Interface

The 1.MX 6 imx6q_set_lpm or i.MX 7Dual imx_gpcv2_set_lpm_mode API in the
system.c function is provided for low-power modes. This implements all the steps
required to put the system into WAIT and STOP modes.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 185

Hardware Operation

21.1.5 Unit Test

To enter different system level low power modes:

echo mem > /sys/power/state
echo standby > /sys/power/state

To wake up system from low power modes, enable the wakeup source first, such as USB
device, debug UART, or RTC, which can be used as a wakeup source. Below is the
example of UART wakeup:

echo enabled > /sys/bus/platform/drivers/imx-uart/'xxxxxxx'.serial/tty/ttymxc'y'/power/
wakeup;

Here 'xxxxxxx' is the physical base address of your debugging UART. For example, for
UARTI, it is 2020000 on i.MX 6. 'y' is your debugging UART index.

To test this mode automatically, see our script in /unit_tests/suspend_random_auto.sh or /
unit_tests/suspend_quick_auto.sh.

For FreeRTOS running with Linux OS together, press "s" on the FreeRTOS console to
start the test. FreeRTOS will enter or exit its low power idle mode in a random period.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
186 NXP Semiconductors

Chapter 22
PF100 Regulator Driver

22.1 Introduction
PF100 1s a PMIC chip which is specified by 1.MX 6.

PF200/PF3000 is based on PF100 with little change, since they share the same PF100
driver. PF100 regulator driver provides the low-level control of the power supply
regulators, selection of voltage levels, and enabling/disabling of regulators. This device
driver makes use of the PF100 regulator driver to access the PF100 hardware control

registers. PF100 regulator driver is based on regulator core driver and it is attached to
kernel 12C bus.

22.2 Hardware Operation

PF100 provides reference and supply voltages for the application processor and
peripheral devices.

Four buck (step down) converters (up to 6 independent output) and one boost (step up)
converter are included. The buck converters provide the power supply to processor cores
and to other low voltage circuits such as memory. Dynamic voltage scaling is provided to
allow controlled supply rail adjustments for the processor cores and/or other circuitry.

Linear regulators are directly supplied from the battery or from the switchers and include
supplies for I/O and peripherals, audio, camera, BT, WLAN, and so on. Naming
conventions are suggestive of typical or possible use case applications, but the switchers
and regulators may be utilized for other system power requirements within the guidelines
of specified capabilities.

The only power on event of PF100 is PWRON is high, and the only power off event of
PF100 is PWRON is low. PMIC_ON_REQ pin of 1. MX 6, which is controlled by SNVS
block of 1.MX 6, will connect with PWRON pin of PF100 to control PF100 on/off, so
that system can power off.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 187

Software Operation

22.2.1 Driver Features

PF100 regulator driver is based on regulator core driver. It provides the following
services for regulator control of the PMIC component:

e Switch ON/OFF all voltage regulators.
 Set the value for all voltage regulators.
 Get the current value for all voltage regulators.

22.3 Software Operation

PF100 regulator client driver performs operations by reconfiguring the PMIC hardware
control registers.

Some of the PMIC power management operations depend on the system design and
configuration. For example, if the system is powered by a power source other than the
PMIC, then turning off or adjusting the PMIC voltage regulators has no effect.
Conversely, if the system is powered by the PMIC, then any changes that use the power
management driver and the regulator client driver can affect the operation or stability of
the entire system.

22.3.1 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel.

It is intended to provide voltage and current control to client or consumer drivers and to
provide status information to user space applications through a sysfs interface. The
intention is to allow systems to dynamically control regulator output to save power and
prolong battery life. This applies to both voltage regulators (where voltage output is
controllable) and current sinks (where current output is controllable).

For more details, visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get 1S an unified API call to lookup and obtain a reference to a regulator:

struct regulator *regulator get (struct device *dev, const char *id);

* regulator_put 1S an unified API call to free the regulator source:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
188 NXP Semiconductors

http://opensource.wolfsonmicro.com/node/15

4
Chapter 22 PF100 Regulator Driver

void regulator_put (struct regulator *regulator, struct device *dev);
* regulator_enable 1S an unified API call to enable regulator output:

int regulator enable(struct regulator *regulator) ;

* regulator_disable 1S an unified API call to disable regulator output:

int regulator disable(struct regulator *regulator);
® regulator_is_enabled is the regulator output enabled:

int regulator is enabled(struct regulator *regulator);

* regulator_set_voltage 18 an unified API call to set regulator output voltage:

int regulator set voltage(struct regulator *regulator, int uV);

* regulator_get_voltage 1S an unified API call to get regulator output voltage:

int regulator get voltage(struct regulator *regulator) ;

You can find more APIs and details in the regulator core source code inside the Linux

kernel at: <Yocto BuildDirs/linux/drivers/regulator/core.c.

22.4 Driver Architecture

Figure below shows the basic architecture of the PF100 regulator driver.

a

Figure 22-1. PF100 Regulator Driver Architecture

22.4.1 Driver Interface Details
Access to PFUZE100 regulator is provided through the API of the regulator core driver.
PFUZE100 regulator driver provides the following regulator controls:

* 4 buck switch regulators on normal mode (up to 6 independent rails): SW1AB,
SWI1C, SW2, SW3A, SW3B, and SW4.

* Buck switch can be programmed to a state of standby with specific register

(PFUZE100_SWxSTANDBY) in advance.

6 Linear Regulators: VGEN1, VGEN2, VGEN3, VGEN4, VGENS, and VGENG®6.

1 LDO/Switch supply for VSNVS support on i.MX processors.

1 Low current, high accuracy, voltage reference for DDR Memory reference voltage.

1 Boost regulator with USB OTG support.

Most power rails from PFUZE100 have been programmed properly according to the

hardware design. Therefore, you can't find the kernel using PFUZE100 regulators.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 189

Driver Architecture

PFUZE100 regulator driver has implemented these regulators so that customers can
use it freely if default PFUZE100 value can't meet their hardware design.

22.4.2 Source Code Structure
The PFUZE100 regulator driver is located in the regulator device driver directory:

<Yocto BuildDirs/linux/drivers/regulator
Table 22-1. PFUZE100 core Driver Files

File Description

drivers/regulator/ Implementation of the PFUZE100 regulator client driver.
pfuzelOO-regulator.c

There is no board file related to PMIC. Some code moves to U-Boot, such as standby
voltage setting. Some code is implemented by DTS file. See PFUZE100 device node in
arch/arm/boot/dts/imx6qdl-sabresd.dtsi and arch/arm/boot/dts/imx6qdl-sabreauto.dtsi

22.4.3 Menu Configuration Options
The following are menu configuration options:

1. To get to the PMIC power configuration, use the command:

bitbake linux-imx -c menuconfig

2. On the configuration screen select Configure Kernel, exit, and when the next screen
appears, choose the following:

3. Device Drivers > Voltage and Current regulator support > Support regulators on
Freescale PF100 PMIC.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
190 NXP Semiconductors

Chapter 23
CPU Frequency Scaling (CPUFREQ) Driver

23.1 Introduction

The CPU frequency scaling device driver allows the clock speed of the CPU to be
changed on the fly. Once the CPU frequency is changed, the voltageVDDGP
isVDDCORE, VDDSOC and VDDPU are changed to the voltage value defined in device
tree scripts (DTS). This method can reduce power consumption (thus saving battery
power), because the CPU uses less power as the clock speed is reduced.

23.1.1 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on
the fly.

If the frequency is not defined in DTS, the CPUFREQ driver changes the CPU frequency
to the nearest higher frequency in the array. The frequencies are manipulated using the
clock framework API, while the voltage is set using the regulators API. The CPU
frequencies in the array are based on the boot CPU frequency. The frequencies are
manipulated using the clock framework API, while the voltage is set using the regulators
API. By default, the userspace CPU frequency governor is used with CPU frequency,
which can be changed manually. To change CPU frequency automatically, the
conservative CPU frequency governor can be used.By default, the userspace CPU
frequency governor is used with CPU frequency, which can be changed manually. To
change CPU frequency automatically, the interactive CPU frequency governor can be
used.Interactive CPU frequency governor is used which cannot be changed manually. To
change CPU frequency manually, the userspace CPU frequency governor can be used.By
default, the conservative CPU frequency governor is used.

See the API document for more information on the functions implemented in the driver.

To view what values the CPU frequency can be changed to in KHz (The values in the
first column are the frequency values) use this command:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 191

Introduction

cat /sys/devices/system/cpu/cpul/cpufreq/stats/time in state

To change the CPU frequency to a value that is given by using the command above (for
example, to 792 MHz) use this command:

echo 792000 > /sys/devices/system/cpu/cpul/cpufreq/scaling setspeed

The frequency 792000 is in KHz, which is 792 MHz.

The maximum frequency can be checked using this command:
cat /sys/devices/system/cpu/cpu0/cpufreqg/scaling max freg
Use the following command to view the current CPU frequency in KHz:
cat /sys/devices/system/cpu/cpul/cpufreq/cpuinfo cur freg
Use the following command to view available governors:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling available governors
Use the following command to change to interactive CPU frequency governor:

echo interactive > /sys/devices/system/cpu/cpu0/cpufreq/scaling governor

23.1.2 Source Code Structure

Table below shows the source files and headers available in the following directory:

drivers/cpufreq/
Table 23-1. CPUFREQ Driver Files
File Description
imx6qg-cpufreq.c/ imx7-cpufreq.c CPUFREQ functions

For CPU frequency working point settings, see:

* arch/arm/boot/dts/imx6q.dtsi for i.MX 6Quad and i.MX 6QuadPlus
* arch/arm/boot/dts/imx6dl.dtsi for .MX 6DualLite

i.MX Linux® Reference Manual, Rev. 0, 10/2016
192 NXP Semiconductors

4
Chapter 23 CPU Frequency Scaling (CPUFREQ) Driver

arch/arm/boot/dts/imx6sl.dtsi for 1.MX 6SoloLite

arch/arm/boot/dts/imx6sx.dtsi for i.MX 6SoloX

arch/arm/boot/dts/imx6ul.dtsi for 1.MX 6Ultralite

arch/arm/boot/dts/imx7d.dtsi for 1.MX 7Dual

23.2 Menu Configuration Options

The following Linux kernel configuration is provided for this module:

* CONFIG_CPU_FREQ; In menuconfig, this option is located under:
* CPU Power Management > CPU Frequency scaling
» The following options can be selected:
* CPU Frequency scaling
* CPU frequency translation statistics
* Default CPU frequency governor (conservative)(interactive)
* Performance governor
* Powersave governor
» Userspace governor for userspace frequency scaling
* Interactive CPU frequency policy governor
* Conservative CPU frequency governor
e CPU frequency driver for 1.MX CPUs
* The CPU Frequency scaling is the only option that must be selected. All others are
selected automatically.

23.2.1 Board Configuration Options

There are no board configuration options for the CPUFREQ device driver.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 193

Menu Configuration Options

i.MX Linux® Reference Manual, Rev. 0, 10/2016
194 NXP Semiconductors

Chapter 24
Dynamic Bus Frequency Driver

24.1 Introduction

To improve power consumption, the Bus Frequency driver dynamically manages the
various system frequencies.

The frequency changes are transparent to the higher layers and require no intervention
from the drivers or middleware. Depending on activity of the peripheral devices and CPU
loading, the bus frequency driver varies the DDR frequency between 24 MHz and its
maximum frequency. Similarly the AHB frequency is varied between 24 MHz and its
maximum frequency.

24.1.1 Operation

The Bus Frequency driver is part of the power management module in the Linux BSP.
The main purpose of this driver is to scale the various operating frequency of the system
clocks (like AHB, DDR, AXI etc.) based on peripheral activity and CPU loading.

24.1.2 Software Operation

The bus frequency depends on the request and release of device drivers for its operation.
Drivers will call bus frequency APIs to request or release the bus setpoint they want. The
bus frequency will set the system frequency to highest frequency setpoint based on the
peripherals that are currently requesting.

If ARM Cortex-M4 processor is alive with ARM Cortex-A processor together, ARM
Cortex-M4 processor also requests or releases bus frequency high setpoint for its
operation. This means that ARM Cortex-A processor treats ARM Cortex-M4 processor
as one of its high-speed devices.

The following setpoints are defined for all .MX 6 and i.MX 7Dual platforms:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 195

A ————
Menu Configuration Options

1. High Frequency Setpoint: On 1.MX 6, AHB is at 132 MHz, AXI is at 264 MHz. On
1.MX 7Dual, AHB is at 135 MHz, AXI i1s at 332 MHz, and DDR 1s at the maximum
frequency. This mode is used when most peripehrals that need higher frequency for
good performance are active. For example, video playback and graphics processing.

2. Audio Playback setpoints: On 1.MX 6, AHB is at 25 MHz, AXI is at 50 MHz, and
DDR is at 50 MHz for DDR3 and 100 MHz for LPDDR2. On 1.MX 7Dual, AHB is
at 24 MHz, AXI is at 24 MHz, and DDR is at 100 MHz. This mode is used in audio
playback mode.

3. Low Frequency setpoint: AHB is at 24 MHz, AXI is at 24 MHz, and DDR is at 24
MHz. This mode is used when the system is idle waiting for user input (display is

off).
To enable the bus frequency driver, use the following command:
echo 1 > /sys/bus/platform/drivers/imx busfreq/soc\:busfreq/enable
To disable the bus frequency driver, use the following command:

echo 0 > /sys/bus/platform/drivers/imx busfreqg/soc\:busfreqg/enable

24.1.3 Source Code Structure

Table below lists the source files and headers available in the following directory:
arch/arm/mach-imx

Table 24-1. BusFrequency Driver Files

File Description

busfreg-imx.c Bus Frequency functions

busfreq_ddr3.c, busfreq_lpddr2.c, DDR frequency change functions
ddr3 freq imx6.S,
lpddr2 freqg imx6.S,

ddr3 freq imx6sx.S,

ddr3 freq imx6sx.S,

ddr3 freq imx7d.S,
lpddr3 freqg imx.S, smp wfe.S

24.2 Menu Configuration Options

There are no menu configuration options for this driver. The Bus Frequency drivers is
included and enabled by default.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
196 NXP Semiconductors

Chapter 24 Dynamic Bus Frequency Driver
24.2.1 Board Configuration Options

There are no board configuration options for the Linux BusFreq device driver.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 197

Menu Configuration Options

i.MX Linux® Reference Manual, Rev. 0, 10/2016
198 NXP Semiconductors

Chapter 25
Thermal Driver

25.1 Introduction

Thermal driver is a necessary driver for monitoring and protecting the SoC. The thermal
driver will monitor the SoC temperature in a certain frequency.

It defines two trip points: critical and passive. Cooling device will take actions to protect
the SoC according to the different trip points that SoC has reached:

* When reaching critical point, cooling device will shut down the system.

* When reaching passive point, cooling device will lower CPU frequency and notify
GPU to run at a lower frequency.

* When the temperature drops to 10 °C below passive point, cooling device will
release all the cooling actions.

Thermal driver has two parts:

e Thermal zone defines trip points and monitors the SoC's temperature.
* Cooling device takes the actions according to the different trip points.

25.1.1 Thermal Driver Overview

The thermal driver implements the SoC temperature monitor function and protection. It
creates a sys file interface of /sys/class/thermal/thermal_zone(/ for user. Internally, the
thermal driver will monitor the SoC temperature and do necessary protection according to
the different trip points that SoC's temperature reaches.

25.2 Hardware Operation

The thermal driver uses internal thermal sensor to monitor the SoC temperature. The
cooling device uses the CPU frequency to protect the SoC.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 199

Driver Features

All related modules are in the SoC.

25.2.1 Thermal Driver Software Operation

The thermal driver registers a thermal zone and a cooling device. A
structure,thermal_zone_device_ops, describes the necessary interface that the thermal
framework needs. The framework will call the related thermal zone interface to monitor
the SoC temperature and do the cooling protection.

25.3 Driver Features
The thermal driver supports the features found here.

* Thermal monitors the SoC temperature.
e Cooling device protects the SOC when the temperature reaches passive or critical
points.

25.3.1 Source Code Structure

Table below shows the driver source files available in the directory:

<Yocto_BuildDir>/linux/drivers/thermal

Table 25-1. Thermal Driver Files

File Description

imx_thermal.c, device_cooling.c thermal zone driver source file

25.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the bitbake linux-imx -¢c menuconfigcommand. On the screen displayed,
select Configure the Kernel and exit. When the next screen appears, select the following
options to enable this module:

Device Drivers Generic Thermal sysfs driver > Temperature sensor driver for Freescale
1.MX SoCs.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
200 NXP Semiconductors

4
Chapter 25 Thermal Driver

25.3.3 Programming Interface

The thermal driver can be accessed via /sys/bus/platform/drivers/imx_thermal/.

25.4 Unit Test

Modify the trip point's temperature through /sys/class/thermal/thermal_zone(/
trip_point_x_temp. Here 'x' can be 0 and 1, indicating critical and passive trip point, the
value of trip points should be critical > passive. Then run some program to make SoC in
heavy loading, when the SoC temperature reach the trip points, the thermal driver will
take action to do some protections according to each trip point's mechanism. Restore the
trip point's temperature, when SoC temperature drop to 10 °C below passive, thermal
driver will remove all the protections.

25.5 Device-Specific Information

The internal thermal sensor need calibration data which is burned in fuse to get an
accurate temperature..

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 201

Device-Specific Information

i.MX Linux® Reference Manual, Rev. 0, 10/2016
202 NXP Semiconductors

Chapter 26
Anatop Regulator Driver

26.1 Introduction

The Anatop regulator driver provides the low-level control of the power supply
regulators, and selection of voltage levels.

This device driver makes use of the regulator core driver to access the Anatop hardware
control registers.

26.1.1 Hardware Operation

The Power Management Unit on the die is built to simplify the external power interface
and allow the die to be configured in a power appropriate manner. The power system
consists of the input power sources and their characteristics, the integrated power
transforming and controlling elements, and the final load interconnection and
requirements.

Utilizing 7 LDO regulators, the number of external supplies is greatly reduced. If the
backup coin and USB inputs are neglected, then the number of external supplies is
reduced to two. Missing from this external supply total are the necessary external
supplies to power the desired memory interface. This will change depending on the type
of external memory selected. Other supplies might also be necessary to supply the
voltage to the different I/O power segments if their I/O voltage needs to be different than
what is provided above.

Some internal regulator can be bypassed , so that external pmic can supply these power
directly to decrease power numer. such as VDD_SOC, VDD_ARM

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 203

Driver Features

26.2 Driver Features

The Anatop regulator driver is based on regulator core driver. A list of services provided
for regulator control can be found here.

e Switch ON/OFF all voltage regulators.
 Set the value for all voltage regulators.
 Get the current value for all voltage regulators.

26.2.1 Software Operation

The Anatop regulator client driver performs operations by reconfiguring the Anatop
hardware control registers. This is done by calling regulator core APIs with the required
register settings.

26.2.2 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel. It is intended to provide voltage and current
control to client or consumer drivers and also provide status information to user space
applications through a sysfs interface. The intention is to allow systems to dynamically
control regulator output to save power and prolong battery life. This applies to both
voltage regulators (where voltage output is controllable) and current sinks (where current
output is controllable).

For more details visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get Used to lookup and obtain a reference to a regulator:

e Struct regulator *regulator get (struct device *dev, const char *id);

* regulator_put Used to free the regulator source:

e void regulator put (struct regulator *regulator, struct device *dev);

* regulator_enable USed to enable regulator output:
e 1nt regulator_ enable(struct regulator *regulator) ;

* regulator_disable USed to disable regulator output:

e 1nt regulator disable(struct regulator *regulator);

* regulator_is_enabled 1S the regulator output enabled:

e 1int regulator is enabled(struct regulator *regulator) ;

i.MX Linux® Reference Manual, Rev. 0, 10/2016
204 NXP Semiconductors

http://opensource.wolfsonmicro.com/node/15

4
Chapter 26 Anatop Regulator Driver

* regulator_set_voltage USed to set regulator output voltage:

e 1int regulator set voltage(struct regulator *regulator, int uv);

* regulator_get_voltage Used to get regulator output voltage:
e 1nt regulator_ get voltage (struct regulator *regulator);

For more APIs and details in the regulator core source code inside the Linux kernel see:
<Yocto_BuildDir>/linux/drivers/regulator/core.c.

26.2.3 Driver Interface Details

Access to the Anatop regulator is provided through the API of the regulator core driver.
The Anatop regulator driver provides the following regulator controls:

* Seven LDO regulators

 All of the regulator functions are handled by setting the appropriate Anatop hardware
register values. This is done by calling the regulator core APIs to access the Anatop
hardware registers.

26.2.4 Source Code Structure

The Anatop regulator driver is located in the regulator device driver directory:
<Yocto BuildDirs/linux/drivers/regulator

Table 26-1. Anatop Power Management Driver Files

File Description

core.c Linux kernel interface for regulators.

anatop-regulator.c Implementation of the Anatop regulator client driver

The Anatop regulators are registered in each SoC-specific dts file. For example, on the
1.MX 6Quad/6DualLite/6Solo, the DTS file is arch/arm/boot/dts/imx6qdl.dtsi.

26.2.5 Menu Configuration Options

To get to the Anatop regulator configuration, use the commandbitbake linux-imx -c
menuconfig. On the configuration screen select Configure Kernel, exit, and when the
next screen appears, choose. The following Linux kernel configurations are provided for
the Anatop Regulator driver:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 205

A
Driver Features
* Device Drivers > Voltage and Current regulator support > Anatop Regulator
Support.
e System Type > Freescale MXC Implementations > Internal LDO in 1.MX 6Quad/
1.MX 6DualLite bypass.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
206 NXP Semiconductors

Chapter 27
SNVS Real Time Clock (SRTC) Driver

27.1 Introduction

The SNVS Real Time Clock (SRTC) module is used to keep the time and date. It
provides a certifiable time to the user and can raise an alarm if tampering with counters is
detected. The SRTC is composed of two sub-modules: Low power domain (LP) and High
power domain (HP). The SRTC driver only supports the LP domain with low security
mode.

27.1.1 Hardware Operation
The SRTC is a real time clock with enhanced security capabilities.

It provides an accurate, constant time, regardless of the main system power state and
without the need to use an external on-board time source, such as an external RTC. The
SRTC can wake up the system when a pre-set alarm is reached.

27.2 Software Operation

The following sections describe the software operation of the SRTC driver.

27.2.1 10CTL

The SRTC driver complies with the Linux RTC driver model. See the Linux

documentation in <Yocto_BuildDir>/linux/Documentation/rtc.txt for information on the
RTC API.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 207

A
Driver Features

Besides the initialization function, the SRTC driver provides IOCTL functions to set up
the RTC timers and alarm functions. The following RTC IOCTLs are implemented by the
SRTC driver:

e RTC_RD_TIME

« RTC_SET_TIME
* RTC_AIE_ON

« RTC_AIE_OFF

« RTC_ALM_READ
* RTC_ALM_SET

The driver information can be access by the proc file system. For example:

root@freescale /unit_ tests$ cat /proc/driver/rtc

rtc_time : 12:48:29
rtc_date : 2009-08-07
alrm time : 14:41:16
alrm date : 1970-01-13
alarm_ IRQ : no

alrm pending : no

24hr : yes

27.2.2 Keep Alive in the Power Off State

To preserve the time when the device is in the power off state, the SRTC clock source
should be set to CKIL and the voltage input, NVCC_SRTC_POW, should remain active.
Usually these signals are connected to the PMIC and software can configure the PMIC
registers to enable the SRTC clock source and power supply. For example, CKIL and
NVCC_SRTC_POW can be connected to the MC13892 CLK32KMCU and VSRTC. Bit
4, DRM, of the MC13892 Power Control 0 Register can be enabled to keep VSRTC and
CLK32KMCU on for all states.

Ordinarily, when the main battery is removed and the device is in power off state, a coin-
cell battery is used as a backup power supply. To avoid SRTC time loss, the voltage of
the coin-cell battery should be sufficient to power the SRTC. If the coin-cell battery is
chargeable, it is recommend to automatically enable the coin-cell charger so that the
SRTC is properly powered.

27.3 Driver Features
This topic lists the SRTC driver features

The SRTC driver includes the following features:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
208 NXP Semiconductors

4
Chapter 27 SNVS Real Time Clock (SRTC) Driver

* Implements all the functions required by Linux OS to provide the real time clock and
alarm interrupt

* Reserves time in power off state

e Alarm wakes up the system from low power modes

27.3.1 Source Code Structure
This topic lists RTC driver files.

The RTC module is implemented in the following directory:

<Yocto BuildDirs>/linux/drivers/rtc

Table below shows the RTC module files.
Table 27-1. RTC Driver Files

File Description

rtc-snvs.c SNVS RTC driver implementation file

The source file for the SRTC specifies the SRTC function implementations.

27.3.2 Menu Configuration Options
Commands used to configure SRTC driver are listed here.

To get to the SRTC driver, use the command bitbake linux-imx -¢ menuconfig. On the
screen displayed, select Configure the kernel and exit. When the next screen appears
select the following options to enable the SRTC driver:

e Device Drivers > Real Time Clock > Freescale SNVS Real Time Clock

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 209

Driver Features

i.MX Linux® Reference Manual, Rev. 0, 10/2016
210 NXP Semiconductors

Chapter 28
Advanced Linux Sound Architecture (ALSA) System
on a Chip (ASoC) Sound Driver

28.1 ALSA Sound Driver Introduction

The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in
Linux system, provides audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

» Efficient support for all types of audio interfaces, from consumer sound cards to
professional multichannel audio interfaces.

¢ Fully modularized sound drivers.

* SMP and thread-safe design.

» User space library (alsa-lib) to simplify application programming and provide higher
level functionality.

 Support for the older Open Sound System (OSS) API, providing binary compatibility
for most OSS programs

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal
of the ASoC layer provides better ALLSA support for embedded system on chip
processors and portable audio CODEC:s.

The ASoC layer also provides the following features:

* CODEC independence. Allows reuse of CODEC drivers on other platforms and
machines.

* Easy [2S/PCM audio interface setup between CODEC and SoC. Each SoC interface
and CODEC registers its audio interface capabilities with the core.

e Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology
designed to minimize audio subsystem power consumption no matter what audio-use
case is active. DAPM guarantees the lowest audio power state at all times and is
completely transparent to user space audio components. DAPM is ideal for mobile
devices or devices with complex audio requirements.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 211

A
ALSA Sound Driver Introduction
 Pop and click reduction. Pops and clicks can be reduced by powering the CODEC
up/down in the correct sequence (including using digital mute). ASoC signals the
CODEC when to change power states.
* Machine-specific controls. Allow machines to add controls to the sound card, for
example, volume control for speaker amp.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
212 NXP Semiconductors

Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

Native ALSA Application [aplay, arecord...)

)

Device Driver

ALSA Library
User Space
Kernel Space
ALSA Driver
PCM Control
P 1 I """""""""""" @ """""""""""" ﬁ """" i
: i
1 "
' Codec ,1 - Machine [EE——— Platform i
i Driver s —— Driver h v Driver E
i i
i i
1 1
; :

Audio Software

i; Audio Hardware i?

MXE& Series
Control Interface Data Transfer
(12¢) System DMA Interface(SSI/EASI...)
F Y F Y

— Audio Codec f——

Figure 28-1. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 213

A ————
SoC Sound Card
* Machine driver-handles any machine-specific controls and audio events, such as
turning on an external amp at the beginning of playback.
* Platform driver-contains the audio DMA engine and audio interface drivers (for
example, %S, AC97, PCM) for that platform.
* CODEC driver-platform independent and contains audio controls, audio interface
capabilities, the CODEC DAPM definition, and CODEC 1/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation
in the Linux OS source tree at linux/Documentation/sound/alsa/soc and at www.alsa-
project.org/main/index.php/ASoC.

28.2 SoC Sound Card

Currently, the stereo CODEC (WM8958, WM8960, and WM8962), 7.1 CODEC
(cs42888), and AM/FM CODEC (s14763) drivers are implemented using ASoC
architecture.

The audio CODEC on MX51 EVK board is (sgtl5000).These sound card drivers are built
in independently. The stereo sound card supports stereo playback and capture. The 7.1
sound card supports up to eight channels of audio playback. While enabling ASRC, 7.1
sound card only supports 2 or 6 channels audio playback. The AM/FM sound card
supports radio PCM capture.

NOTE

The 5.1 codec is only supported on the .MX35 and 1.MX 25
platform.

The 4-channel ADC codec is only supported on the 1.MX 25
platform.

The Bluetooth codec is only supported on the 1.MX 35
platform.

The built-in ADC/DAC codec is only supported on the i.MX 23
platform. The 5.1, 4-channel, and Bluetooth codecs are not

supported on the 1.MX 23.

The Stereo Codec and multiple-channel codec are supported on
1.MX 53 platform.

Only the Stereo Codec is supported on the 1.MX 50 platform.

The 7.1 CODEC is only supported on the i.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
214 NXP Semiconductors

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC

L __4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
The AM/FM CODEC is only supported on the 1.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

Only the Stereo Codec is supported on the .MX 53 START
platform.

28.2.1 Stereo CODEC Features

The stereo CODEC supports the following features:

e Sample rates for playback and capture are 8 KHz, 32 KHz, 44.1 KHz, 48 KHz, and
96 KHz
e Channels:
 Playback: supports two channels.
» Capture: supports two channels.
* Audio formats:
* Playback:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
« SNDRV_PCM_FMTBIT_S24_LE
* Capture:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
« SNDRV_PCM_FMTBIT_S24 LE

28.2.2 5.1 Codec Features i.MX25, i.MX35

» Supported sample rates for playback are:
e 8 KHz, 11.025 KHz, 16 KHz, 22.05 KHz, 32 KHz, 44.1 KHz, 48 KHz, 64 KHz, 88.2
KHz, 96 KHz, 176.4 KHz, and 192 KHz

» Supported channels for playback: 1-6 channels
 Supported audio formats for playback:

« SNDRV_PCM_FMTBIT_S16_LE

« SNDRV_PCM_FMTBIT_S24_LE

28.2.3 Bluetooth Codec Features i.MX35

» Supported sample rate for Playback/Capture: 8 KHz
 Supported channels:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 215

A
SoC Sound Card
 Playback: supports two channels.
 Capture: supports two channels.
* Supported audio formats:
* Playback: SNDRV_PCM_FMTBIT_S16_LE
* Capture: SNDRV_PCM_FMTBIT_S16_LE

28.2.4 4-Channel ADC Codec Features i.MX25

» Supported sample rates for record are:
» 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24kHz, 32 kHz, 44.1 kHz, 48 kHz

» Supported channels for record: 1-4 channels
* Supported audio formats are:
« SNDRV_PCM_FMTBIT_S16_LE

28.2.5 Built-in ADC/DAC Audio Codec Features 3780
The built-in ADC/DAC audio supports the following features:

» Sample rates for playback and record:
* 8 KHz, 11.025 KHz, 12 KHz, 16 KHz, 22.05 KHz, 24 KHz, 32 KHz, 44.1 KHz, 48
KHz, 64 KHz, 88.2 KHz, 96 KHz, 176.4 KHz, and 192 KHz

* Channels:
* Playback: supports two channels
 Capture: supports two channels
* Audio formats:
* Playback:
* SNDRV_PCM_FMTBIT_S16_LE
« SNDRV_PCM_FMTBIT_S32_LE
* Capture:
* SNDRV_PCM_FMTBIT_S16_LE
« SNDRV_PCM_FMTBIT_S32_LE

28.2.6 Multi-channel Codec Feature

e Sample rates for playback and capture are 44.1kHz, 88.2kHz and 176.4kHz, as there
is only a 22.579MHz Osc on the board. If playback the multiple of 48kHz bit
streams, the ALSA plugin is needed to convert the sample rate.

e Channels:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
216 NXP Semiconductors

L __4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
 Playback: supports 6 channels. (5.1)
» Capture: supports 4 channels.
* Audio formats:
* Playback:
e SNDRV_PCM_FMTBIT_S16_LE
« SNDRV_PCM_FMTBIT_S24_LE
e Capture
e SNDRV_PCM_FMTBIT_S16_LE
« SNDRV_PCM_FMTBIT_S24_LE

28.2.7 5.1 Codec Features

» Supported sample rates for playback are:
» 8 KHz, 11.025 KHz, 16 KHz, 22.05 KHz, 32 KHz, 44.1 KHz, 48 KHz, 64 KHz, 88.2
KHz, 96 KHz, 176.4 KHz, and 192 KHz

» Supported channels for playback: 1-6 channels
» Supported audio formats for playback:

* SNDRV_PCM_FMTBIT_S16_LE

* SNDRV_PCM_FMTBIT_S24_LE

28.2.8 7.1 Audio Codec Features

e Sample rates for playback and record:
* 48 KHz, 96 KHz, 192 KHz
* Playback: 5.512k, 8k, 11.025k, 16 k, 22 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k, 96
k, 176.4 k, 192 k (ASRC enabled)
e Channels:
* Playback: 2, 4, 6, 8 channels
* Playback(ASRC enabled): 2, 6 channels
» Capture: 2, 4 channels
e Audio formats:
* Playback:
* SNDRV_PCM_FMTBIT_S16_LE
* SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE
* Playback(ASRC enabled):
e SNDRV_PCM_FMTBIT_S16_LE
* SNDRV_PCM_FMTBIT_S24_LE
* Capture:

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 217

AR
SoC Sound Card

e SNDRV_PCM_FMTBIT_S16_LE

e SNDRV_PCM_FMTBIT_S20_3LE

e SNDRV_PCM_FMTBIT_S24 LE

28.2.9 Bluetooth Codec Features

* Supported sample rate for Playback/Capture: 8 KHz
* Supported channels:

* Playback: supports two channels.

» Capture: supports two channels.
* Supported audio formats:

* Playback: SNDRV_PCM_FMTBIT_S16_LE

» Capture: SNDRV_PCM_FMTBIT_S16_LE

28.2.10 AM/FM Codec Features

 Supported sample rate for Capture: 48 KHz
e Supported channels:

 Capture: supports two channels.
 Supported audio formats:

* Capture: SNDRV_PCM_FMTBIT_S16_LE

28.2.11 4-Channel ADC Codec Features

» Supported sample rates for record are:
» 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24kHz, 32 kHz, 44.1 kHz, 48 kHz

* Supported channels for record: 1-4 channels
* Supported audio formats are:
« SNDRV_PCM_FMTBIT_S16_LE

28.2.12 Built-in ADC/DAC Audio Codec Features
The built-in ADC/DAC audio supports the following features:

» Sample rates for playback and record:
* 8 KHz, 11.025 KHz, 12 KHz, 16 KHz, 22.05 KHz, 24 KHz, 32 KHz, 44.1 KHz, 48
KHz, 64 KHz, 88.2 KHz, 96 KHz, 176.4 KHz, and 192 KHz

i.MX Linux® Reference Manual, Rev. 0, 10/2016
218 NXP Semiconductors

4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
* Channels:
* Playback: supports two channels
» Capture: supports two channels
* Audio formats:
* Playback:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S32_LE
* Capture:
« SNDRV_PCM_FMTBIT_S16_LE
« SNDRV_PCM_FMTBIT_S32_LE

28.2.13 Sound Card Information

The registered sound card information can be listed as follows using the commands aplay
-1 and arecord -1. For example, the stereo sound card is registered as card O.

root@freescale /$ aplay -1

***%* T,igt of PLAYBACK Hardware Deviceg ***x*

card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

28.3 Hardware Operation
The following sections describe the hardware operation of the ASoC driver.
MX53 EVK boards need re-work, due to the conflict between the FEC PHY and ESAI

MX6q ARM?2 boards record need re-work, due to the conflict between the FEC PHY and
ESAIL

28.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I?C interface. The audio data is transferred
from the user data buffer to/from the SSI FIFO through the DMA channel. The DMA
channel is selected according to the audio sample bits. AUDMUX is used to set up the
path between the SSI port and the output port which connects with the CODEC. The
CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and
LRCLK can be configured according to the audio sample rate.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 219

A
Hardware Operation

The stereo audio codec is controlled by the I°C interface. The audio data is transferred
from the user data buffer to/from the SAIF FIFO through the DMA channel. Playback
uses SAIFO and Record uses SAIF1. SAIFO works in master mode and provides the
MCLK, BCLK and LRCLK, SAIF1 and SGTL5000 CODEC work in slave mode, using
clock of SAIFO. The BCLK and LRCLK are configured according to the audio sample
rate.The WM8958, WM8960, and WM8962 ASoC CODEC driver exports the audio
record/playback/mixer APIs according to the ASoC architecture. Additionally, this driver
provides audio-loop back function for the FM driver to enable stereo FM output, The
ALSA related audio function and the FM loopback function cannot be performed
simultaneously.

The CODEC driver is generic and hardware independent code that configures the
CODEC to provide audio capture and playback. It does not contain code that is specific
to the target platform or machine. The CODEC driver handles:

* CODEC DAI and PCM configuration
« CODEC control I/O-using I>C

* Mixers and audio controls

* CODEC audio operations

* DAC Digital mute control

The WM8958, WM8960, and WM8962 CODEC are registered as an I2C client when the
module initializes. The APIs are exported to the upper layer by the structure
snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

28.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled
by the 12C interface. The audio data is transferred from the user data buffer to the ESAI
fifo, through a DMA channel. The DMA channel is selected according to audio sample
bits. The codec works in slave mode as the esai provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate. The ESAI
supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports
2 or 6 channel playback through ASRC. On the 1.MX 6 Sabre ARD board, a cs42888
codec with 4 audio in port is used, each port receive two channels of data in the 12S
format(network mode), providing 8-channel of playback functionality. This codec also
has 2 audio output port connected with ESAI, providing 4-channel of recording
functionality.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
220 NXP Semiconductors

L __4

Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
The codec driver 1s generic and hardware independent code that configures the codec to
provide audio capture and playback. It does not contain code that is specific to the target
platform or machine. The codec driver handles:

e Codec DAI and PCM configuration
* Codec control I/O-using 12C

* Mixers and audio controls

* Codec audio operations

* DAI Digital mute control

The CS42888 codec 1s registered as an I2C client when the module initializes. The APIs
are exported to the upper layer by the structure snd_soc_dai_ops.

28.3.3 5.1 Audio Codec

The 5.1 audio codec is controlled by the SPI interface. The audio data is transferred from
the user data buffer to the ESAI FIFO through a DMA channel. The DMA channel is
selected according to the audio sample bits. The 5.1 codec works in master mode and the
codec provides the BCLK and LRCLK. The BCLK and LRCLK can be configured
according to the audio sample rate. The ESAI supports up to three TX ports, and each
port transmits two channels of data in I?S format. The TX port is enabled or disabled
according to the audio channel number.

28.3.4 4-Channel ADC Codec

The 4-channel ADC is controlled by the I2C interface. The audio data is transferred from
the user data buffer to the ESAI fifo through a DMA channel. The DMA channel is
selected according to audio sample bits. The 4-channel ADC works in master mode as the
codec provides the BCLK and LRCLK. The BCLK and LRCLK can be configured
according to the audio sample rate. The ESAI supports up to 4 receivers. On the 1. MX25
3-stack board, two receivers are used, each receives two channels of data in the 12S
format. Both receivers are enabled for 4-channel record.

28.3.5 Bluetooth Codec

The Bluetooth codec is a virtual codec, it only has a PCM interface connected to the
Bluetooth device. The audio data is transferred from the user data buffer to or from the
SSI FIFO through the DMA channel. The DMA channel is selected according to the
audio sample bits. AUDMUX is used to set up the path between the SSI port and the

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 221

Software Operation

output port which connects with the codec. The codec works in master mode as it
provides the BCLK and LRCLK. The BCLK and LRCLK can be configured according to
the audio sample rate.

28.3.6 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner
device. The audio data is transferred from the user data buffer to or from the SSI FIFO
through the DMA channel. The DMA channel is selected according to the audio sample
bits. AUDMUX is used to set up the path between the SSI port and the output port which
connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

28.3.7 Built-in ADC/DAC Codec 3780

The built-in ADC/DAC stereo codec is implemented as SoC architecture. The ADC/DAC
stereo audio codec supports playback/capture and is controlled by ADC/DAC register
access. The audio data is transferred from the user data buffer to/from the ADC/DAC
FIFO through a dedicated DMA channel. The DMA channel is selected according to
audio playback or capture mode. The ADC/DAC ASoC codec driver exports the audio
record /playback/mixer APIs according to the ASoC architecture.

The codec driver is generic and hardware independent code that configures the codec to
provide audio capture and playback. It contains no code that is specific to the target
platform or machine. However, the 1.MX23 ADC/DAC are built-in SoC modules, and
interleave with machine specific code. All platform and machine specific code is added to
the platform and machine drivers respectively.

28.4 Software Operation

The following sections describe the software operation of the ASoC driver.

28.4.1 ASoC Driver Source Architecture

ASoC driver source architecture is outlined in this topic.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
222 NXP Semiconductors

L __4

Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
File imx-pcm-dma.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC driver
and other CODEC driver. This file is responsible for preallocating DMA buffers and
managing DMA channels.

The stereo CODEC i1s connected to the CPU through the SSI interface. fsl_ssi.c registers
the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI interface.
wmg8962.c registers the stereo CODEC and hifi DAI drivers. The direct hardware
operations on the stereo codec are in wm8994.c, wm8960.c, and wm8962.c. imx-
wm8958.c, imx-wm8960.c and imx-wmg8962.c are the machine layer codes, which create
the driver device and register the stereo sound card.

The multichannel CODEC is connected to the CPU through the ESAI interface. imx-
esai.c registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip
ESALI interface. cs42888.c registers the multichannel codec and hifi DAI drivers. The
direct hardware operations on the multichannel codec are in cs42888.c. imx-3stack-
cs42888.c is the machine layer code which creates the driver device and registers the
stereo sound card.

The multichannel codec is connected to the CPU through the ESAI interface. fsl_esai.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip ESAI
interface. cs42888.c registers the multichannel CODEC and hifi DAI drivers. The direct
hardware operations on the multichannel CODEC are in cs42888.c. imx-cs42888.c is the
machine layer code which creates the driver device and registers the stereo sound card.

The 5.1 codec is connected to the CPU through the ESAI interface. imx-esai registers the
CPU DAI driver for the 5.1 ALSA SoC and configures the on-chip ESAI interface.
wma8580.c is the codec driver that operates on the 5.1 codec directly, as well as on the
ESAI configuration on the codec side. The machine layer code is implemented in
imx-3stack-wm8580.c to register the sound card and setup the link between the CPU and
the codec.

The Bluetooth codec is connected to the CPU through the SSI interface. imx-ssi.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI
interface. bluetooth.c registers the Bluetooth codec and Bluetooth DAI drivers. The direct
hardware operations on the codec are in bluetooth.c. imx-3stack-bt.c is the machine layer
code which creates the driver device and registers the sound card.

The AM/FM CODEC is connected to the CPU through the SSI interface. fsl_ssi.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI
interface. s1476x.c registers the Tuner CODEC and Tuner DAI drivers. The direct
hardware operations on the CODEC are in si476x.c. imx-si476x.c is the machine layer
code which creates the driver device and registers the sound card.

i.MX Linux® Reference Manual, Rev. 0, 10/2016
NXP Semiconductors 223

A
Software Operation

The 4-channel ADC is connected to the CPU through the ESAI interface. imx-esai
registers the CPU DAI driver for the 4-channel ALSA SoC and configures the on-chip
ESAl interface. ak5702.c is the codec driver that operates on the 4-channel ADC directly,
as well as on the ESAI configuration on the codec side. The machine layer code is
implemented in imx-3stack-ak5702.c to register the sound card and setup the link
between the cpu and the codec.

The built-in ADC/DAC codec is connected to the CPU through the DAI interface. mxs-
adc.c registers the CPU DAI driver for the built-in ADC/DAC codec and configures the
on-chip DAI interface. mxs-adc-codec.c registers the built-in ADC/DAC codec drivers.
The direct hardware operations on the built-in ADC/DAC codec are in mxs-adc-
codec.c.mxs-evk-adc.c is the machine layer code which creates the driver device and
registers the built-in sound card.

The stereo codec 1s connected to the CPU through the SAIF interface. mxs-dai.c registers
the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SAIF interface.
sgtl5000.c registers the stereo codec and hifi DAI drivers. The direct hardware operations
on the stereo codec are in sgtl5000.c. mxs-devb.c is the machine layer code which creates
the driver device and registers the stereo sound card.

Table below shows the stereo codec SoC driver source files. These files are under the
<Yocto_BuildDir>/linux/sound/soc directory.

Table 28-1. Stereo Codec SoC Driver Files

File Description
fsl/imx-wm8958.c Machine layer for stereo CODEC ALSA SoC (CODEC as 12S Master)
fsl/imx-wm8960.c
fsl/imx-wm8962.c
fsl/imx-pcm-dma.c Platform layer for stereo CODEC ALSA SoC
fsl/imx-pcm.h Header file for PCM driver and AUDMUX register definitions
fsl/fsl_ssi.c SSI CPU DAI driver for stereo CODEC ALSA SoC
fsl/fsl_ssi.h Header file for SSI CPU DAl driver and SSI register definitions
fsl/fsl_sai.c SAIl CPU DAI driver for stereo CODEC ALSA SoC
fsl/fsll_sai.h Header file for SAlI CPU DAl driver and SAl register definitions
codecs/wm8994.c CODEC layer for stereo CODEC ALSA SoC
codecs/wm8960.c
codecs/wm8962.c
codecs/wm8994.h Header file for stereo CODEC driver
codecs/wm8960.h
codecs/wm8962.h

i.MX Linux® Reference Manual, Rev. 0, 10/2016
224 NXP Semiconductors

.4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

Table below shows the 5.1 codec SoC driver source files. These files are also under the
<Yocto_BuildDir>/linux/sound/soc directory.

Table 28-2. 5.1 Codec SoC Driver Files

File

Description

fsl/imx-3stack-wm8580.c

Machine layer for 5.1 ALSA SoC

fsl/imx-pcm-dma-mx2.c

Platform layer for 5.1 CODEC ALSA SoC

fsl/imx-pcm.h Header file for pcm driver
fsl/imx-esai.c Platform DAI link for 5.1 CODEC A