
Copyright © ARM Ltd 2006. All rights reserved

Writing Efficient Code
for ARM

Chris Shore
Customer Training Manager

ARM

2

From the abstract

“… inside knowledge of how the compiler

works … simple techniques which will greatly

improve … object code”

Copyright © ARM Ltd 2006. All rights reserved

3

Efficiency?

What does “efficient” mean?
Code execution speed
Data throughput
Code or data size
Power consumption

All are valid criteria against which we can measure success

4

Agenda
General tools considerations

Platform issues

Efficient coding strategies

B12696
铅笔

Copyright © ARM Ltd 2006. All rights reserved

5

Tools issues
First of all, some features of the tools which can help
Compiler
Compiler optimizations
Multifile compilation
ARM extensions to C
Including assembler

Linker
Feedback files
Linker optimizations

Libraries
Real-time division

6

Code generation control
General optimization
-O0 Minimum optimization – Leave my code alone
-O1 Restricted optimization – I need to debug this too
-O2 High optimization – Do what you like…
-O3 Maximum optimization – …and then some!

-Ospace/-Otime
Obvious really, -Ospace is the default

Specific features
--no_inline Disables inlining
--split_ldm Limits max registers in LDM/STM to five
--split_sections Puts each function in its own output section

Copyright © ARM Ltd 2006. All rights reserved

7

Space and Time?
Space/Time – what’s the difference?
Space
Will attempt to reduce code size at the expense of execution speed
Will inline less often
Structure copying uses helper functions rather than inline code

Time
Will attempt to increase speed at the expense of code size

while (expr)
{

body;
}

if (expr) do
{

do
{

body;
} while (expr);

}

8

Level 2/Level 3?
O2/O3 – what’s the difference?
Inlines more aggressively

Multifile compilation enabled by default
Beware of effect on build time

High-level scalar optimizations e.g. loop unrolling
Enabled for “–O3 –Otime”
Code size cost is modest, build time cost can be large

Copyright © ARM Ltd 2006. All rights reserved

9

New loop optimizer
“-O3 –Otime” enables the new loop optimizer

This is either fully enabled or fully disabled
There is no documented finer level of control

Automatically restructures loops
Loop unrolling, fusion, interchange, rotation and switching
Idiom recognition
Pointerization

10

How to get the most out of it
Use “restrict” pointer modifier as much as possible
Tells the compiler that there are no aliased accesses to addressed

data (more on the details of this later…)
Can be applied to function arguments as well as local declarations

Write simple loop bodies which access simple arrays in
simple ways
i.e. with simple stride patterns
Rightmost subscript should be index of innermost loop in nested loops

Don’t try to do it manually!
In the worst case, this will confuse the optimization engine resulting in

sub-optimal code generation
Best case, it will simply recognize (and possibly undo) your attempt

Copyright © ARM Ltd 2006. All rights reserved

11

Loop unrolling
Reduces loop overhead at direct cost of code size

for (i = 0; i < 100; i++)
{

c[i] = b[i] + 1;
}

for (i = 0; i < 100; i += 4)
{

c[i + 0] = b[i + 0] + 1;
c[i + 1] = b[i + 1] + 1;
c[i + 2] = b[i + 2] + 1;
c[i + 3] = b[i + 3] + 1;

}

Loop re-rolling
Recognise manually unrolled loops, re-roll and unroll optimally

Complete unrolling
Recognise constant, low trip count loops and totally unroll removing all

loop overhead

12

Loop rotation
Rotate unrolled loops to allow better instruction scheduling
Memory latency of one iteration overlaps with computation of another

for (i = 0; i < 100; i++)
{

a[i] = b[i] * c[i] + d[i];
}

b0 = b[0]; c0 = c[0]; d0 = d[0];
for (i = 1; i < 99; i += 2)
{

b1 = b[i]; c1 = c[i]; d1 = d[i];
a[i - 1] = b0 * c0 + d0;
b0 = b[i + 1]; c0 = c[i + 1]; d0 = d[i + 1];
a[i] = b1 * c1 + d1;

}
b1 = b[99]; c1 = c[99]; d1 = d[99];
a[98] = b0 * c0 + d0;
a[99] = b1 * c1 + d1;

Copyright © ARM Ltd 2006. All rights reserved

13

Loop fusion
Fuse small identical trip count loops together
Share common code
Reduce loop overhead

for (i = 0; i < 100; i++)
{

c[i] = b[i] + 1;
}
for (j = 0; j < 100; j++)
{

a[j] = b[j] - 1;
}

for (i = 0; i < 100; i++)
{

c[i] = b[i] + 1;
a[i] = b[i] - 1;

}

14

Loop Unswitching
Remove invariant conditionals from loop bodies by replicating

the loops and moving the tests outside

for (i = 0; i < 100; i++)
{

if (operation == IADD)
{

c[i] = a[i] + b[i];
}
else
{

c[i] = a[i] * b[i];
}

}

if (operation == IADD)
{

for (i = 0; i < 100; i++)
{

c[i] = a[i] + b[i];
}

}
else
{

for (i = 0; i < 100; i++)
{

c[i] = a[i] * b[i];
}

}

Copyright © ARM Ltd 2006. All rights reserved

15

Pointerization
Convert loops to increment pointers and count downwards

rather than indexing into arrays and counting up
Eliminates address calculations
Simplifies loop termination conditions

for (i = 0; i < n; i++)
a[i] = b[i] + c[i];

start

LDR r0, [r2, r3, LSL #2]

LDR r1, [r4, r3, LSL #2]

ADD r0, r0, r1

STR r0, [r5, r3, LSL #2]

ADD r3, r3, #1

CMP r3, r3, #n

BLT start

int *a1 = a;
int *b1 = b;
int *c1 = c;
for (i = n; i != 0; i--)

a++ = b++ + c++;

start

LDR r0, [r2], #4

LDR r1, [r4], #4

ADD r0, r0, r1

STR r0, [r5], #4

SUBS r3, r3, #1

BNE start

16

Idiom Recognition
Replace conditionals with min/max functions:

if (a > b) c = b; else c = a;  c = __min(a,b);

Replace saturations with intrinsics:

if (a > 255) a = 255;  a = __sat(a,255);

Replace loops with optimized library calls:

for (int i=0; i<256; i++) *a++=*b++;  memcpy(a,b,256);

Also memclr, memset& strcpy

Copyright © ARM Ltd 2006. All rights reserved

17

Example
This loop has been
Partially unrolled
Pointerized
Inverted
Rotated

void increment(int *restrict b,
int *restrict c)

{
int i;

for (i = 0; i < 100; i++)
{

c[i] = b[i] + 1;
}

}

void increment(int *b, int *c)
{

int i;
int *pb, *pc;
int b3, b4;

pb = b - 1;
pc = c - 1;

b3 = pb[1];

for (i = (100 / 2); i != 0; i--)
{

b4 = *(pb += 2);
pc[1] = b3 + 1;
b3 = pb[1];
*(pc += 2) = b4 + 1;

}
}

Takes 23% fewer instructions in
34% fewer cycles

Optimized version is 13
instructions compared to 8
for unoptimized

18

Summary
Points to remember
Enabled automatically with “-O3 –Otime”
Use restrict modifier as much as possible
Write plain and simple code

Debugging
Combinations of these optimizations can result in very different

program flow
Debugging should be done at low optimization levels first
User code must not rely on undefined behavior

Metrics
Over EEMBC, improves performance by about 10%
Costs less than 1% in code size
30% increase in compilation time

Copyright © ARM Ltd 2006. All rights reserved

19

Multifile compilation
Allows the compiler to optimize across source files
Increased inlining possibilities
Better base pointer and cross-function optimization
Reduced scatter file flexibility

file1.c file2.c file3.c

compile

file1.o file2.o file3.o

Dummy object files

file1.c file2.c file3.c

compile

file1.o file2.o file3.o

compilecompile

20

ARM extensions
__restrict
Supported as in C99 standard

__pure
Non-standard extension

__value_in_regs
Allows a function to pass back result in registers
Can speed up returning a structure up to 4 words in size

Copyright © ARM Ltd 2006. All rights reserved

21

__restrict
Allows you to tell the compiler that pointers do not reference

overlapping areas of memory
Available as “restrict” if enabled with --restrict

void copymem(int n, int *restrict a, int *restrict b)
{

while (n-- > 0)
*a++ = *b++;

}

In this code segment a and b are guaranteed by the
programmer to reference different regions of memory
Beware of making promises which you can’t (or won’t) keep…!

22

__pure
A function can be described as “pure” if:
Its result depends exclusively on its arguments
It has no side-effects

A pure function may not, therefore:
Use global variables
Deference pointers
Access memory except the stack

Declaring a function as “pure” makes it a candidate for
“common sub-expression elimination”

__pure int f(int arg)
__pure is an ARM-specific extension to ANSI C

Copyright © ARM Ltd 2006. All rights reserved

23

__pure (2)

int square (int x)
{

return x * x;
}
int f(int n)
{

return square(n) * square(n);
}

square MOV r1, r0
MUL r0, r1, r0
MOV pc, lr

f STMFD sp!, {lr}
MOV r2, r0
BL square
MOV r3, r0
MOV r0, r2
BL square
MOV r1, r0
MUL r0, r1, r3
LDMFD sp!, {pc}

__pure int square (int x)
{

return x * x;
}
int f (int n)
{

return square(n) * square(n);
}

square MOV r1, r0
MUL r0, r1, r0
MOV pc, lr

f STMFD sp!, {lr}
BL square
MOV r1, r0
MUL r0, r1, r0
LDMFD sp!, {pc}

24

__value_in_regs
Returns multi-word value in multiple registers

typedef struct int64_struct
{

unsigned int lo;
unsigned int hi;

} int64_struct;

__value_in_regs extern
int64_struct mul64(unsigned a, unsigned b);

Avoids returning by copy on stack
Useful for calling assembler functions which return more than

one value
Will be ignored (with warning) if return value is too large

Copyright © ARM Ltd 2006. All rights reserved

25

Linking to assembler
C-Assembly linkage
Ensure compliance with

AAPCS and all should be
well…

AAPCS (Procedure Call
Standard for the ARM
Architecture)
Part of the ABI (Application

Binary Interface)
Specifies use of registers at

procedure call interface

r0
r1
r2
r3

r4
r5
r6
r7
r8

r9

r10
r11

r12 (ip)

r13 (sp)
r14 (lr)
r15 (pc)

Parameters in
Values out
(Corrupted)

Internal variables
(Preserved)

Internal variables
(Preserved)

Scratch register

Platform register

26

Inline assembler
Generally used for short

sequences which cannot be
produced directly from C
Beware…
It’s not a “true” assembler
Some restrictions in

functionality
The code is optimized along

with the surrounding C
Register names are

“virtualized”

Gradually being replaced by
intrinsics

__inline void enable_IRQ
{

int tmp;
__asm
{

MRS tmp, CPSR
BIC tmp, tmp, #0x80
MSR CPSR_c, tmp

}
}

Note that this is an
example of a function
which can now be
performed using an
intrinsic

Copyright © ARM Ltd 2006. All rights reserved

27

Intrinsics
Built-in ARM extensions to the C/C++ language
Used to access machine features in a portable way
Can accomplish many things which inline assembler can’t
And in a much more portable, future-proof way

void disable_irq(void)
{

int tmp;
__asm
{

MRS tmp, CPSR
ORR tmp, tmp, #0x80
MSR CPSR_c, tmp

}
}

void __disable_irq(void);

Others include…
__enable_fiq()
__breakpoint()
__nop()
__current_sp()
__return_address()
__current_pc()

28

New intrinsics
__semihost
Architecture-independent way to generate semihosting calls (e.g. uses

BKPT on v7M cores, SWI/SVC on everything else)

__schedule_barrier
Creates a sequence point from the point of view of optimisation
Similar to nop() intrinsic except that no NOP instruction is generated

__force_stores
Forces all globally-visible variables to be written to memory if they have

been changed

__memory_changed
Forces all globally-visible variables to be written back to memory if they

have changed and then all read back from memory

Copyright © ARM Ltd 2006. All rights reserved

29

Support for the NEON instruction set
The NEON instruction set is implemented by the Cortex-A8
A set of vector data types e.g.
int16x4_t – a vector of 4 16-bit signed integers
int32x2_t – a vector of 2 32-bit signed integers

A set of intrinsic functions e.g.
vld1_s16 – load 4 16-bit signed values into a vector
vadd_s16 – add two 4-element 16-bit vectors

int16x4_t vec; /* declare vector data */
vec = vld1_s16(array); /* load 4 values in parallel from the array */
array += 4; /* increment the array pointer */
acc = vadd_s16(acc, vec); /* add the vector to the accumulator vector */

30

Embedded assembler
Declare asm functions in C/C++ modules
With full function prototypes, including arguments and return value
Can access C preprocessor and structure offset information directly
Possible to insert Thumb assembler functions in an ARM module and

vice versa
Processed by the “real”

assembler
Supports full instruction set
C/C++ expressions can be

embedded using __cpp
Useful for writing larger

performance-critical functions

Cannot be inlined

__asm void scpy(char *s, char *d)
{
loop

LDRB r3, [r0], #1
STRB r3, [r1], #1
CMP r3, #0
BNE loop
BX lr

}

Copyright © ARM Ltd 2006. All rights reserved

31

Linker optimizations
The linker includes several features to improve output code
Linker feedback files
Feedback file produced by linker and used as input to compilation
Largely replaces the --split_sections method and has better results
Removes unused code
Can reduce overhead of interworking
Removes functions which have been inlined everywhere they are

called

Small function inlining
Single line functions will be placed over the calling branch instruction

Tail re-ordering
Modules will be reordered so that a tail-call can be replaced with a

NOP if possible

32

Linker feedback

Compile Linksource

linker
feedback

object
files

image

Copyright © ARM Ltd 2006. All rights reserved

33

Small function inlining (--inline)

....
BL add
....

add
ADD
BX lr

Image containing function call

....
ADD
....

add
ADD
BX lr

Function inlined by linker

(function may now be a candidate
for removal as an unused section)

34

....
NOP

Tail re-ordering (--tailreorder)

foo
LDR
MOV
....

Image containing tail call

tail call

foo
LDR
MOV
....

Sections reordered and B
replaced with NOP

....
B foo

Copyright © ARM Ltd 2006. All rights reserved

35

Agenda
General tools considerations

Platform issues

Efficient coding strategies

36

Starting from scratch
Algorithm selection
What works best on ARM?
Making best use of the available register set and instruction set

Data management
Mapping data to memory
Alignment issues

Cache considerations
Cache improves everything except TCM
ARM10 and ARM11 cores work a lot better out of cache

Writing exception handlers
Efficient coding strategies
Much of this will apply when working on existing code too…

Copyright © ARM Ltd 2006. All rights reserved

37

Algorithm selection
The ARM has a large (but not enormous) register set
Memory access is (relatively) slow

Algorithms which maintain as much as possible in registers
will generally perform better
Unroll loops to make better use of registers
Avoid aliasing and use “restrict” where appropriate/possible

All registers are 32-bit
Processing word-sized values is more efficient
If your data is sub-word, it is often possible to process more than one

item at a time using SIMD techniques
Later ARM cores support many SIMD instructions

38

Data organization
Some fast memory will help a lot

Especially when programming in C, locating the stack in fast
memory will speed up code considerably

Avoid unaligned data wherever possible
ARM11 supports unaligned access in hardware
It’s still slower than aligned access, though
And you still need to tell the compiler about it
Otherwise the compiler will carry out some “optimizations”

which may break your code

Copyright © ARM Ltd 2006. All rights reserved

39

Porting from one ARM to another
What new features are available?
New instructions
Other new architectural features or behavior

What else has changed?
Exception handling model
ARM7 cores implement “Base-Updated Abort Model”
Later cores automatically restore the base register

Caches
Tightly Coupled Memory
A “real-time” alternative to cache
Can be used to guarantee performance for critical areas without the

uncertainty of cache

40

Make full use of the instruction set
For example…

…Architecture v6 contains a lot of new instructions
Packed data
Word/Halfword reversal
SIMD operations
More efficient exception entry/exit
Improved support for saturated maths
Support for mixed-endian systems
Load/Store exclusive for synchronization primitives

Lots of new features too in Thumb-2, NEON, ARMv7...

Copyright © ARM Ltd 2006. All rights reserved

41

Example – Re-entrant interrupt
V5TE_Handler
; save lr and spsr
SUB lr, lr, #4
STMFD sp!, {lr}
MRS r14, SPSR
STMFD sp!, {r12, r14}

; change to system mode with IRQ enabled
MRS r14, CPSR
BIC r14, r14, #0x9F
ORR r14, r14, #0x1F
MSR CPSR_c, r14

; save user mode regs and call C handler
STMFD sp!, {r0-r3, lr}
BL C_irq_handler
LDMFD sp!, {r0-r3, lr}

; change to IRQ mode with IRQ disabled
MRS r12, CPSR
BIC r12, r12, #0x1F
ORR r12, r12, #0x92
MSR CPSR_c, r12

; restore regs and return
LDMFD sp!, {r12, r14}
MSR SPSR_csxf, r14
LDMFD sp!, {PC}^

V6_Handler
; save lr and spsr
SUB lr, lr, #4
SRSFD #SYSmode!

; change to system mode with IRQ enabled
CPSIE i, #SYSmode

; save user mode regs and call C handler
STMFD sp!, {r0-r3, r12, lr}
BL C_irq_handler
LDMFD sp!, {r0-r3, r12, lr}

; restore regs and return
RFEFD sp!

42

Example - Motion Estimation
; This code processes four pixels loaded as
; two words, using the V6 SAD instruction
;
; Excluding the loads, it takes 1 cycle per
; four pixels
;
MOV Sum, #0
;
; load four pixels
LDR Rx, [Rxptr, #offset]
LDR Ry, [Ryptr, #offset]
;
; calculate and accumulate SAD for all four

pixels
USADA8 Sum, Rx, Ry, Sum

; This code processes four pixels loaded as
; two words, using V5TE instructions
;
; Excluding the loads, it takes (3 * 6) + 4 = 22
; cycles per four pixels
;
MOV Sum, #0 ; clear accumulator
;
; load four pixels
LDR Rx, [Rxptr, #offset]
LDR Ry, [Ryptr, #offset]

; process first pixel in pair of words
MOV temp, Rx, LSR #24 ; get top byte
SUBS temp, temp, Ry, LSR #24 ; difference
RSBMI temp, temp #0 ; abs difference
ADD Sum, Sum, temp ; accumulate

; repeat following block three times to process
; remaining pixels
MOV Rx, Rx, LSL #8 ; discard used pxl
MOV Ry, Ry, LSL #8 ; discard used pxl

MOV temp, Rx, LSL #24 ; get top byte
SUBS temp, temp, Ry, LSR #24 ; difference
RSBMI temp, temp, #0 ; abs difference
ADD Sum, Sum, temp ; accumulate

Copyright © ARM Ltd 2006. All rights reserved

43

Porting to a Thumb-2 core
Thumb-2 is a blend of 16- and 32-bit instructions
No need to manually select between ARM and Thumb
All code can be compiled in Thumb to get best mix
Intrinsics in C compiler mean inline/embedded assembler can

be avoided almost completely
Removes many portability issues
Allows compiler to pick best state/size for instructions

Assembler should be written in UAL for best results
Allows assembler to select best output instructions
Easily convertible to ARM-only

44

Performance / Density

Performance

Code density

100% ARM code

100% Thumb
code

Random
mix ‘Profiled’ mix

Thumb-2

Copyright © ARM Ltd 2006. All rights reserved

45

Thumb-2 can be faster than Thumb
Thumb Code:

PUSH {r4, r5}
MOVS r1, #0
MOVS r3, #1
LSLS r3, r3, #10
LSLS r4, r3, #2
SUBS r5, r1, #1

loop
LSLS r2, r1, #2
ADDS r2, r2, r0
STR r5, [r2, #0xc]
ADDS r2, r2, r4
STR r1, [r2, #0xc]
ADDS r1, r1, #1
CMP r1, r3
BLT loop
POP {r4, r5}
BX lr

Total: 16 instns, 8 in loop

Thumb-2 code:

MOVS r1, #0
SUBS r3, r1, #1

loop
ADD r2, r0, r1, LSL #2
STR r3, [r2, #0xc]
ADD r2, r2, #0x1000
STR r1, [r2, #0xc]
ADDS r1, r1, #1
CMP r1, #0x400
BLT loop
BX lr

Total: 10 instns, 7 in loop

C Code:

typedef struct {
int x, y, z;
int a[1024], b[1024];

} S;

void f(S *s)
{

int i;
for (i = 0; i < 1024; i++)
{
s->a[i] = -1;
s->b[i] = i;

}
}

46

Porting to Cortex-M3
Cortex-M3 is a special case since there are several

fundamental differences with other ARM cores
Exception model
PSRs
Thumb-2 only
UAL strongly recommended
See next slide

99.5% can be written in C
Exception handlers
Startup code

Copyright © ARM Ltd 2006. All rights reserved

47

Unified Assembler Language
UAL gives the ability to write assembler code for all ARM

processors that can have the execution state decided at
assembly time
Previously code had to be written exclusively for ARM or Thumb state
Legacy assembler code will still assemble successfully

The UAL defines effective ‘pseudo’ instructions that are
resolved by the Assembler
The assembler will generate the machine code dependent upon the

inline directives (e.g. THUMB) or the assembler switches (e.g. --arm)

General rules for UAL
Use of POP, PUSH
Relaxation of register definitions for Rd and Rs

See complete definition in RVCT Assembler Guide

48

UAL Changes

Asub
STMFD sp!, {r4, r5, lr}

ADDEQS r0, r0, r3
MOV r1, r2 LSL #4
BL Bsub

LDMFD sp!, {r4, r5, pc}
Bsub

STMIA r0, {r2, r3}
LDMIA r1, {r2, r3}
LDR r4, [pc,#0x20]
BX lr

Value DCD 0x8000

Asub
PUSH {r4, r5, lr}

ADDSEQ r0, r3
LSL r1, r2, #4
BL Bsub

POP {r4, r5, pc}
Bsub

STM r0, {r2, r3}
LDM r1, {r2, r3}
LDR r4, Value
BX lr

Value DCD 0x8000

UALTraditional

Copyright © ARM Ltd 2006. All rights reserved

49

UAL use in ARM Tools
ARM RVDS 2.2+ compilation, link and debug tools have been

developed to use the UAL definition
Assemblers will accept BOTH the old and new syntax
The fromelf utility will output a subset of the complete UAL
PUSH and POP are shown in place of the STMFD/LDMFD instructions
Any MOV that only uses the shift operation is shown as the shift in the

output

MOV r0, r0, LSL #4 is shown as LSL r0, #4

It does not automatically relax registers in data processing instructions
where the source and destination registers are the same
The SWI instruction decodes as SVC

50

Agenda
General tools considerations

Platform issues

Efficient coding strategies

Copyright © ARM Ltd 2006. All rights reserved

51

Efficient coding strategies
Knowledge of the machine and the compiler can help write

efficient code in several areas
By writing your code carefully, you can give the compiler the

best shot at producing efficient output

Beware, though, of using the compiler as a “high-level
assembler!”

The following is general advice
Supplementary information is included after the end of this

presentation for your reference

52

Loops Should Count Down
 Loops which count down to zero are more efficient

 Compare with zero is usually free in ARM instruction set
 The limit value is only needed at the start and need not occupy a register

unsigned int fact1(unsigned int limit)
{

unsigned int i;
unsigned int fact = 1;

for (i = 1; i <= limit; i++)
{
fact = fact * i;

}
return fact;

}

fact1
0x000000 : MOV r2,#1
0x000004 : MOV r1,#1
0x000008 : CMP r0,#1
0x00000c : BLT 0x20
0x000010 : MUL r2,r1,r2
0x000014 : ADD r1,r1,#1
0x000018 : CMP r1,r0
0x00001c : BLE 0x10
0x000020 : MOV r0,r2
0x000024 : MOV pc,lr

unsigned int fact2(unsigned int limit)
{

unsigned int i;
unsigned int fact = 1;

for (i = limit; i != 0; i--)
{

fact = fact * i;
}
return fact;

}

fact2
0x000000 : MOVS r1,r0
0x000004 : MOV r0,#1
0x000008 : MOVEQ pc,lr
0x00000c : MUL r0,r1,r0
0x000010 : SUBS r1,r1,#1
0x000014 : BNE 0x0c
0x000018 : MOV pc,lr

This code is compiled with “-O2 -Otime”

Copyright © ARM Ltd 2006. All rights reserved

53

Loop Counters

Unsigned int for loop counter if possible
Compare for equality with zero rather than > 0

Use

unsigned int j; // MOV j, #10
for (j = 10; j != 0; j--) // for_loop ...

SUBS j, j, #1
BNE for_loop

Not

int j; // MOV j, #10
for (j = 10; j > 0; j--) // for_loop ...

SUB j, j, #1
CMP j, #0
BGT for_loop

54

Parameter Passing
Keep parameters to four or fewer
“ARM/Thumb Procedure Call Standard”
Allows up to four integer-sized parameters to be passed in registers
Further parameters will be passed on the stack

Stack accesses are costly in terms of space and time

Note that C++ passes the “this” pointer as a hidden parameter
so only three registers remain available for other parameters

Copyright © ARM Ltd 2006. All rights reserved

55

Register usage in parameter lists

r0 r1 r2 r3 stack stack

f(int a, long long b, int c)

a - b b c

f(long long b, int c, int a)

b b c a

56

General advice
Avoid division
ARM cores (except some Cortex cores) have no division hardware
Remember that modulo is effectively a division operation

Access to unaligned data is dangerous and/or expensive
For efficient use, data items should be aligned on natural boundaries
v6 architecture introduces unaligned support in hardware but software

engineers still need to be careful...

Registers are 32-bit
Sub-word quantities may not be handled efficiently

Copyright © ARM Ltd 2006. All rights reserved

57

Alignment of pointers
Be VERY careful with

alignment of pointers
Can lead to runtime failures

memcpy
inline’d

memcpy
called

memcpy
inline’d

unsafely

memcpy
called
safely

#include <string.h>
int *a = (int *)0x1000;
int *b = (int *)0x2000;
char *c = (char *)0x3001;
__packed int *d;

void foo (void)
{
memcpy (b,a,12);

memcpy (c,a,12);

b = (int *)c;
memcpy (b,a,12);

d = (__packed int *)c;
memcpy ((void *)d,a,12);

}

STMFD r13!,{r4,r14}
LDR r4,0x58

LDR r1,[r4,#0]
LDR r0,[r4,#4]
LDMIA r1,{r2,r3,r12}
STMIA r0,{r2,r3,r12}

LDR r0,[r4,#8]
LDR r1,[r4,#0]
MOV r2,#0xc
BL __rt_memcpy

LDR r0,[r4,#8]
STR r0,[r4,#4]
LDR r1,[r4,#0]
LDMIA r1,{r2,r3,r12}
STMIA r0,{r2,r3,r12}

LDR r0,[r4,#8]
LDR r1,0x58
MOV r2,#0xc
STR r0,[r1,#0]
LDR r1,[r4,#0]
BL __rt_memcpy

LDMFD r13!,{r4,pc}

58

Consider Element Offsets
To calculate the address of an element of an array, the

compiler must multiply the size of the element by the index...
&(a[i]) = a + i * sizeof(a)

If the element size is a power of 2, this can be done with a
simple inline shift

For an array at [r3], to access the word at index r1

Element size = 12:
ADD r1, r1, r1, LSL #1 ; r1 = 3 * r1
LDR r0, [r3, r1, LSL #2] ; r0 = *(r1 + 4 * r1)

Element size = 16:

LDR r0, [r3, r1, LSL #4] ; r0 = *(r3 + 16 * r1)

Copyright © ARM Ltd 2006. All rights reserved

59

Local Variables
Local variables are held in registers wherever possible...

...but in some circumstances they must be placed on the stack
This is much less efficient

When can variables be held in registers?
When there are not too many of them
When their address is not known to the program

So...
Minimize the number of “live” local variables
Avoid taking the address of a local variable

This is more important in Thumb state as there are fewer
registers available to the compiler

60

Global Data
Global (non-automatic) data is declared at module level
It is allocated static storage in RAM
May also occupy ROM space if initialized

Global data use is much less efficient compared to local data use
Here is an example using a global variable as a loop counter

unsigned int a;
void f(void)
{

for (a = 10; a != 0; a--)
g();

}

MOV r0, #10
STR r0, [a]

loop BL g
LDR r0, [a]
SUBS r0, r0, #1
STR r0, [a]
BNE loop

void f(void)
{

unsigned int a;
for (a = 10; a != 0; a--)

g();
}

MOV r4, #10
loop BL g

SUBS r4, r4, #1
BNE loop

Copyright © ARM Ltd 2006. All rights reserved

61

Base Pointers
extern int a;
extern int b;
void foo (int x, int y)

{
a = x;
b = y;

}

b

aLDR r2, [pc,#12]
STR r0, [r2,#0]
LDR r3, [pc,#8]
STR r1, [r3,#0]
MOV pc, lr

DCD “address of a”
DCD “address of b”

a and b defined externally

Note that this is done with –O1 and –O2

LDR r2, [pc,#8]
STR r0, [r2,#0]
STR r1, [r2,#4]
MOV pc, lr

DCD “base address of a and b”

a and b defined within the
module in which they are
used

int a;
int b;
void foo (int x, int y)

{
a = x;
b = y;

}

62

Enabling Base Pointer Optimization

If globals are placed into a structure, then access to each
element of structure will naturally be as an offset from a
single base pointer.
Elements in struct will be aligned on size boundaries
The compiler will not re-order the structure

Group data into several ‘logical’ structures rather than one
large structure.

‘#define’ can be used to allow change to be hidden from
main application code.
#define value mystruct.value

Example...

Copyright © ARM Ltd 2006. All rights reserved

63

External Globals

extern int a;
extern int b;

int main(void)
{

return a + b;
}

int a;
int b;

main LDR r0,0x000080c0
000080ac LDR r1,0x000080c4
000080b0 LDR r0,[r0,#0]
000080b4 LDR r1,[r1,#0]
000080b8 ADD r0,r0,r1
000080bc MOV pc,lr
000080c0 DCD 0x000083d4
000080c4 DCD 0x000083d8

extern struct data mystruct;

int main(void)
{

return mystruct.a + mystruct.b;
}

struct data
{

int a;
int b;

} mystruct;

main LDR r0,0x000080bc
000080ac LDR r1,[r0,#0]
000080b0 LDR r0,[r0,#4]
000080b4 ADD r0,r1,r0
000080b8 MOV pc,lr
000080bc DCD 0x000083cc

data.c code.c Assembler output

64

Further Information
ARM Related Books

www.arm.com
 Technical Support Documentation Books

ARM Application Notes
 Technical Support Documentation Application Notes

ARM Training
 Technical Support  Training
training@arm.com

Ask me!

Copyright © ARM Ltd 2006. All rights reserved

Writing Efficient Code
for ARM

Chris Shore
Customer Training Manager

ARM

66

Tail-call Optimization
Procedure calls are potential sources of inefficiency
Branch and return use three cycles each
Often involve stack access
Parameters may be placed on stack
Local variables of calling and called routines are on stack

Eliminating calls and/or returns saves time and stack space
Tail-call optimization allows a procedure call to be replaced with a “goto” when

it is the last statement of a function
Avoids unnecessary return (saves time)
Reduces stack usage
Caller stack frame can be deleted prior to call
Reduced stack access saves time

Copyright © ARM Ltd 2006. All rights reserved

67

Tail-call Optimization Example
Tail call optimization avoids the use of unnecessary returns in function

hierarchies
 BL translated to B where possible
 Enabled at high optimization (-O1, -O2)

int main()
{

int x = f();
:
}

int f()
{

int y = g();
return y;

}

int g()
{

return 10;
}

B gBL f
:

MOV r0, #10
BX lr

BL f
:

STR lr,[sp,#-4]!
BL g
LDR pc,[sp],#4

MOV r0, #10
BX lr

68

Division Operations (1)

 Typical execution time for this is 12-96 cycles, average c.30
 The __use_realtime_division option will use a more predictable

division function (always < 45 cycles but slower for typical values)

 Division by compile-time constants are treated as a special case
 Division by powers of two will use shift operations

The ARM core contains no division hardware
Division will typically be implemented by a run-time library function.
Many cycles to execute

ARMv7M and ARMv7R cores do include division in hardware

unsigned div(unsigned a, unsigned b)
{

return (b / a);
}

div
B __rt_udiv

unsigned div4(unsigned b)
{

return (b / 4);
}

div4
MOV r0,r0,LSR #2
MOV pc,lr

Copyright © ARM Ltd 2006. All rights reserved

69

Division Operations (2)
Division by other constants
The compiler will use multiplication to implement division by

constants

0xB21642C9 is a fixed-point binary representation of
1/184
UMULL is used to multiply the argument by 1/184
LSR #7 is used to normalize the result

unsigned div184(unsigned b)
{

return (b / 184);
}

div184
MOV r1,r0
LDR r0, =0xB21642C9
UMULL r2, r1, r0, r1
MOV r0, r1, LSR #7
MOV pc,lr

70

Modulo Operations
The remainder operator ‘%’ is commonly used in modulo arithmetic

However, this will be expensive if the modulo value is not a power of

two

Avoid by rewriting C code to use if() statement check

For example, if count has the range 0 to 59, replace:

modulo
ADD r1,r0,#1
MOV r0,#0x3c
BL __rt_udiv
MOV r0,r1

test_and_reset
ADD r0,r0,#1
CMP r0,#0x3c
MOVCS r0,#0

This code is compiled with “-O1 -Ospace”

count = (count+1) % 60; if (++count >= 60) count = 0;with

Copyright © ARM Ltd 2006. All rights reserved

71

Unaligned Data Access
ARM LDR/STR instructions can access data aligned on

natural boundaries
Access to unaligned data can be done but is expensive

; unaligned read
LDRB r1, [r0, #0]
LDRB r2, [r0, #1]
LDRB r3, [r0, #2]
LDRB r4, [r0, #3]
ORR r1, r1, r2, LSL #8
ORR r1, r1, r3, LSL #16
ORR r0, r1, r4, LSL #24

; unaligned write
STRB r0, [r1, #0]
MOV r2, r0, LSR #8
STRB r2, [r1, #1]
MOV r2, r0, LSR #16
STRB r2, [r1, #2]
MOV r2, r0, LSR #24
STRB r2, [r1, #3]

Used __packed qualifier to indicate (possible) non-alignment
to compiler

v6 cores include hardware support for unaligned memory access

72

Unaligned support in ARMv6
Unaligned access only supported for LDR/STR
Other accesses must maintain alignment (LDRH, LDREX etc.)

Not enabled by default
Though the tools will assume that it is
Use –no_unaligned_access to disable in RVCT

Accesses are not guaranteed atomic at bus level
May cross cache/page/line boundaries
May be interrupted by another bus master
Therefore unsafe in Peripheral or Shared memory

Must still use __packed to identify all potentially unaligned
accesses in source code
Otherwise compiler will attempt to use LDM/LDRD

Copyright © ARM Ltd 2006. All rights reserved

73

Words Are Efficient
Arithmetic
ARM registers are 32-bits
This makes 32-bit operations naturally efficient
8-bit and 16-bit operations are generally less efficient

r0 = r0 + 3

word halfword byte

ADD r0, r0, #3 ADD r0, r0, #3
BIC r0, r0, #0x10000

ADD r0, r0, #3
AND r0, r0, #x0xFF

The mask operations are necessary to remove potential overflow bits

74

“Live” Variables
A “live” variable is one whose value must be maintained at a

particular point in a procedure

int f(int a, int b)
{

int c, d, e;

c = b * a;

e = c + b;
d = e / b;

b = f(a);

return d;
}

a b c e

3 variables are
live at this point

The values of up to 3 variables will have to be maintained at any one
time in this example

Note that the compiler can use same register for c, d and e

a b c d e

Copyright © ARM Ltd 2006. All rights reserved

75

“Address-taken” Local Variables
Taking the address of a local variable may force the compiler

to keep it updated in memory (on the stack) rather than
holding it in a register
This can be avoided by using a temporary variable...

int f(int i)
{

g(&i);

// use i

return i;
}

int f(int i)
{

int dummy = i;

g(&dummy);
i = dummy;

// use i

return i;
}

The second version of the function can hold i in a register throughout

