Copyright © ARM Ltd 2006. All rights reserved

riting Efficient Code
for ARM

Chris Shore
Customer Training Mana
ARM

ARM DEVEL(=)PERS'

COMNFERENCE '06

From the abstract

“... inside knowledge of how the compiler
works ... simple techniques which will greatly

improve ... object code”

ARM AR DEVELC)PERS

Copyright © ARM Ltd 2006. All rights reserved

Efficiency?

" What does “efficient” mean?
® Code execution speed
= Data throughput
® Code or data size
" Power consumption

= All are valid criteria against which we can measure success

ARM ARM DEVEL(=)PERS'

CONFERENCE '06
3

Agenda

® General tools considerations

Platform issues

Efficient coding strategies

ARM ARM DEVEL(=)PERS'

4 CONFERENCE '06

B12696
铅笔

Copyright © ARM Ltd 2006. All rights reserved

Tools issues

" First of all, some features of the tools which can help
= Compiler

= Compiler optimizations

= Multifile compilation

= ARM extensions to C

" |ncluding assembler

= | inker

" Feedback files
® Linker optimizations

® | ibraries
= Real-time division

ARM ARM DEVEL(=)PERS'

CONFERENCE '06
5

Code generation control

® General optimization

= 00 Minimum optimization — Leave my code alone

= 01 Restricted optimization — | need to debug this too
= 02 High optimization — Do what you like...

= .03 Maximum optimization —...and then some!

= _Ospace/-Otime
® Obvious really, -Ospace is the default

® Specific features
® --no_inline Disables inlining
= _split_Idm Limits max registers in LDM/STM to five
= _-split_sections Puts each function in its own output section

ARM ARM DEVEL(=)PERS

CONFERENCE '06
6

Copyright © ARM Ltd 2006. All rights reserved

Space and Time?

® Space/Time — what'’s the difference?
" Space
= Will attempt to reduce code size at the expense of execution speed
= Will inline less often
® Structure copying uses helper functions rather than inline code
" Time
= Will attempt to increase speed at the expense of code size

while (expr) if (expr) do
{ {
body; do

} :> {
body;

} while (expr);

ARM ARM DE.\{ELG)IPERS.

Level 2/Level 37?

® 02/03 — what's the difference?

® |nlines more aggressively

= Multifile compilation enabled by default
= Beware of effect on build time

® High-level scalar optimizations e.g. loop unrolling

® Enabled for “-0O3 —Otime”
® Code size cost is modest, build time cost can be large

ARM AR DEVELLPERs

Copyright © ARM Ltd 2006. All rights reserved

New loop optimizer

= “03 -Otime” enables the new loop optimizer

® This is either fully enabled or fully disabled
® There is no documented finer level of control

® Automatically restructures loops

® Loop unrolling, fusion, interchange, rotation and switching
" |diom recognition
® Pointerization

ARM ARM DEVEL(=)PERS'

CONFERENCE '06
9

How to get the most out of it

= Use “restrict” pointer modifier as much as possible

" Tells the compiler that there are no aliased accesses to addressed
data (more on the details of this later...)

® Can be applied to function arguments as well as local declarations

® Write simple loop bodies which access simple arrays in
simple ways
" j.e. with simple stride patterns
® Rightmost subscript should be index of innermost loop in nested loops

® Don'’t try to do it manually!

" In the worst case, this will confuse the optimization engine resulting in
sub-optimal code generation

® Best case, it will simply recognize (and possibly undo) your attempt

ARM ARM DEVEL(=)PERS

CONFERENCE '06
10

Copyright © ARM Ltd 2006. All rights reserved

Loop unrolling

® Reduces loop overhead at direct cost of code size

for (i = 0; i < 100; i += 4)

{
for (i = 0; i < 100; i++) c[i + 0] =b[i + 0] + 1;
} ' c[i + 2] =b[i + 2] + 1;
c[i + 3] =b[i + 3] + 1;

® | oop re-rolling
® Recognise manually unrolled loops, re-roll and unroll optimally
= Complete unrolling

® Recognise constant, low trip count loops and totally unroll removing all
loop overhead

ARM ARM DEYEL_Q_P;Rsr

11

Loop rotation

® Rotate unrolled loops to allow better instruction scheduling
" Memory latency of one iteration overlaps with computation of another

for (i = 0; i < 100; i++)
{
a[i] =b[i] * c[i] + d[i];

}

b0 = b[0]; c0 = c[0]; 40 = d[0];
for (i =1; i < 99; i += 2)

{
|l:> bl = b[i]; cl = c[i]; d1 = d[i];
af[i - 1] = b0 * cO + dO;

b0 = b[i + 1]; c0 = c[i + 1]; d0 = d[i + 1];
af[i] = bl * cl1 + d1;

}

bl = b[99]; cl = c[99]; d1 = d[99];

a[98] = b0 * cO + dO;

ARM a[99] = bl * cl + di; ARM DEVEL@PERS’
COMFERENCE '0&

40 co

Copyright © ARM Ltd 2006. All rights reserved

Loop fusion

® Fuse small identical trip count loops together
® Share common code
®= Reduce loop overhead

for (i = 0; i < 100; i++)

{ for (i = 0; i < 100; i++)
cli] = b[i] + 1; (

A . . |::> clil = bli] + 1;

for (3 = 0; j <100; j++) ali] = b[i] - 1;

[emn =R - !

ARM ARM DEYEL_Q_P;Rsr

13

Loop Unswitching

® Remove invariant conditionals from loop bodies by replicating
the loops and moving the tests outside

if (operation == IADD)
{

for (i = 0; 1 < 100; i++)
for (1 = 0; i < 100; i++)

{ {
if (operation == IADD)

{ }

c[i] = al[i] + b[i]; : }
! else
else

{

cl[i] = a[i] + b[il;

c[i] = a[i] * b[i]; for (i = 0; i < 100; i++4)

}

c[i] = a[i] * b[i];

ARM AR DEVELL FERs

14

Copyright © ARM Ltd 2006. All rights reserved

Pointerization

® Convert loops to increment pointers and count downwards
rather than indexing into arrays and counting up
® Eliminates address calculations
= Simplifies loop termination conditions

int *al = a;
for (i = 0; i < n; i++) int *bl = b;
a[i] =b[i] + c[i]; int *cl = ¢;
for (i =n; i !'=0; i--)
start a++ = b++ + c++;

LDR r0, [r2, r3, LSL #2]
start
LDR rl, [r4, r3, LSL #2]
LDR r0, [r2], #4
ADD r0, r0, rl
LDR rl, [r4], #4

STR r0, [r5, r3, LSL #2]

ADD r0, r0, rl
ADD r3, r3, #1 e Ee T

STR r0, [r5], #4
SUBS r3, r3, #1

CMP r3, r3, #n

BLT start

BNE start

ARM ARM DE.\{ELG)IPERS.

15

|ldiom Recognition

® Replace conditionals with min/max functions:

if (a > b) ¢ = b; else ¢ = a; 2 c¢c = __min(a,b);
® Replace saturations with intrinsics:

if (a > 255) a = 255, =2 a = _ sat(a,255);
® Replace loops with optimized library calls:

for (int i=0; i<256; i++) *a++=*b++; =9 memcpy(a,b,256);

" Also memclr, memset & strcpy

ARM AR DEVELLPERs

16

Copyright © ARM Ltd 2006. All rights reserved

" This loop has been
" Partially unrolled Takes 23% fewer instructions in
" Pointerized 34% fewer cycles
" |nvert
e ed void increment(int *b, int *c)
® Rotated {
int i;
int *pb, *pc;
void increment (int *restrict b, int b3, b4;
int *restrict c)
{ pb =b - 1;
int i; pc =c - 1;
for (i = 0; i < 100; i++) |:> b3 = pb[1];
{
c[i] = b[i] + 1; for (i = (100 / 2); i !'= 0; i--)
} {
b4 = *(pb += 2);
} pc[l] = b3 + 1;
b3 = pb[1];
Optimized version is 13) *lpe 4= 2) = b4 + 1,
instructions compared to 8 }

for unoptimized

ARM ARM DE.\{ELG)IPERS.

17

Summary

® Points to remember
® Enabled automatically with “-O3 —Otime”
® Use restrict modifier as much as possible
= Write plain and simple code

" Debugging
= Combinations of these optimizations can result in very different
program flow
® Debugging should be done at low optimization levels first
= User code must not rely on undefined behavior

" Metrics
= Over EEMBC, improves performance by about 10%
® Costs less than 1% in code size
" 30% increase in compilation time

ARM AR DEVELLPERs

18

Copyright © ARM Ltd 2006. All rights reserved

Multifile compilation

= Allows the compiler to optimize across source files
" |ncreased inlining possibilities
= Better base pointer and cross-function optimization
® Reduced scatter file flexibility

BEB Lguy """""""

|comp|Ie | | compile | | compile | [compile |

B -

Dummy object files i :

ARM . ARN DEVEL(= JPERS'

19

ARM extensions

® restrict
® Supported as in C99 standard
® pure

®" Non-standard extension
= value_in_regs
= Allows a function to pass back result in registers
® Can speed up returning a structure up to 4 words in size

ARM AR DEVELC)PERS

20

Copyright © ARM Ltd 2006. All rights reserved

__restrict

= Allows you to tell the compiler that pointers do not reference
overlapping areas of memory

® Available as “restrict” if enabled with --restrict

void copymem(int n, int *restrict a, int *restrict b)
{
while (n-- > 0)
*a++ = *b++;
}
® |n this code segment a and b are guaranteed by the
programmer to reference different regions of memory
= Beware of making promises which you can’t (or won'’t) keep...!

ARM ARM DE.YEL'{_:__)IPERS.

21

___pure

= A function can be described as “pure” if:
® |ts result depends exclusively on its arguments
® |t has no side-effects
= A pure function may not, therefore:
® Use global variables
= Deference pointers
= Access memory except the stack

® Declaring a function as “pure” makes it a candidate for
‘common sub-expression elimination”

__pure int f(int arg)
= pure is an ARM-specific extension to ANSI C

ARM ARM DEYELG)IPERS.

22

Copyright © ARM Ltd 2006. All rights reserved

__pure (2)

square MOV rl, r0
MUL r0, rl, r0

. . MOV pc, 1lr
int square (int x)
{
]
return x * x; £ ;:3F525P£6 =
) ’
}) — BL square
int f(int n) MoV 3: r0
! return square(n) * square(n) nov 9, r2
u: ;

BL square

} MOV rl, rO

MUL r0, rl, r3
LDMFD sp!, {pc}

)) square MOV rl, r0
pure int square (int x)

: MUL r0, rl, rO
return x * x; MoV pe, ix

} — £

} . STMFD sp!, {1lr}

int £ (int n) BL squal;e

{ MOV rl, r0

* .
) return square(n) square(n) ; MUL £0, rl, r0

LDMFD sp!, {pc}

ARM ARM DE_\{EL’C.__)_pIERS,

23

__value_in_regs

® Returns multi-word value in multiple registers

typedef struct int64_struct
{
unsigned int lo;
unsigned int hi;
} inté4_struct;

__value_in regs extern
int64_struct mulé4 (unsigned a, unsigned b);

® Avoids returning by copy on stack

= Useful for calling assembler functions which return more than
one value

= Will be ignored (with warning) if return value is too large

ARM AR DEVELL FERs

24

Copyright © ARM Ltd 2006. All rights reserved

Linking to assembler

= C-Assembly linkage zg Darameters i
" Ensure compliance with 2 Values out
AAPCS and all should be 3 (Corrupted)

well...

Internal variables
(Preserved)

= AAPCS (Procedure Call
Standard for the ARM
Architecture)

= Part of the ABI (Application
Binary Interface)

® Specifies use of registers at
procedure call interface rl2 (ip) Scratch register

rl3 (sp)

rld (1lr)

ARM 215 (oo)| ARM DEVEL(-)PERS

Platform register

Internal variables
(Preserved)

N
o

Inline assembler

® Generally used for short
sequences which cannot be

produced directly from C [Tine void ensble R
" Beware... int tmp;
_asm
" |t’s not a “true” assembler {
® Some restrictions in o tt:n"i’ S::R 40x80
functionality MSR cps}li_c, tmp
®" The code is optimized along }

with the surrounding C

® Register names are

“virtualized” Note that this is an
. example of a function
" Gradually being replaced by e be
intrinsics performed using an
intrinsic

ARM) AR DEVELC)PERS

Copyright © ARM Ltd 2006. All rights reserved

Intrinsics

® Built-in ARM extensions to the C/C++ language
® Used to access machine features in a portable way

® Can accomplish many things which inline assembler can’t
® And in a much more portable, future-proof way

void disable_irqg(void) void _ disable_irg(void);
{ —
int tmp;
__asm Others include...
{ __enable fiq()
MRS tmp, CPSR breakpoint ()
ORR tmp, tmp, #0x80 7
__nop()
MSR CPSR_c, tmp
X __current_sp()
} __return address()

current pc())
ARM DEVEL(=)PERS'

CONFERENCE '06

ARM

27

New intrinsics

® semihost

= Architecture-independent way to generate semihosting calls (e.g. uses
BKPT on v7M cores, SWI/SVC on everything else)

__schedule_barrier

® Creates a sequence point from the point of view of optimisation

® Similar to nop() intrinsic except that no NOP instruction is generated
__force_stores

® Forces all globally-visible variables to be written to memory if they have
been changed

® memory_changed

® Forces all globally-visible variables to be written back to memory if they
have changed and then all read back from memory

ARM AR DEVELLPERs

28

Copyright © ARM Ltd 2006. All rights reserved

Support for the NEON instruction set

® The NEON instruction set is implemented by the Cortex-A8
= A set of vector data types e.g.

® int16x4_t — a vector of 4 16-bit signed integers

" int32x2_t — a vector of 2 32-bit signed integers
® A set of intrinsic functions e.g.

" vld1_s16 —load 4 16-bit signed values into a vector

" vadd_s16 — add two 4-element 16-bit vectors

intléx4_t vec; /* declare vector data */

vec = vldl_slG(array); /* load 4 values in parallel from the array */
array += 4; /* increment the array pointer */

acc = vadd_slé(acc, vec); /* add the vector to the accumulator vector */

ARM ARM DE.YEL'{_:__)IPERS.

29

Embedded assembler

® Declare asm functions in C/C++ modules
= With full function prototypes, including arguments and return value
® Can access C preprocessor and structure offset information directly
® Possible to insert Thumb assembler functions in an ARM module and

vice versa

® Processed by the “real” __asm void scpy(char *s, char *d)
assembler {

® Supports full instruction set loop

» C/C++ expressions can be LDRB 3, [r0], #1
STRB r3, [rl], #1

embedded using ___cpp CMP r3, #0

= Useful for writing larger BNE loop
performance-critical functions BX 1r

® Cannot be inlined

ARM ARM DEYELG)IPERS.

30

Copyright © ARM Ltd 2006. All rights reserved

Linker optimizations

The linker includes several features to improve output code

Linker feedback files
® Feedback file produced by linker and used as input to compilation
® Largely replaces the --split_sections method and has better results
® Removes unused code
® Can reduce overhead of interworking

® Removes functions which have been inlined everywhere they are
called

Small function inlining
= Single line functions will be placed over the calling branch instruction
Tail re-ordering

" Modules will be reordered so that a tail-call can be replaced with a
NOP if possible

ARM ARM DEYEL_@PERS'

31

Linker feedback

Compile Link |) -

feedback
ARM ARM DEVEL@PERS'

32 COMNFERENCE '0&

Copyright © ARM Ltd 2006. All rights reserved

Small function inlining (--inline)

Function inlined by linker
! (function may now be a candidate |

Image containing function call i for removal as an unused section) |
ARM ARM DEVEL(=)PERS'
33 CONFERENCE '06

Tail re-ordering (--tailreorder)

--

tail call
ctions reordered and B

Image containing tail call replaced with NOP

ARM° O

34

Copyright © ARM Ltd 2006. All rights reserved

Agenda

General tools considerations
® Platform issues

Efficient coding strategies

ARM ARM DE.YEL'{_:__)IPERS.

35

Starting from scratch

= Algorithm selection
® What works best on ARM?
® Making best use of the available register set and instruction set

Data management
" Mapping data to memory
= Alignment issues

® Cache considerations

® Cache improves everything except TCM
" ARM10 and ARM11 cores work a lot better out of cache

Writing exception handlers
Efficient coding strategies
Much of this will apply when working on existing code too...

ARM AR DEVELLPERs

36

Copyright © ARM Ltd 2006. All rights reserved

Algorithm selection

®" The ARM has a large (but not enormous) register set
® Memory access is (relatively) slow

® Algorithms which maintain as much as possible in registers
will generally perform better

= Unroll loops to make better use of registers

® Avoid aliasing and use “restrict” where appropriate/possible
= All registers are 32-bit

® Processing word-sized values is more efficient

® |f your data is sub-word, it is often possible to process more than one
item at a time using SIMD techniques

= |ater ARM cores support many SIMD instructions

ARM ARM DEVEL(=)PERS'

CONFERENCE '06
37

Data organization

= Some fast memory will help a lot

= Especially when programming in C, locating the stack in fast
memory will speed up code considerably

® Avoid unaligned data wherever possible
= ARM11 supports unaligned access in hardware
® |{'s still slower than aligned access, though
® And you still need to tell the compiler about it

® Otherwise the compiler will carry out some “optimizations”
which may break your code

ARM ARM DEVEL(=)PERS

CONFERENCE '06
38

Copyright © ARM Ltd 2006. All rights reserved

Porting from one ARM to another

® What new features are available?
" New instructions
= Other new architectural features or behavior
® What else has changed?
= Exception handling model
= ARMY cores implement “Base-Updated Abort Model”
® | ater cores automatically restore the base register
® Caches
= Tightly Coupled Memory
® A “real-time” alternative to cache

® Can be used to guarantee performance for critical areas without the
uncertainty of cache

ARM ARM DE.YEL'{_:__)IPERS.

39

Make full use of the instruction set

" For example...

...Architecture v6 contains a lot of new instructions
® Packed data

= Word/Halfword reversal

= SIMD operations

® More efficient exception entry/exit

" |mproved support for saturated maths

= Support for mixed-endian systems

® | oad/Store exclusive for synchronization primitives

® | ots of new features too in Thumb-2, NEON, ARMv7 ...

ARM ARM DEYELG)IPERS.

40

Copyright © ARM Ltd 2006. All rights reserved

Example — Re-entrant interrupt

V5TE_Handler
; save lr and spsr

SUB 1lr, 1lr, #4
STMFD sp!, {1lr}

MRS rl4, SPSR
STMFD sp!, {rl2, rl4}

; change to system mode with IRQ enabled

MRS rl4, CPSR

BIC rld, rld, #0x9F
ORR rld4, rl4, #0x1F
MSR CPSR ¢, rl4

; save user mode regs and call C handler

STMFD sp!, {r0-r3, 1lr}
BL C_irq_handler
LDMFD sp!, {r0-r3, 1lr}

; change to IRQ mode with IRQ disabled

MRS rl2, CPSR

BIC rl2, rl2, #0x1F
ORR rl2, rl2, #0x92
MSR CPSR ¢, rl2

; restore regs and return

LDMFD sp!, {rl2, rl4}
MSR SPSR_csxf, rl4
LDMFD sp!, {PC}*

V6_Handler

SUB
SRSFD

CPSIE

; save lr and spsr
1r, 1r, #4
#SYSmode!

; change to system mode with IRQ enabled
i, #SYSmode

; save user mode regs and call C handler

STMFD sp!, {r0-r3, rl2, 1lr}
BL C_irq_handler
LDMFD sp!, {r0-r3, rl2, 1lr}

; restore regs and return

RFEFD

sp!

ARM

41

ARM DEVEL(= JPERS'

YNFERENCE '06

Example - Motion Estimation

; Excluding the loads,

This code processes four pixels loaded as
two words, using V5TE instructions

it takes (3 * 6) + 4 = 22
cycles per four pixels
MoV

Sum, #0 clear accumulator

; load four pixels

LDR Rx,
LDR Ry,

[Rxptr, #offset]
[Ryptr, #offset]

process first pixel in pair of words

MoV temp, Rx, LSR #24 ; get top byte
SUBS temp, temp, Ry, LSR #24 ; difference
RSBMI temp, temp #0 ; abs difference
ADD Sum, Sum, temp ; accumulate

repeat following block three
remaining pixels

times to process

MoV Rx, Rx, LSL #8 ; discard used pxl
MOV Ry, Ry, LSL #8 ; discard used pxl
MoV temp, Rx, LSL #24 ; get top byte
SUBS temp, temp, Ry, LSR #24 ; difference

RSBMI temp, temp, #0 ; abs difference
ADD Sum, Sum, temp ; accumulate

This code processes four pixels loaded as
two words, using the V6 SAD instruction

; Excluding the loads, it takes 1 cycle per
; four pixels

MOV Sum, #0

; load four pixels
LDR Rx, [Rxptr, #offset]
LDR Ry, [Ryptr, #offset]
calculate and accumulate SAD for all four
pixels

USADA8 Sum, Rx, Ry, Sum

ARM

42

ARM DEVEL(=)PERS'

JMFERENCE '06

Copyright © ARM Ltd 2006. All rights reserved

Porting to a Thumb-2 core

Thumb-2 is a blend of 16- and 32-bit instructions
No need to manually select between ARM and Thumb
All code can be compiled in Thumb to get best mix

® |ntrinsics in C compiler mean inline/embedded assembler can
be avoided almost completely

" Removes many portability issues

= Allows compiler to pick best state/size for instructions
Assembler should be written in UAL for best results

= Allows assembler to select best output instructions

® Easily convertible to ARM-only

ARM ARM DEVEL(=)PERS'

CONFERENCE '06
43

Performance / Density

Performance

100%ARMCCV

Random ‘Profiled’ mi

mix rotiied mix
100% Thumb —
code

Code density

ARM ARM DEVEL(=)PERS

CONFERENCE '06
44 CONFERENCE'D

Copyright © ARM Ltd 2006. All rights reserved

Thumb-2 can be faster than Thumb

C Code: Thumb Code:

typedef struct { PUSH {r4, r5}
int x, y, z; MOVS rl, #0
int a[1024], b[1024]; MOVS r3, #1

} s; LSLS r3, r3, #10

LSLS r4, r3, #2

SUBS r5, rl, #1
loop

LSLS r2, rl, #2

ADDS r2, r2, r0

STR r5, [r2, #0xc]

void £(S *s)
{
int i;
for (i = 0; i < 1024; i++)

{ ADDS r2, r2, r4
s->a[i] = -1; STR rl, [r2, #0xc]
s->b[i] = i; ADDS rl, rl, #1

} CcMP rl, r3

} BLT loop
POP {r4, r5}
BX 1r

Total: 16 instns, 8 in loop

ARM

45

Porting to Cortex-M3

Thumb-2 code:

MOVS rl, #0
SUBS r3, rl, #1

loop
ADD r2, r0, rl, LSL #2
STR r3, [r2, #0xc]
ADD r2, r2, #0x1000
STR rl, [r2, #0xc]
ADDS rl, rl, #1
CMP rl, #0x400
BLT loop
BX 1r

Total: 10 instns, 7 in loop

ARM DEVEL(=)PERS'

CONFERENCE '06

® Cortex-M3 is a special case since there are several
fundamental differences with other ARM cores

= Exception model
" PSRs
®" Thumb-2 only
= UAL strongly recommended
= See next slide
99.5% can be written in C
= Exception handlers
® Startup code

ARM

46

ARM DEVEL(=)PERS

CONFERENCE '06

Copyright © ARM Ltd 2006. All rights reserved

Unified Assembler Language

= UAL gives the ability to write assembler code for all ARM
processors that can have the execution state decided at

assembly time

® Previously code had to be written exclusively for ARM or Thumb state
® | egacy assembler code will still assemble successfully

®" The UAL defines effective ‘pseudo’ instructions that are

resolved by the Assembler

" The assembler will generate the machine code dependent upon the
inline directives (e.g. THUMB) or the assembler switches (e.g. --arm)

® General rules for UAL
= Use of POP, PUSH

= Relaxation of register definitions for Rd and Rs

ARM

UAL Changes

47

See complete definition in RVCT Assembler Guide

ARM DEVEL(=)PERS'

CONFERENCE '06

Traditional

UAL

Asub
STMFD sp!, {r4, r5, 1lr}

ADDEQS r0, r0, r3
MOV rl, r2 LSL #4
BL Bsub

LDMFD sp!, {r4, r5, pc}
Bsub

STMIA r0, {r2, r3}

LDMIA rl1, {r2, r3}

LDR rd, [pc,#0x20]

BX 1r

Value DCD 0x8000

Asub
PUSH {r4, r5, 1r}

ADDSEQ r0, r3
LSL rl, r2, #4
BL Bsub

POP {r4, r5, pc}
Bsub

STM r0, {r2, r3}

LDM rl, {r2, r3}

LDR r4, Value

BX 1r

Value DCD 0x8000

ARM

48

ARM DEVEL(=)PERS

CONFERENCE '06

Copyright © ARM Ltd 2006. All rights reserved

UAL use in ARM Tools

= ARM RVDS 2.2+ compilation, link and debug tools have been
developed to use the UAL definition

= Assemblers will accept BOTH the old and new syntax

® The fromelf utility will output a subset of the complete UAL
® PUSH and POP are shown in place of the STMFD/LDMFD instructions

= Any MOV that only uses the shift operation is shown as the shift in the
output

MOV r0, rO, LSL #4 is shown as LSL rO, #4

® |t does not automatically relax registers in data processing instructions
where the source and destination registers are the same

® The SWI instruction decodes as SVC

ARM ARM DE.YEL'{_:__)IPERS.

49

Agenda

General tools considerations
Platform issues

= Efficient coding strategies

ARM AR DEVELLPERs

50

Copyright © ARM Ltd 2006. All rights reserved

Efficient coding strategies

= Knowledge of the machine and the compiler can help write
efficient code in several areas

= By writing your code carefully, you can give the compiler the
best shot at producing efficient output

= Beware, though, of using the compiler as a “high-level

assembler!”

® The following is general advice
® Supplementary information is included after the end of this

presentation for your reference

ARM

ARM DEVEL(=)PERS'

CONFERENCE '06
51

Loops Should Count Down

" Loops which count down to zero are more efficient
= Compare with zero is usually free in ARM instruction set
= The limit value is only needed at the start and need not occupy a register

unsigned int factl(unsigned int limit)
{

unsigned int i;

unsigned int fact = 1;

for (i = 1; i <= limit; i++)
{
fact = fact * i;
}
return fact;

}

factl
0x000000 : MOV r2,#1
0x000004 : MOV rl, #1
0x000008 : CMP 0, #1
0x00000c - RBLT 0x20
0x000010 : MUL r2,rl,x2
0x000014 : ADD rl,rl,#1
0x000018 : CMP rl,x0
0x00001c - RLE 0x10
0x000020 : MOV r0,r2
0x000024 : MOV pc,1lr

unsigned int fact2(unsigned int limit)
{

unsigned int i;

unsigned int fact = 1;

for (i = limit; i !'= 0; i--)
- {

= fact = fact * i;

}

return fact;

}

fact2
0x000000 : MOVS rl,x0
0x000004 : MOV r0,#1
0x00000c : MUL r0,rl,x0
0x000010 : SUBS rl,rl,#1
0x000018 : MOV pc,1lr

This code is compiled with “-O2 -Otime”

ARM

ARM DEVEL(=)PERS'

52 CONFERENCE '06

Copyright © ARM Ltd 2006. All rights reserved

Loop Counters

® Unsigned int for loop counter if possible
® Compare for equality with zero rather than > 0

" Use
unsigned int j; // MOV j, #10
for (j = 10; j '= 0; j--) // for_loop
SUBS j, 3, #1
BNE for_loop
" Not
int j; // MOV j, #10
for (j = 10; j > 0; j--) // for_loop
SUB j’ jl #1
CMP i, #0
BGT for_loop

ARM ARM DEVEL(:PERS

53

Parameter Passing

= Keep parameters to four or fewer

= “ARM/Thumb Procedure Call Standard”

= Allows up to four integer-sized parameters to be passed in registers
® Further parameters will be passed on the stack

= Stack accesses are costly in terms of space and time

" Note that C++ passes the “this” pointer as a hidden parameter
so only three registers remain available for other parameters

ARM AR DEVELC)PERS

54

Copyright © ARM Ltd 2006. All rights reserved

Register usage in parameter lists

| r0 | rl | r2 i r3 || stack i stack |

f (int a; long léng b, iﬁt c)

¢]

.
:
I " :

IESN I s

f (long 1ong b, int c, iht a)

.
.
1 i i
DEEENEEN < [-
! ! ! !

ARM ARM DEVEL(=)PERS'

CONFERENCE '06
55

General advice

" Avoid division
® ARM cores (except some Cortex cores) have no division hardware
= Remember that modulo is effectively a division operation

® Access to unaligned data is dangerous and/or expensive

® For efficient use, data items should be aligned on natural boundaries

® v6 architecture introduces unaligned support in hardware but software
engineers still need to be careful...

® Registers are 32-bit
® Sub-word quantities may not be handled efficiently

ARM ARM DEVEL(=)PERS'

CONFERENCE '06
56

Copyright © ARM Ltd 2006. All rights reserved

Alignment of pointers

® Be VERY careful with
alignment of pointers

STMED r13!, (r4,rl4}

® Can lead to runtime failures o8 S
#include <string.h>]ﬂﬁi i;{:::g% r_ne_mc’py
int *a = (int *)0x1000; IDMIA £, (22,23, 512} inline’'d

int *b = (int *)0x2000; -

i

char *c = (char *)0x3001; LDR r0, [r4,#8]
acked int *d; - iolzd 0l mereny
—P ; MoV r2, #0xc called
BL __rt memcpy

void foo (void)

,[r4,#8]

¢ , x4, #4] memcpy
memepy (b,2,12); x4, 40] inline’d
,{r2,r3,r12} fol
,{r2,r3,rl12} unsarely
memcpy (c,a,12);
LDR r0, [r4,#8]
i LDR rl,0x58
b = (int *)c; MOV r2, #0xc memcpy
memepy (b, a,12); STR 0, [£1,40] called
LDR rl, [r4,#0] f |
BL __rt_memcpy safely

d = (__packed int *)c;

memcpy ((void *)d,a,12); / LDMFD r13!, {r4,pc}

ARM ARM DEVEL(:PERS

57

Consider Element Offsets

® To calculate the address of an element of an array, the
compiler must multiply the size of the element by the index...

&(ali]) = a + i * sizeof(a)
" |f the element size is a power of 2, this can be done with a
simple inline shift
® For an array at [r3], to access the word at index r1
® Element size = 12:

ADD rl, rl, rl, LSL #1 ; rl =3 * rl

LDR r0, [r3, rl, LSL #2] ; ¥rO0O = *(rl + 4 * rl)
" Element size = 16:

LDR r0, [r3, rl, LSL #4] ; r0O = *(r3 + 16 * rl)

ARM AR DEVELC)PERS

58

Copyright © ARM Ltd 2006. All rights reserved

Local Variables

® Local variables are held in registers wherever possible...
...but in some circumstances they must be placed on the stack
This is much less efficient

® When can variables be held in registers?
®= When there are not too many of them
® When their address is not known to the program
= So...
= Minimize the number of “live” local variables
® Avoid taking the address of a local variable
This is more important in Thumb state as there are fewer
registers available to the compiler

ARM ARM DEVEL(=)PERS'

CONFERENCE '06
59

Global Data

® Global (non-automatic) data is declared at module level
" |tis allocated static storage in RAM
" May also occupy ROM space if initialized
" Global data use is much less efficient compared to local data use
® Here is an example using a global variable as a loop counter

unsigned int a; MOV r0, #10
void f (void) STR 10, [a]

{ loop BL g
LDR r0, [a
for (a = 10; a !'= 0; a--) ::> SUBS 20 iO] #1
g(); ! !

} STR r0, [a]
BNE loop

void £ (void)
{ MOV rd, #10

unsigned int a; ::> loop BL g
for (a = 10; a !'= 0; a--) SUBS r4, r4, #1

g(); BNE loop

AR}M ARM DEVEL (=)PERS'

CONFERENCE '06
60

Copyright © ARM Ltd 2006. All rights reserved

Base Pointers

extern int a; 12: la),
extern int b; void foo (int x, int y)
void foo (int x, int y) {
{ a = x;
a = x; b =y;
b=y; }
}

a and b defined within the
a and b defined externally module in which they are

(»EHE used

LDR r2, [pc,#12] ‘ III /—LDR r2, [pc,#8]

STR r0, [r2,#0] STR r0, [r2,#0]
[LDR r3, [pc,#8] STR rl, [r2,#4]

STR rl, [r3,#0] MOV pc, 1lr

MOV pc, 1lr

J ‘ LADCD “base address of a and b”

~—— > DCD “address of a L .
L DCD “address of b” — Note that this is done with -01 and -02

ARM ARM DE.\{ELG)IPERS.

61

Enabling Base Pointer Optimization

® |f globals are placed into a structure, then access to each
element of structure will naturally be as an offset from a
single base pointer.
" Elements in struct will be aligned on size boundaries
" The compiler will not re-order the structure

® Group data into several ‘logical’ structures rather than one
large structure.

® ‘4define’ can be used to allow change to be hidden from
main application code.

" #define value mystruct.value

. ple= :
ARM ARM DEVET)PERS

62

Copyright © ARM Ltd 2006. All rights reserved

External Globals

data.c code.c Assembler output
int a; extern int a; main LDR r0,0x000080c0
int b; extern int b; 000080ac LDR r1,0x000080c4
000080b0 LDR r0, [r0,#0]
int main(void) 000080b4 LDR rl, [rl,#0]
{ 000080b8 ADD r0,r0,rl
return a + b; 000080bc MOV pc,1r
} 000080c0 DCD 0x000083d4
000080c4 DCD 0x000083d8
struct data extern struct data mystruct; main LDR r0,0x000080bc
{ 000080ac LDR rl, [x0,#0]
int a; int main(void) 000080b0 LDR r0, [r0, #4]
int b; { 000080b4 ADD r0,rl,r0
} mystruct; return mystruct.a + mystruct.b; 000080b8 MOV pc,1lr
} 000080bc DCD 0x000083cc

ARM

63

Further Information

ARM DEVEL(=)PERS'

CONFERENCE '06

= ARM Related Books

www.arm.com
- Technical Support = Documentation > Books

® ARM Application Notes
- Technical Support - Documentation - Application Notes

®" ARM Training

- Technical Support = Training
training@arm.com

= Ask mel!

ARM

64

ARM DEVEL(=)PERS'

CONFERENCE '06

Copyright © ARM Ltd 2006. All rights reserved

riting Efficient Code
for ARM

Chris Shore
Customer Training Mana
ARM

ARM DEVEL(=)PERS'

COMNFERENCE '06

Tail-call Optimization

" Procedure calls are potential sources of inefficiency
® Branch and return use three cycles each
= Often involve stack access
® Parameters may be placed on stack
" Local variables of calling and called routines are on stack

= Eliminating calls and/or returns saves time and stack space

® Tail-call optimization allows a procedure call to be replaced with a “goto” when
it is the last statement of a function

= Avoids unnecessary return (saves time)

" Reduces stack usage
= Caller stack frame can be deleted prior to call
® Reduced stack access saves time

ARM ARM DEVEL@PERS'

CONFERENCE '06
66

Copyright © ARM Ltd 2006. All rights reserved

Tail-call Optimization Example

" Tail call optimization avoids the use of unnecessary returns in function
hierarchies
= BL translated to B where possible
= Enabled at high optimization (-O1, -02)

int main() int £() int g()
{ { {
int x = £(); inty = g(); return 10;
. return y; }
} }
BL f —————) STR 1r,[sp,#-4]1! l—bmov r0, #10
;. 4/ BL g BX 1r 1
LDR pc,[sp], #4 ¢
]
BL f B g MOV 0O, #10
: BX 1r
ARM ARM DEVEL(;)PERS'
67 CONFERENCE '0&

Division Operations (1)

" The ARM core contains no division hardware

= Division will typically be implemented by a run-time library function.
" Many cycles to execute

unsigned div(unsigned a, unsigned b)

{ div
return (b / a); B __rt udiv

}

Typical execution time for this is 12-96 cycles, average ¢.30
The use realtime division option will use a more predictable
division function (always < 45 cycles but slower for typical values)

Division by compile-time constants are treated as a special case
= Division by powers of two will use shift operations

unsigned div4 (unsigned b)

{ div4
MOV r0,r0,LSR #2
return (b / 4); :> = #
} MOV pc,lr

ARMvV7M and ARMV7R cores do include division in_hardware

ARM ARM DEVEL(® JPERS'

CONFERENCE '06
68

Copyright © ARM Ltd 2006. All rights reserved

Division Operations (2)

= Division by other constants
® The compiler will use multiplication to implement division by

constants
divlg4
unsigned div184 (unsigned b) MOV rl,r0
{ :> LDR r0, =0xB21642C9
return (b / 184); UMULL r2, rl, r0, rl
} MOV r0, rl, LSR #7
MoV pc,lr

" 0xB21642C9 is a fixed-point binary representation of
1/184

= UMULL is used to multiply the argument by 1/184
= | SR #7 is used to normalize the result

ARM ARM DEVEL(:PERS

69

Modulo Operations

" The remainder operator ‘s’ is commonly used in modulo arithmetic
= However, this will be expensive if the modulo value is not a power of
two
= Avoid by rewriting C code to use if () statement check

" For example, if count has the range 0 to 59, replace:

count = (count+l) % 60; with if (++count >= 60) count = 0;

modulo test _and_reset
ADD rl,r0,#1 ADD r0,r0,#1
MOV r0,#0x3c CMP r0,#0x3c
BL _rt udiv MOVCS r0,#0
MOV r0,rl

This code is compiled with “-O1 -Ospace”

ARM AR DEVELC)PERS

70

Copyright © ARM Ltd 2006. All rights reserved

Unaligned Data Access

®* ARM LDR/STR instructions can access data aligned on
natural boundaries
® Access to unaligned data can be done but is expensive

; unaligned read ; unaligned write
LDRB rl, [r0, #0] STRB r0, [rl, #0]
LDRB r2, [r0, #1] MOV r2, r0O, LSR #8
LDRB r3, [r0, #2] STRB r2, [rl, #1]
LDRB r4, [r0, #3] MOV r2, rO, LSR #16
ORR rl, rl, r2, LSL #8 STRB r2, [rl, #2]
ORR rl, rl, r3, LSL #16 MOV r2, r0, LSR #24
ORR r0, rl, r4, LSL #24 STRB r2, [rl, #3]

® Used __ packed qualifier to indicate (possible) non-alignment
to compiler

v6 cores include hardware support for unaligned memory access

: ARM DEVEL(=)PERS'

Unaligned support in ARMv6

® Unaligned access only supported for LDR/STR

® Other accesses must maintain alignment (LDRH, LDREX etc.)
Not enabled by default

® Though the tools will assume that it is

® Use —no_unaligned_access to disable in RVCT
Accesses are not guaranteed atomic at bus level

® May cross cache/page/line boundaries

" May be interrupted by another bus master

® Therefore unsafe in Peripheral or Shared memory
Must still use __packed to identify all potentially unaligned
accesses in source code

= Otherwise compiler will attempt to use LDM/LDRD

’ ARM DEVEL(=)PERS'
ARM 72 -';C;HI-:QLI:'U-:

Copyright © ARM Ltd 2006. All rights reserved

Words Are Efficient

® Arithmetic
= ARM registers are 32-bits
® This makes 32-bit operations naturally efficient
= 8-bit and 16-bit operations are generally less efficient

r0 = r0 + 3
word halfword byte
ADD r0, r0, #3 ADD r0, r0, #3 ADD r0O, r0, #3
BIC r0, r0O, #0x10000 AND r0, r0, #xOxFF

" The mask operations are necessary to remove potential overflow bits

ARM ARM DEVEL(:PERS

73

“Live” Variables

= A “live” variable is one whose value must be maintained at a
particular point in a procedure

a b ¢ d e

int f£(int a, int b)
{

int ¢, 4, e;

b % a- .
e=b*a; 3 variables are

e=c +b; @) live at this point
b = f(a); ﬁ

return d;

® The values of up to 3 variables will have to be maintained at any one
time in this example

* Note that the compiler can use same register for c, d an

ARM ARM gE'VELE_)PERS'

74 COMNFERENCE '0&

Copyright © ARM Ltd 2006. All rights reserved

“Address-taken” Local Variables

® Taking the address of a local variable may force the compiler
to keep it updated in memory (on the stack) rather than
holding it in a register

® This can be avoided by using a temporary variable...

int £(int i) int £(int i)
{ {
g(&i); int dummy = i;
// use i g (&dummy) ;
)| &= dumy;
return i;
} // use i
return i;
}

" The second version of the function can hold i in a register throughout

ARM ARM DEVEL(- JPERS

75

