
Freescale Semiconductor

© Freescale Semiconductor, Inc., 2010. All rights reserved.

 

1 Introduction

This section presents general information about the i.MX5x 

Video Processing Unit (VPU).

1.1 Overview

The i.MX5x Video Processing Unit (VPU) is a high 

performance multi-standard video decoder and encoder 

engine that performs multiple standard decoding and 

encoding operations. The VPU codec is fully compliant with 

H.264 BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP 

except GMC, Divx(Xvid), MPEG-1/2 and MJPEG decoding 

and encoding. The VPU supports up to HD (1920×1088) 

decoding, SD (720×576) encoding on i.MX51 and 

720P(1280×720) encoding on i.MX53. It can encode or 

decode multiple video clips with multiple standards 

simultaneously. A block diagram of the i.MX5x VPU is 

shown in Figure 1.

The VPU connects with the system through the 32-bit 

AMBA3 APB bus for system control and the 64-bit AMBA3 

AXI for data throughput. The VPU also takes advantage of 

on-chip memories to achieve high performance.

Document Number: 924-76394
Rev. 10.10.00, 10/2010

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.2. Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.3. Programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2. Host Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.1. Host Interface Overview . . . . . . . . . . . . . . . . . . . . . . .  6

2.2. API-Based VPU Control . . . . . . . . . . . . . . . . . . . . . . .  7

3. i.MX5x VPU Driver API Reference . . . . . . . . . . . . . .  8

3.1. API Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

3.2. Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

3.3. API Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

4. VPU Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

4.1. VPU Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

4.2. Encoder Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

4.3. Decoder Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

4.4. Example Applications . . . . . . . . . . . . . . . . . . . . . . . .  90

i.MX5x VPU Application Programming 
Interface Linux
Reference Manual



i.MX5x VPU Application Programming Interface Linux Reference Manual

2 Freescale Semiconductor

 

Introduction

Most video hardware blocks in the VPU are optimally designed for shared usage between different video 

standards, which provides ultra low power and low gate count with powerful performance. As shown in 

Figure 1, the VPU has a 16-bit DSP core, the BIT processor, which controls the internal video codec 

operations. 

For simple and efficient control of the VPU by the host processor, the VPU provides a set of registers 

called the host interface registers. Most commands and responses between the host processor and the VPU 

are transmitted through the host interface registers. Stream data and some output picture data are directly 

accessed by the host processor and the VPU. For a more comprehensive way of controlling the VPU, a set 

of API functions are provided that includes all of the required operations from the host processor side.

Figure 1. i.MX5x VPU Block Diagram

1.2 Main Features

The VPU is fully compliant with H.264 BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP except GMC, 

Divx (Xvid) and MPEG-1/2 and MJPEG. Image sizes up to HD (1920×1088 or 2048×1024) are supported 

  

BIT 

Processor Core

Bitstream 

Packing/

Unpacking

12KB 

Program Mem.

8KB Data Mem

AXI bus 

interface

Internal peri. bus 

interface

                          Internal Peripheral Bus

Motion 

Estimation Inter-

prediction

Intra-

prediction

AC/DC 

prediction

MPEG 

Transform/

Quant.

AVC 

Transform/

Quant.

Pre-

processor

w/ rotator, 

mirror

Macroblock 

Sequencer

Coefficient. 

Buffer

deblock / 

overlap 

smoothing 

filter

Host 

interface

APB3 

interface
APB3 bus

AXI Internal ArbiterAXI bus

Residual

Local Mem

Reconstruction

CABAC

MV

Pred

Post-

processor w/ 

deringing, 

rotator, 

mirror

reset controller

sub-block 

access 

control 

unit

real-time-clock

Coef 

tables

VC-1 

Transform/

Quant.



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 3

 

Introduction

for decoding, up to SD (720×576) are supported for encoding on i.MX51 and 720P(1280×720) encoding 

on i.MX53. The VPU supports various error resilience tools and also supports multiple decoding and full 

duplex multi-party-call simultaneously. The VPU provides programmability, flexibility and ease of 

upgrade in decoding and encoding or host interface because all of the controls in the decoding and 

encoding process and host interface are implemented as firmware in the programmable BIT processor.

The detailed features of the VPU are as follows:

• Encoding 

— [±32, ±16] 1/2 and 1/4-pel accuracy motion estimation

— 16×16, 16×8, 8×16 and 8×8 block sizes

— Configurable block sizes

— Only one reference frame for motion estimation 

— Unrestricted motion vector

— Prediction

– MPEG-4 AC/DC prediction

– H.264/AVC intra-prediction

— H.263 Annex J, K (RS=0 and ASO=0), and T

— Error resilience tools

– MPEG-4 resync marker and data-partitioning with RVLC (fixed number of 

bits/macroblocks between macroblocks)

– CIR (Cyclic Intra Refresh)/AIR (Adaptive Intra Refresh)

– Bit-rate control (CBR and VBR)

— Up to 4:2:2 format for MJPEG encoder

— 48×32 pixel minimum encoding image size (48 pixels horizontal and 32 pixels vertical)

• Decoding 

— H.264

– Fully compatible with the ITU-T Recommendation H.264 specification in BP/MP and HP

– CABAC/CAVLC

– Variable block size—16×16, 16×8, 8×16, 8×8, 8×4, 4×8 and 4×4

– Error detection, concealment and error resilience tools

— VC1

– All VC-1 profile features—SMPTE Proposed SMPTE Standard for Television: VC-1 

Compressed Video Bitstream format and Decoding Process

– Simple/Main/Advanced Profile

– Multi-resolution (dynamic resolution) is not processed inside the video decoder

— MPEG-4

– Simple/Advanced Simple profile except GMC

– H.263 Baseline Profile

– Divx version 3.x to 6.x



i.MX5x VPU Application Programming Interface Linux Reference Manual

4 Freescale Semiconductor

 

Introduction

– Xvid

— MPEG-2

– Fully compatible with ISO/IEC 13182-2 MPEG2 specification in main profile

– I,P and B frame

– Field coded picture (interlaced) and fame coded picture

— RV-8/9/10

— MJPEG

– Baseline ISO/IEC 10918-1 JPEG compliance

– JFIF 1.02 input format with up to 3 components

– 8-bit samples for each component

– Support up to 4:4:4 

— 64×64 pixel minimum decoding size; 16×16 pixels is supported for MJPG decode

• Value added features

— MPEG-2 partial acceleration

— De-ringing

— Pre/Post rotator/mirror

— Built-in de-blocking filter for MPEG-2/MPEG-4 and Divx

• Programmability

— 16-bit DSP processor dedicated to processing bitstream and controlling the codec hardware

— General purpose registers and interrupt for communication to and from a host processor

• Performance

— All video decoder standards up to 1920×1088 @ 30 fps at 133 MHz

— All video encoder standards up to 720×480 @ 30 fps (720×576 @ 25 fps) at 66 MHz

— MJPEG decoder supports 32 M pixel per second and the image size is up to 8196×8196 @ 133 

MHz

— MJPEG encoder supports 64 M pixel per second and the image size is up to 8196×8196 @ 133 

MHz

— MJPG decoder on 4:2:0 supports 64 M pixel per second @ 133MHz

— MJPG encoder on 4:2:0 supports 85.3 M pixel per second @ 133MHz

• Interrupt

— Interrupt from and to external host processor or interrupt controller

1.3 Programmability

The VPU has an internal DSP called the BIT processor which controls the internal hardware blocks for 

video decoder operations. The operation of the BIT processor is determined by the dedicated microcode 

called the BIT firmware. The VPU has a complete set of BIT firmware codes as well as a complete set of 

VPU control functions, called the VPU API. Therefore, application developers do not need to manage 

codec-specific issues on host processor. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 5

 

Introduction

1.3.1 Frame-Based Processing

The BIT processor completes decoding operations on a frame-by-frame basis, which allows low level 

independency of VPU operations to the host processor. While frame operations are running, there is no 

need for communication between the host processor and the VPU. Therefore, the VPU does not burden 

the host processor during decoder operations.

After issuing a picture processing command, the host application performs its own operations until it is 

ready for the next picture processing operation or until it receives an interrupt from VPU informing the 

host processor of completion of the picture processing. 

1.3.2 Program Memory Management

The VPU has its own program memory to load BIT firmware for supporting application-specific 

operations. In order to use this internal memory efficiently, the BIT firmware has a dynamic re-loading 

scheme, which enables the VPU to have a small amount of program memory. 

For example, if a MPEG-2 decoder operation is running on the VPU, then the VPU program memory is 

filled by the MPEG-2 decoder firmware in the VPU. If a H.264 decoder operation is newly issued, then 

the BIT processor automatically loads the H.264 decoder firmware from the SDRAM to program memory. 

Because of the frame-based operation of VPU, the maximum rate of this dynamic reloading operation is 

approximately 30 times per second in a single instance decoder case. Since the amount of BIT firmware 

for one decoder standard is smaller than 16 Kytes, this is not a large burden for the VPU operations in 

performance and memory bandwidth. 

1.3.3 Multi-Instances 

The VPU supports multiple instances which can be helpful for multi-channel decoder applications. In 

order to support this multi-instance operation, the BIT processor uses an internal context parameter set for 

each decoder instance. When creating a new instance and starting a picture processing operation, a set of 

context parameters is created and updated automatically within the VPU. This internal context 

management scheme allows different decoder tasks running on the host processor to control VPU 

operations independently with their own instance numbers. 

When creating a new instance, an application task receives a new handle specifying an instance if a new 

handle is available on the VPU. All the subsequent operations for the given application task are handled 

separately by the VPU using this task-specific handle. When writing a VPU driver, this handle can be 

regard as a device-ID or a port-ID of the VPU for each task. Since the VPU can only perform one picture 

processing task at a time, the application task should check if the VPU is ready before starting a new 

picture operation. An application can easily terminate a single task on the VPU by calling a function for 

closing a certain instance.



i.MX5x VPU Application Programming Interface Linux Reference Manual

6 Freescale Semiconductor

 

Host Interface

2 Host Interface

This section presents a general description of the host interfaces provided for a host processor to control 

the i.MX5x VPU.

2.1 Host Interface Overview

This section presents an overview of the host interfaces.

2.1.1 Communication Models

The VPU requires a dedicated path for exchanging data and/or messages between the host processor and 

the VPU. The VPU uses shared memory for exchanging data between the host processor and the VPU. 

This shared memory is accessible through the ABMA host bus. Bitstream data and frame data are 

exchanged using this shared memory space. 

Independent of data exchange path, a dedicated path for messages between the host processor and the VPU 

is provided using a set of VPU registers called the host interface registers. All commands and responses 

between the host processor and the VPU are exchanged through these registers as shown in Figure 2.

Figure 2. Data and Message Exchange Between Host and VPU

All of the bitstream and picture data is accessed directly by the host processor and the VPU. The related 

information about the data transfer as well as command and responses is exchanged through the host 

interface. The host interface of the VPU uses a set of registers accessible from the host processor. Some of 

these host registers are used for exchanging actual command and responses and other registers are used to 

give information about the internal status of VPU to host processor. Firmware running on the BIT 

processor is well-optimized for a given set of commands and responses. 

 H ost S W : VP U  A P I 

VP U  F irm ware

VPU  Host  In te rface  Fun ct ion s (VPU  AP I)

C
o
m
m
a
n
d

R
e
s
p
o
n
s
e

V PU

En c

L ib:

M PEG4

SP

VPU

Decr

L ib:

M PEG4

ASP

VPU

En c

L ib:

H .264

BP

VPU

Dec

L ib :

H .264

MP

VPU  Sy stem  M an ager

...

H ost P rogram . I /F  Func.

O S  Independent B ase Func .  

S et for V P U  driver

V P U  S ystem  M anager

H os t I/F  w ith C M D/R S P,

Internal C ontrol ,  u-C ode 

R e-loading , M anage 

C odec Lib , in it/D e- init , etc

VPU  Host  In te rface

V P U  C odec Library

S et of E ncoder &  D ecoder 

Libraries  for v arious  v ideo 

c odec  s tandards , inc luding 

on -the -f ly  pre /pos t 

proc ess ing func t ions  suc h 

as  debloc k ing /deringing , 

rotat ion , etc .



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 7

 

Host Interface

2.1.2 Data Handling

All of the pixel data or stream data transactions are performed by the host processor or the VPU through 

the shared memory space in the SDRAM. In order to assure safe transactions between the host processor 

and the VPU, all the required information is stored in the host interface registers. Generally, these 

transactions are one-directional transactions—the host or VPU writes the data and the other reads the data 

on a single data buffer. Therefore, transactions are easily and safely controlled using a pair of read and 

write pointers. 

As well as the common data buffers in shared memory, the BIT processor requires a certain amount of 

memory for processing, called the working buffer. The working buffer can only be accessed by the VPU. 

In addition, the frame buffers used in picture decoding are managed by the VPU exclusively, which ensures 

safe decoding in the VPU. 

For proper streaming, the available free space in the decoder stream buffer can be accessed using the buffer 

read pointer, write pointer and buffer size. A set of APIs is provided for this purpose that can be called by 

the application at anytime.

2.1.3 Host Interface Registers

A set of commands is provided for controlling codec operations on a frame-by-frame basis as well as the 

corresponding responses. The host interface registers can be partitioned into three categories as follows:

• BIT processor control registers—Update or show BIT processor status to the host processors. Most 

of these registers are used for initializing the BIT processor during boot-up. 

• BIT processor global registers—Store all the global variables which are reserved even while an 

active instance is changed. All the buffer addresses and some global options are safely stored in 

these registers. 

• BIT processor command I/O registers—Overwritten or updated whenever a new command is 

transmitted from the host processor. All the commands with input arguments and all the 

corresponding responses with return values are handled using these registers. 

In addition, command I/O registers are used in a pre-defined way for each command to control the VPU. 

2.2 API-Based VPU Control

Host applications generally control the VPU through a set of pre-defined APIs by sending a command and 

corresponding arguments to the VPU. After receiving an interrupt from the VPU, signalling the 

completion of the requested operation, the host application acquires the results as shown in Figure 3.

Each API definition includes the requested command as well as the input and output data structure. The 

given command from the API function is always written on a dedicated I/O register, but the input and 

output data structure is transmitted through a set of command I/O registers that contain the input arguments 



i.MX5x VPU Application Programming Interface Linux Reference Manual

8 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

and output results. Therefore, application developers do not need know the details of the host register 

definitions and usage. 

Figure 3. Software Control Model of VPU from Host Application

3 i.MX5x VPU Driver API Reference

3.1 API Features

A set of API functions is provided to efficiently control the VPU. The VPU API covers all functions of the 

i.MX5x VPU. This API-based approach speeds up the development process of application software. 

Important features of the API for the i.MX5x VPU are summarized in the following sections.

3.1.1 Simple Software Control

The i.MX5x VPU API provides a simple way to control the i.MX5x VPU and avoid errors in application 

software. The host application does not need to know the details of the i.MX5x VPU internal operations. 

For example, in order to initialize the VPU, an application simply calls an API for initialization, 

vpu_Init(), and no additional information is required for calling this API. The vpu_Init() API performs 

all the required steps for initializing the i.MX5x VPU. When issuing a picture decoder operation, the 

application simply changes some variables included in the well-defined input data structure. 

SDRAM

Firmware on VPU

Host 

Application

Shared Buffer

(Bit-stream Buffers, 

Frame Buffers , etc.) 

VPU

Host I/F 

Reg

D
a
ta

C
M

D
/

R
S

P

C&M

API’s

VPU Buffer

(Work Buffer, u-Code Buffers . 

Parameter Buffers , etc.)

API Calls with Args

Return Codes with Output Info.

INTERRUPT

VPU

System

Manager

VPU

Codec

Library

D
a
ta

D
a
ta



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 9

 

i.MX5x VPU Driver API Reference

3.1.2 Handling Multi-Instances

The i.MX5x VPU supports multiple instances for decoding and encoding at the same time, which can be 

used in multiple decoding and encoding and multi-party call applications. To support multi-instance 

operations, the i.MX5x VPU API provides a full set of functions for handling the instances with ease. 

When opening a new instance, an application receives a handle specifying the new instance, if a new 

handle is available at that time. The operations for a given instance are separately controlled using the 

corresponding handle. An application can easily terminate a single task on the VPU by calling a function 

for closing a certain instance.

3.1.3 Frame-Based Codec Processing

The i.MX5x VPU completes decoding and encoding operation on a frame-by-frame basis, which enables 

low level independency of VPU operations on the host processor. While frame processing operation are 

running, there is no need for communication between the host processor and the VPU. Therefore, the VPU 

does not burden the host processor during decoding and encoding operations. 

3.2 Type Definitions

This section describes the types and structures used in the VPU API.

3.2.1 Type Definitions

This section describes the common data types used in the VPU API functions.

3.2.1.1 Uint8

typedef unsigned char Uint8;

Description

8-bit unsigned integer type used for declaring pixel data

3.2.1.2 Uint16

typedef unsigned short Uint16;

Description

16-bit unsigned integer type

3.2.1.3 Uint32

typedef unsigned int Uint32;

Description

32-bit unsigned integer type used for declaring unsigned variables with wide ranges such as the size of a 

buffer



i.MX5x VPU Application Programming Interface Linux Reference Manual

10 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

3.2.1.4 PhysicalAddress

typedef Uint32 PhysicalAddress;

Description

Represents physical addresses that are recognizable by the VPU. In general, the VPU hardware does not 

know about the virtual address space that is set and handled by the host processor. The virtual addresses 

are translated into physical addresses by the Memory Management Unit (MMU). Data buffer addresses, 

such as input bitstream buffer or frame buffer, are given to VPU as an address in the physical address 

space.

3.2.1.5 CodStd

typedef enum {

STD_MPEG4 = 0,

STD_H263,

STD_AVC,

STD_VC1,

STD_MPEG2,

STD_DIV3,

STD_RV,

STD_MJPG

} CodStd;

Description

Enumeration for declaring code standard type variables. The following video standards are supported by 

the VPU: 

• MPEG4 SP/ASP

• H.263 Profile 3

• AVC (H.264) BP/MP/HP

• VC-1 SP/MP/AP

• MPEG-2, MPEG-1

• Divx3

• RealVideo 8/9/10

NOTE

The MPEG-1 decoder operation is handled as a special case of the MPEG-2 

decoder. The RealVideo 8/9/10 decoder is only available for licensed 

customers. 

3.2.1.6 RetCode

typedef enum {

RETCODE_SUCCESS = 0,

RETCODE_FAILURE = -1,

RETCODE_INVALID_HANDLE = -2,

RETCODE_INVALID_PARAM = -3,

RETCODE_INVALID_COMMAND = -4,

RETCODE_ROTATOR_OUTPUT_NOT_SET = -5,



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 11

 

i.MX5x VPU Driver API Reference

RETCODE_ROTATOR_STRIDE_NOT_SET = -11,

RETCODE_FRAME_NOT_COMPLETE = -6,

RETCODE_INVALID_FRAME_BUFFER = -7,

RETCODE_INSUFFICIENT_FRAME_BUFFERS = -8,

RETCODE_INVALID_STRIDE = -9,

RETCODE_WRONG_CALL_SEQUENCE = -10,

RETCODE_CALLED_BEFORE = -12,

RETCODE_NOT_INITIALIZED = -13,

RETCODE_DEBLOCKING_OUTPUT_NOT_SET = -14,

RETCODE_NOT_SUPPORTED = -15,

RETCODE_REPORT_BUF_NOT_SET = -16,

RETCODE_FAILURE_TIMEOUT = 17

} RetCode;

Description

Enumeration for declaring the return codes from API function calls. The meaning of each return code is 

the same for all API functions, but the reason of non-successful return might be different. Details of the 

reasons for the return code are described in Section 3.3, “API Definitions.” Table 1 shows the basic 

meaning of each return code.

Table 1. Return Codes

Code Description

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation not successfully; this value is returned when an 

un-recoverable decoder error occurs such as a header parsing error

RETCODE_INVALID_HANDLE Given handle for current API function call is invalid, for example, not 

initialized yet or improper function call for the given handle

RETCODE_INVALID_PARAM Given argument parameters (for example, input data structure) is invalid 

(not initialized yet or not valid anymore)

RETCODE_INVALID_COMMAND Given command is invalid, for example, undefined or not allowed in the 

given instance

RETCODE_ROTATOR_OUTPUT_NOT_SET Rotator output buffer is not allocated even though rotation is enabled

RETCODE_ROTATOR_STRIDE_NOT_SET Rotator stride is not provided even though rotation is enabled

RETCODE_FRAME_NOT_COMPLETE Frame decoding operation is not completed, so the given API function 

call is not allowed

RETCODE_INVALID_FRAME_BUFFER Certain frame buffer pointers are invalid (not initialized yet or not valid)

RETCODE_INSUFFICIENT_FRAME_BUFFERS Given numbers of frame buffers are not enough for the operations of the 

given handle. This return code is only received when calling the 

DecRegisterFrameBuffer() function

RETCODE_INVALID_STRIDE Given stride is invalid (for example, 0, not a multiple of 8 or smaller than 

the picture size). This return code is only allowed in API functions which 

set stride

RETCODE_WRONG_CALL_SEQUENCE Current API function call is invalid considering the allowed sequences 

between API functions (for example, missing one crucial function call 

before this function call)

RETCODE_CALLED_BEFORE Multiple calls of current API function for a given instance are invalid



i.MX5x VPU Application Programming Interface Linux Reference Manual

12 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

3.2.1.7 CodecCommand

typedef enum {

ENABLE_ROTATION,

DISABLE_ROTATION,

ENABLE_MIRRORING,

DISABLE_MIRRORING,

ENABLE_DERING,

DISABLE_DERING,

SET_MIRROR_DIRECTION,

SET_ROTATION_ANGLE,

SET_ROTATOR_OUTPUT,

SET_ROTATOR_STRIDE,

ENC_GET_SPS_RBSP,

ENC_GET_PPS_RBSP,

DEC_SET_SPS_RBSP,

DEC_SET_PPS_RBSP,

ENC_PUT_MP4_HEADER,

ENC_PUT_AVC_HEADER,

ENC_SET_SEARCHRAM_PARAM,

ENC_GET_VOS_HEADER,

ENC_GET_VO_HEADER,

ENC_GET_VOL_HEADER,

DEC_SET_DEBLOCK_OUTPUT,

ENC_SET_INTRA_MB_REFRESH_NUMBER,

ENC_ENABLE_HEC,

ENC_DISABLE_HEC,

ENC_SET_SLICE_INFO,

ENC_SET_GOP_NUMBER,

ENC_SET_INTRA_QP,

ENC_SET_BITRATE,

ENC_SET_FRAME_RATE,

ENC_SET_REPORT_MBINFO,

ENC_SET_REPORT_MVINFO,

ENC_SET_REPORT_SLICEINFO,

DEC_SET_REPORT_BUFSTAT,

DEC_SET_REPORT_MBINFO,

DEC_SET_REPORT_MVINFO,

DEC_SET_REPORT_USERDATA,

RETCODE_NOT_INITIALIZED VPU is not initialized yet. Before calling any API functions, the 

initialization API function, vpu_Init(), should be called

RETCODE_DEBLOCKING_OUTPUT_NOT_SET Not used for i.MX5x

RETCODE_NOT_SUPPORTED One feature is not supported

RETCODE_REPORT_BUF_NOT_SET Data report buffer address is not set with a valid value if report of MB, MV, 

frame status, slice information or user data is enabled

RETCODE_FAILURE_TIMEOUT The hardware may be busy with other operation and unavailable for 

current API calling or something is wrong with VPU based. For detailed 

meaning of this return value, please refer to each API description

Table 1. Return Codes (continued)

Code Description



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 13

 

i.MX5x VPU Driver API Reference

SET_DBK_OFFSET

} CodecCommand;

Description

Special enumeration type for configuration commands from the host processor to the VPU. Most of these 

commands are called occasionally (not periodically) for changing the VPU operation configuration. 

Details of these commands are presented in Section 3.3.3.9, “vpu_EncGiveCommand().”

3.2.1.8 MirrorDirection

typedef enum {

MIRDIR_NONE,

MIRDIR_VER,

MIRDIR_HOR,

MIRDIR_HOR_VER

} MirrorDirection;

Description

Enumeration type for representing the mirroring direction

3.2.1.9 Mp4HeaderType

typedef enum {

VOL_HEADER,

VOS_HEADER,

VIS_HEADER

} Mp4HeaderType;

Description

Special enumeration type for MPEG-4 top-level header classes such as visual sequence header, visual 

object header and video object layer header

3.2.1.10 AvcHeaderType

typedef enum {

SPS_RBSP,

PPS_RBS

} AvcHeaderType;

Description

Special enumeration type for AVC parameter sets such as sequence parameter set and picture parameter set

3.2.1.11 EncHandle

typedef EncInst * EncHandle;

Description

Dedicated type for encoder handles returned when an encoder instance is opened. An encoder instance can 

be referred to by the corresponding handle. EncInst is a type managed internally by the API and the 

application does not need to use it. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

14 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

3.2.1.12 DecHandle

typedef DecInst * DecHandle;

Description

Dedicated type for decoder handles returned when a decoder instance is opened. A decoder instance can 

be referred to by the corresponding handle. DecInst is a type managed internally by API and the 

application does not need to use it.

3.2.2 Data and Structure Definitions

This section describes the data and structure definitions used in the VPU API functions.

3.2.2.1 FrameBuffer

typedef struct {

Uint32 strideY;

Uint32 strideC;

PhysicalAddress bufY;

PhysicalAddress bufCb;

PhysicalAddress bufCr;

PhysicalAddress bufMvCol; 

} FrameBuffer;

Description

Data structure for representing frame buffer pointers for each color component

strideY Y stride value of the given frame buffers.

strideC C stride value of the given frame buffers.

bufCb Address for Cb component in the physical address space

bufCr Address for Cr component in the physical address space

bufMvCol Address for co-located motion vector buffers in the physical address space

The host application must allocate contiguous physical memory from the SDRAM space for the 

components using this data structure. All four addresses must be 4-byte aligned. One pixel value of a 

component occupies one byte and the frame data is in YCbCr 4:2:0 format for H.264, H.264 and MPEG-4 

codecs. The sizes of the Cb and Cr buffers are 1/4 the size of the Y buffer size for H.264, H.263 and 

MPEG-4 codecs. For MJPEG, the frame data format can be YCbCr 4:2:0, 4:2:2 horizontal, 4:2:2 vertical, 

4:4:4 and 4:0:0 and the sizes of the Cb and Cr buffers vary. The co-located motion vector is only required 

for B-frame decoding in MPEG-2, AVC MP/HP, MPEG-4 ASP, VC-1 MP/AP, RealVideo 8/9/10, and so 

on. 

3.2.2.2 DecMaxFrmInfo

typedef struct {

int maxMbX;

int maxMbY;



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 15

 

i.MX5x VPU Driver API Reference

int maxMbNum;

} DecMaxFrmInfo;

Description

Data structure for representing maximum frame buffer info for decoder.

maxMbX Maximum supported macro blocks of horizontal direction.

maxMbY Maximum supported macro blocks of vertical direction.

maxMbNum Maximum supporte macro blocks of one picture.

This structure is provided to the host application to specify maximum framebuffer info. In normal case 

without resolution change picture decoder support, maxMbX value is picture width/16, maxMbY is 

picture height/16, maxMbNum is width * height / 256. But if user knows there is resolution change from 

smaller to bigger, user must give the info per user needs, and allocate corresponding maximum frame 

buffer.

3.2.2.3 Rect

typedef struct {

Uint32    left;

Uint32    top;

Uint32    right;

Uint32    bottom;

} Rect;

Description

Data structure for representing a rectangular window in a frame

left Horizontal pixel offset of top-left corner of rectangle from top-left corner of a frame

top Vertical pixel offset of top-left corner of rectangle from top-left corner of a frame

right Horizontal pixel offset of bottom-right corner of rectangle from, top-left corner of a frame

bottom Vertical pixel offset of bottom-right corner of rectangle from top-left corner of a frame

This structure is provided to the host application to specify a display window for the H.264 cropping 

option. Each value is offset from the start point of a frame; therefore, all values are positive. 

3.2.2.4 EncHeaderParam

typedef struct {

PhysicalAddress buf;

int size;

int headerType;

int userProfileLevelEnable;

int userProfileLevelIndication;

} EncHeaderParam;

Description

Structure used for adding a header syntax layer to the encoded bit stream. The parameter headerType is the 

input parameter to the VPU and the other two parameters are returned from the VPU after completing the 



i.MX5x VPU Application Programming Interface Linux Reference Manual

16 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

requested operation. If the encoder dynamic buffer allocation option is enabled as well as the stream buffer 

reset option, the parameters buf and size are also input parameters. In this case, the host application must 

allocate the physical buffer to save the encoded header syntax to the VPU. 

headerType Encode header code. In MPEG-4,

3'b000 - VOL header; 3'b001 - VOS header; 3'b010 - VO header

In H.264,

3'b000 - SPS rbsp; 3'b001 - PPS rbsp

In H.263, ENC_HEADER command is ignored.

userProfileLevelEnable It decides whether to set profile_and_level_indication in VOS header as MPEG-4 

predefined values. If UserProfileLevelEnable is 0, profile_and_level_indication is 

encoded with one of these values: 

8'b0000 0001 : L1 <= 176x144@15Hz  

8'b0000 0010 : L2 <= 352x288@15Hz  

8'b0000 0011 : L3 <= 352x288@30Hz  

8'b0000 0100 : L4a <=640x480@30Hz 

8'b0000 0101 : L5 <=720x576@25Hz   

8'b0000 0110 : L6 <= otherwise

If UserProfileLevelEnable is 1, a host can set user profile and level with 

UserProfileLevelIndication.

UserProfileLevelIndicationUser-defined profile and level value for profile_and_level_indication in VOS.

3.2.2.5 EncParamSet

typedef struct {

Uint8 *paraSet;

int size;

} EncParamSet;

Description

Structure used when the host processor requires SPS or PPS data from an encoder instance. The resulting 

SPS or PPS data is used in an application as a type of out-of-band information. 

3.2.2.6 EncMp4Param

typedef struct {

int mp4_dataPartitionEnable;

int mp4_reversibleVlcEnable;

int mp4_intraDcVlcThr;

int mp4_hecEnable;

int mp4_verid;

} EncMp4Param;

Description

Data structure for configuring MPEG4-specific parameters in encoder applications



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 17

 

i.MX5x VPU Driver API Reference

mp4_dataPartitionEnable 0 = disable, 1 = enable

mp4_reversibleVlcEnable 0 = disable, 1 = enable

mp4_intraDcVlcThr Value of intra_dc_vlc_thr in MPEG-4 part 2 standard, valid range is 0–7

mp4_hecEnable 0 = disable, 1 = enable

mp4_verid Value of MPEG-4 part 2 standard version ID, version 1 and 2 are allowed

3.2.2.7 EncH263Param

typedef struct {

int h263_annexJEnable;

int h263_annexKEnable;

int h263_annexTEnable;

} EncH263Param;

Description

Data structure for configuring H.263-specific parameters in encoder applications

h263_annexJEnable 0 = disable, 1 = enable

h263_annexKEnable 0 = disable, 1 = enable

h263_annexTEnable 0 = disable, 1 = enable

3.2.2.8 EncAvcParam

typedef struct {

int avc_constrainedIntraPredFlag;

int avc_disableDeblk;

int avc_deblkFilterOffsetAlpha;

int avc_deblkFilterOffsetBeta;

int avc_chromaQpOffset;

int avc_audEnable;

int avc_fmoEnable;

int avc_fmoSliceNum;

int avc_fmoType;

int avc_fmoSliceSaveBufSize;

} EncAvcParam;

Description

Data structure for configuring AVC-specific parameters in encoder applications

avc_constrainedIntraPredFlag 0 = disable, 1 = enable

avc_disableDeblk 0 = enable, 1 = disable, 2 = disable deblocking filter at slice boundaries

avc_deblkFilterOffsetAlpha deblk_filter_offset_alpha (–6 to 6)

avc_deblkFilterOffsetBeta deblk_filter_offset_beta (–6 to 6)

avc_chromaQpOffset chroma_qp_offset (–12 to 12)

avc_audEnable 0 = disable, 1 = enable and the encoder generates AUD RBSP at the 

start of every picture

avc_fmoEnable Not used on the i.MX5x since FMO encoding is not supported



i.MX5x VPU Application Programming Interface Linux Reference Manual

18 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

avc_fmoSliceNum Not used on the i.MX5x since FMO encoding is not supported

avc_fmoType Not used on the i.MX5x since FMO encoding is not supported

avc_fmoSliceSaveBufSize Not used on the i.MX5x since FMO encoding is not supported

3.2.2.9 EncMjpgParam

typedef struct {

int mjpg_sourceFormat;

int mjpg_restartInterval;

int mjpg_thumbNailEnable;

int mjpg_thumbNailWidth;

int mjpg_thumbNailHeight;

Uint8 * mjpg_hufTable;

Unit8 * mjpg_qMatTable;

} EncMjpgParam;

Description

Data structure for configuring MJPEG-specific parameters in encoder applications

mjpg_sourceFormat Chroma format. The format means chrominance size of source image and can 

be a value between 0 and 4:

0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0

mjpg_restartInterval Value for representing interval of restart marker in Mbytes

mjpg_thumbNailEnable 0 = disable, 1 = enable and the encoder enables thumbnail encoding

mjpg_thumbNailWidth Variable representing the width (in pixels) of the thumbnail to be encoded. This 

variable can have a value between 0 and the source image width. This value 

must be larger than a specific value and must be a multiple of the value shown 

in Table 2.

mjpg_thumbNailHeight Variable representing the width (in pixels) of the thumbnail to be encoded. This 

variable can have a value between 0 and the source image width. This value 

must be larger than a specific value and must be a multiple of the value shown 

in Table 2.

Table 2.  mjpg_thumbNailWidth and mjpg_thumbNailHeight Values

Format Value

4:2:0 16

4:2:2 16

2:2:4 8

4:4:4 8

4:0:0 8



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 19

 

i.MX5x VPU Driver API Reference

mjpg_hufTable Variable representing a pointer to an address in the Huffman table. The Huffman 

table coefficients are saved in pre-defined format as shown in Table 3.

Table 3. Huffman Table Format

Offset 

Address
0 1 2 3 Description

0x000 Y_DCBits[3] Y_DCBits[2] Y_DCBits[1] Y_DCBits[0] Luminance DC 

BitLength
… … … … …

0x00C Y_DCBits[15] Y_DCBits[14] Y_DCBits[13] Y_DCBits[12]

0x010 Y_DCValue[3] Y_DCValue[2] Y_DCValue[1] Y_DCValue[0] Luminance DC 

HuffValue
… … … … …

0x018 Y_DCValue[11] Y_DCValue[10] Y_DCValue[9] Y_DCValue[8]

0x01C 0 0 0 0

0x020 Y_ACBits[3] Y_ACBits[2] Y_ACBits[1] Y_ACBits[0] Luminance AC 

BitLength
… … … … …

0x02C Y_ACBits[15] Y_ACBits[14] Y_ACBits[13] Y_ACBits[12]

0x030 Y_ACValue[3] Y_ACValue[2] Y_ACValue[1] Y_ACValue[0] Luminance AC 

HuffValue
… … … … …

0x0D0 0 0 Y_ACValue[161] Y_ACValue[160]

0x0D4 0 0 0 0

0x0D8 C_DCBits[3] C_DCBits[2] C_DCBits[1] C_DCBits[0] Chrominance 

DC BitLength
… … … … …

0x0E4 C_DCBits[15] C_DCBits[14] C_DCBits[13] C_DCBits[12]

0x0E8 C_DCValue[3] C_DCValue[2] C_DCValue[1] C_DCValue[0] Chrominance 

DC HuffValue
… … … … …

0x0F0 C_DCValue[11] C_DCValue[10] C_DCValue[9] C_DCValue[8]

0x0F4 0 0 0 0

0x0F8 C_ACBits[3] C_ACBits[2] C_ACBits[1] C_ACBits[0] Chrominance 

AC BitLength
… … … … …

0x104 C_ACBits[15] C_ACBits[14] C_ACBits[13] C_ACBits[12]

0x108 C_ACValue[3] C_ACValue[2] C_ACValue[1] C_ACValue[0] Chrominance 

AC HuffValue
… … … … …

0x1A8 0 0 C_ACValue[161] C_ACValue[160]



i.MX5x VPU Application Programming Interface Linux Reference Manual

20 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

mjpg_qMatTable Variable representing a pointer to an address in the Q-Matrix. The Q-Matrix 

coefficients are saved in pre-defined formats shown in Table 4.

3.2.2.10 EncSliceMode

typedef struct {

int sliceMode;

int sliceSizeMode;

int sliceSize;

} EncSliceMode;

Description

Structure used for declaring encoder slice mode and its options. This structure value is ignored for a 

MJPEG encoder.

sliceMode 0 = One slice per picture, 1 = Multiple slices per picture.

In normal MPEG-4 mode, the resync-marker and packet header are inserted 

between slice boundaries. In short video header with Annex K = 0, the GOB 

header is inserted at every GOB layer start. In short video header with Annex 

K = 1, multiple slices are generated. In AVC mode, multiple slice layer RBSP is 

generated.

sliceSizeMode Size of a generated slice when sliceMode = 1, 0 means sliceSize is define by 

amount of bits, and 1 means sliceSize is defined by the number of Mbytes in a 

slice. This parameter is ignored when sliceMode = 0 or in short video header 

mode with Annex K = 0.

sliceSize Size of a slice in bits or Mbytes specified by sliceSizeMode. This parameter is 

ignored when sliceMode = 0 or in short video header mode with Annex K = 0.

Table 4. Q Matrix Format

Offset 

Address
0 1 2 3 Description

0x000 Y_QMat[3] Y_QMat[2] Y_QMat[1] Y_QMat[0] Luminance Q 

Matrix
… … … … …

0x03C Y_QMat[63] Y_QMat[62] Y_QMat[61] Y_QMat[60]

0x040 C_BQMat[3] C_BQMat[2] C_BQMat[1] C_BQMat[0] Chrominance Q 

Matrix for Cb
… … … … …

0x07C C_BQMat[63] C_BQMat[62] C_BQMat[61] C_BQMat[60]

0x080 C_RQMat[3] C_RQMat[2] C_RQMat[1] C_RQMat[0] Chrominance Q 

Matrix for Cr
… … … … …

0x0BC C_RQMat[63] C_RQMat[62] C_RQMat[61] C_RQMat[60]



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 21

 

i.MX5x VPU Driver API Reference

3.2.2.11 EncOpenParam

typedef struct {

PhysicalAddress bitstreamBuffer;

Uint32 bitstreamBufferSize;

CodStd bitstreamFormat;

int picWidth;

int picHeight;

Uint32 frameRateInfo;

int bitRate;

int initialDelay;

int vbvBufferSize;

int gopSize;

EncSliceMode slicemode;

int intraRefresh;

int sliceReport;

int mbReport;

int mbQpReport;

int rcIntraQp;

int chromaInterleave;

int dynamicAllocEnable;

int ringBufferEnable;

union {

EncMp4Param mp4Param;

EncH263Param h263Param;

EncAvcParam avcParam;

EncMjpgParam mjpgParam;

} EncStdParam;

int userQpMin;

int userQpMax;

int userQpMinEnable;

int userQpMaxEnable;

int userGamma;

int RcIntervalMode;

int MbInterval;

int avcIntra16x16OnlyModeEnable;

} EncOpenParam;

Description

Data structure for parameters when an encoder instance is opened

bitstreamBuffer Start address of bit stream buffer into which encoder places the bit streams. This 

address must be 4 byte-aligned.

bitstreamBufferSize Size in bytes of a buffer pointed to by bitstreamBuffer. This value must be a 

multiple of 1024. The maximum size is 16383×1024 bytes.

bitstreamFormat Standard type of bitstream in encoder operation: STD_MPEG4, STD_H263, 

STD_AVC or STD_MJPG

picWidth Width of a picture to be encoded in pixels

picHeight Height of a picture to be encoded in pixels

frameRateInfo The 16 least significant bits, [15:0], is a numerator and 16 most significant bits, 

[31:16], is a denominator for calculating the frame rate. The numerator is clock 



i.MX5x VPU Application Programming Interface Linux Reference Manual

22 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

ticks per second, and the denominator is clock ticks between frames minus 1. The 

frame rate can be defined by (numerator/(denominator + 1)), which equals 

(frameRateInfo & 0xffff) /((frameRateInfo >> 16) + 1). 

For example, a frameRateInfo value of 30 represents 30 frames/sec, and the value 

0x3e87530 represents 29.97 frames/sec.

bitRate Target bit rate in kbps. If 0, there is no rate control and pictures are encoded with 

a quantization parameter equal to quantParam in EncParam.

initialDelay Time delay (in ms) for the bit stream to reach initial occupancy of the vbv buffer 

from zero level. This value is ignored if rate control is disabled. The value 0 means 

the encoder does not check for reference decoder buffer delay constraints.

vbvBufferSize vbv_buffer_size in bits. This value is ignored if rate control is disabled or 

initialDelay is 0. The value 0 means the encoder does not check for reference 

decoder buffer size constraints.

gopSize GOP size. 0 = only first picture is I, 1 = all I pictures, 2 = IPIP, 3 = IPPIPP, and so 

on. The maximum value is 32,767, but in practice, a smaller value should be 

chosen by the application for proper error concealment. This value is ignored for 

STD_MJPG.

slicemode Parameter for slice mode

intraRefresh 0 = Intra MB refresh is not used. Otherwise = At least N MB’s in every P-frame 

are encoded as intra MB’s. This value is ignored in for STD_MJPG.

sliceReport Not used in the i.MX5x

mbReport Not used in the i.MX5x

mbQpReport Not used in the i.MX5x

rcIntraQp Quantization parameter for I frame. When this value is -1, the quantization 

parameter for I frames is automatically determined by the VPU. In MPEG4/H.263 

mode, the range is 1–31; in H.264 mode, the range is from 0–51. This is ignored 

for STD_MJPG.

dynamicAllocEnable 0 = disable, 1 = enable. When this field is set, dynamic buffer allocation is enabled 

under buffer reset mode for encoder operation, so that buffer start address 

specified in the EncOpenParam, bitstreamBuffer, is ignored in picture encoding. 

In this case, the picture buffer start address should be specified in the EncParam, 

picStreamBufferAddr, at every call of vpu_EncStartOneFrame(). When this 

field is not set, the picture buffer start address given by bitstreamBuffer, is used 

for encoder operations, even though buffer reset mode is enabled. 

ringBufferEnable 0 = disable, 1 = enable

This flag enables the streaming mode for the current encoder instance. Two 

streaming modes, packet-based streaming with ring-buffer (buffer-reset mode) 

and frame-based streaming with line buffer (buffer-flush mode), can be 

configured using this flag. When this field is set, packet-based streaming with 

ring-buffer is used. When this field is not set, frame-based streaming with 

line-buffer is used. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 23

 

i.MX5x VPU Driver API Reference

mp4Param Parameters for MPEG-4 part 2 Visual

h263Param Parameters for ITU-T H.263

avcParam Parameters for AVC

mjpgParam Parameters for MJPEG

userQpMin Sets the Minimum quantized step parameter for encoding process. -1 = disables 

this setting and the VPU uses the default minimum quantize step(Qp(H.264 12, 

MPEG-4/H.263 2). In MPEG-4/H.263 mode, the value of userQpMix shall be in 

the range of 1 to 31 and less than userQpMax. In H.264 mode, the value of 

userQpMix shall be in the range of 0 to 51 and less than userQpMax.

userQpMax Sets the maximum quantized step parameter for the encoding process. 

-1 = disables this setting and the VPU uses the default maximum quantized step. 

In MPEG-4/H.263 mode, the value of userQpMax shall be in the range of 1 to 31. 

In H.264 mode, the value of userQpMax shall be in the range of 0 to 51. 

userQpMin and userQpMax must be set simultaneously.

userQpMinEnable userQpMinEable equal to 1 indicates that macroblock QP, generated in rate 

control, is cropped to be bigger than or equal to userQpMin.

userQpMaxEnable userQpMaxEable equal to 1 indicates that macroblock QP, generated in rate 

control, is cropped to be smaller than or equal to userQpMax.

userGamma Smoothing factor in the estimation. A value for gamma is factor×32768, where the 

value for factor must be between 0 and 1. If the smoothing factor is close to 0, Qp 

changes slowly. If the smoothing factor is close to 1, Qp changes quickly. The 

default Gamma value is 0.75×32768.

RcIntervalMode Encoder rate control mode setting. The host sets the bitrate control mode 

according to the required case. The default value is 1.

0 = normal mode rate control

1 = FRAME_LEVEL rate control

2 = SLICE_LEVEL rate control

3 = USER DEFINED MB LEVEL rate control

MbInterval User defined Mbyte interval value. The default value is 2 macroblock rows. For 

example, if the resolution is 720×470, then the two macroblock row is 

2×(720/16) = 90. This value is used only when the RcIntervalMode is 3.

avcIntra16x16OnlyModeEnableAvc Intra 16x16 only mode. 0 = disable, 1 = enable

3.2.2.12 EncReportBufSize

typedef struct {

int sliceInfoBufSize; 

int mbInfoBufSize;

int mvInfoBufSize;

} EncReportBufSize;

Description



i.MX5x VPU Application Programming Interface Linux Reference Manual

24 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

Data structure to get the data report buffer size to start encoding from the encoder. Then the application 

allocates the memory according to the size information from the data report.

sliceInfoBufSize Buffer size for slice information

mbInfoBufSize Buffer size for MB information

mvInfoBufSize Buffer size for motion vector information

3.2.2.13 EncInitialInfo

typedef struct {

int minFrameBufferCount;

EncReportBufSize reportBufSize;

} EncInitialInfo;

Description

Data structure for parameters of vpu_EncGetInitialInfo() which are needed to get the initial information 

for encoder

minFrameBufferCount Minimum required buffer count in host applications. This returned value is used 

to allocate frame buffers in vpu_EncRegisterFrameBuffer()

reportBufSize Data report requested buffer size information

3.2.2.14 EncParam

typedef struct {

FrameBuffer * sourceFrame;

int encTopOffset;

int encLeftOffset;

int forceIPicture;

int skipPicture;

int quantParam;

PhysicalAddress picStreamBufferAddr;

int picStreamBufferSize;

int enableAutoSkip;

} EncParam;

Description

Data structure for configuring one frame encoding

encTopOffset The top offset for cropping from source image to be encoded

encLeftOffset The left offset for cropping from source image to be encoded

sourceFrame Frame buffer containing source image to be encoded

forceIPicture If this value is 0, the picture type is determined by the VPU according to the 

various parameters such as encoded frame number and GOP size.

If this value is 1, the frame is encoded as an I-picture regardless of the frame 

number or GOP size, and I-picture period calculation is reset to the initial state. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 25

 

i.MX5x VPU Driver API Reference

For MPEG-4 and H.263, I-picture is sufficient for decoder refresh. For H.264 

mode, the picture is encoded as an Instantaneous Decoding Refresh (IDR) picture.

This value is ignored if skipPicture = 1.

skipPicture If this value is 0, the encoder encodes the picture as normal.

If this value is 1, the encoder ignores sourceFrame and generates a skipped 

picture. In this case, the reconstructed image is a duplication of the previous 

picture. The skipped picture is encoded as P-type regardless of GOP size. 

quantParam This value is used for all quantization parameters in case of VBR (no rate control). 

The range of value is 1–31 for MPEG-4 and 0–51 for H.264. When rate control is 

enabled, this field is ignored.

picStreamBufferAddr Start address of a picture stream buffer under line-buffer mode and dynamic buffer 

allocation. This variable represents the start of a picture stream for encoded 

output. In buffer-reset mode, an application might use multiple picture stream 

buffers for the best performance. Using this variable, an application re-registers 

the start position of the picture stream while issuing a picture encoding operation. 

This start address of this buffer must be 4-byte aligned, and its size is specified by 

picStreamBufferSize. In packet-based streaming with ring-buffer, this variable is 

ignored. This variable is only meaningful when both line-buffer mode and 

dynamic buffer allocation are enabled. 

picStreamBufferSize Byte size of a picture stream chunk. This variable represents byte size of a picture 

stream buffer and is crucial in line-buffer mode because encoder output can be 

corrupted if this size is smaller than any picture encoded output. Therefore, this 

value should be big enough for storing multiple picture streams with average size. 

In packet-based streaming with ring-buffer, this variable is ignored. This variable 

specifies the picture stream buffer size for encoded output in line-buffer mode. 

enableAutoSkip The value 0 disables automatic skip and 1 enables automatic skip in encoder 

operation. Automatic skip means encoder can skip frame encoding when 

generated Bitstream so far is too big considering target bitrate. This parameter will 

be ignored if rate control is not used (bitRate = 0).

3.2.2.15 EncReportInfo

typedef struct {

int enable;

int type;

int size;

Uint8 *addr;

} EncReportInfo;

Description

Structure used for reporting encoder information

enable Data report enabled or disabled; type, size and addr are valid when this flag is 1

type Type of mvInfo or sliceInfo

size Data report size



i.MX5x VPU Application Programming Interface Linux Reference Manual

26 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

addr Saved report information address

3.2.2.16 EncOutputInfo

typedef struct {

PhysicalAddress bitstreamBuffer;

Uint32 bitstreamSize;

int bitstreamWrapAround;

int skipEncoded;

int picType;

int numOfSlices;

Uint32 *pSliceInfo; /* not used in i.MX5x */

Uint32 *pMBInfo; /* not used in i.MX5x */

Uint32 *pMBQpInfo; /* not used in i.MX5x */

EncReportInfo mbInfo;

EncReportInfo mvInfo;

EncReportInfo sliceInfo;

} EncOutputInfo;

Description

Data structure for reporting the results of picture encoding operations

bitstreamBuffer Physical address of the starting point of a newly encoded picture stream. If 

dynamic buffer allocation is enabled in line-buffer mode, this value is identical to 

the picture stream buffer address specified by the host application. 

bitstreamSize Byte size of the encoded bitstream

bitstreamWrapAround Flag for bitstream buffer wrap-around. When this flag is set, the bitstream buffer 

wrapped around and a larger buffer size is required.

skipEncoded 0 - Current Frame was encoded as non-skipped frame; 1 - Current Frame was 

encoded as skipped frame.

picType Picture type of the current decoded picture. This value has different meaning for 

different codecs:

For VC1 SP/MP: 0 = I picture, 1 = P picture, 2 = BI picture, 3 = B picture, 

4 = SKIPPED picture

For VC1 AP interlacing, picType contains two picture type information fields: 

bit[2:0] and bit[5:3] and the respective value has same meaning as SP/MP case: 

0 = I picture, 1 = P picture, 2 = BI picture, 3 = B picture, 4 = SKIPPED picture. 

For example, 0 = 000_000: both first and second field are I picture, 1 = 000_001: 

first field is I picture and second field is P picture

In other codec cases, 0 = I picture, 1 = P picture, 2 = B picture

numOfSlices Number of slices included in the newly encoded picture. When sliceReport in 

EncOpenParam is 0, this value is invalid

pSliceInfo Not used in the i.MX5x

pMBInfo Not used in the i.MX5x

pMBQpInfo Not used in the i.MX5x



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 27

 

i.MX5x VPU Driver API Reference

mbInfo MB information in the encoded picture. If the application does not give the 

ENC_SET_REPORT_MBINFO command to enable it before starting one frame 

encoding, this information is invalid.

mvInfo Motion vector information in the encoded picture. If the application does not give 

the ENC_SET_REPORT_MVINFO command to enable it before starting one 

frame encoding, this information is invalid.

sliceInfo Slice information in the encoded picture. If the application does not give the 

ENC_SET_REPORT_SLICEINFO command to enable it before starting one 

frame encoding, this information is invalid.

3.2.2.17 SearchRamParam

typedef struct {

PhysicalAddress searchRamAddr;

int SearchRamSize;

} SearchRamParam;

Description

Structure used when host processor sets ME search RAM start address. SearchRamSize is calculated by:

SearchRamSize = ((picWidth + 15) & ~15) × 36 + 2048

This amount of memory space should be reserved by the host application for ME operations.

3.2.2.18 DecParamSet

typedef struct {

Uint32 * paraSet;

int sizeInByte;

} DecParamSet;

Description

Structure used when the host processor requires to send SPS data or PPS data. The SPS data or PPS data 

is used in real applications as a type of out-of-band information.

3.2.2.19 DecOpenParam

typedef struct {

CodStd bitstreamFormat;

PhysicalAddress bitstreamBuffer;

int bitstreamBufferSize;

int qpReport;

int mp4DeblkEnable;

int reorderEnable;

int chromaInterleave;

int filePlayEnable;

int picWidth;

int picHeight;

int dynamicAllocEnable;

int streamStartByteOffset;

int mjpg_thumbNailDecEnable;



i.MX5x VPU Application Programming Interface Linux Reference Manual

28 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

PhysicalAddress psSaveBuffer;

int psSaveBufferSize;

int mp4Class;

} DecOpenParam;

Description

Data structure used to open a new decoder instance

bitstreamFormat Standard type of bitstream in decoder operation. One of codec standards 

defined in Section 3.2.1.5, “CodStd.”

bitstreamBuffer Start physical address of bit stream buffer from which the decoder retrieves 

the next bitstream. This address must be 4 byte-aligned. This variable is not 

valid in file-play mode with dynamic buffer allocation because in this case, 

the bitstream buffer can be dynamically re-allocated for multiple buffering.

bitstreamBufferSize Size in bytes of a buffer pointed by bitstreamBuffer This value must be a 

multiple of 1024. The maximum size is 16383×1024 bytes. This variable is 

not valid in file-play mode with dynamic buffer allocation because in this 

case, the bitstream buffer size is specified by the variable chunkSize.

qpReport Not used in the i.MX5x

mp4DeblkEnable 0 = disable, 1 = enable and in MPEG4 and H.263 (post-processing) modes, 

the decoder applies MPEG-4 deblocking filtered output to the host 

application

reorderEnable 1 = enables display buffer reordering when decoding H.264 streams. In 

H.264 mode, the output decoded picture is re-ordered if pic_order_cnt_type 

is 0 or 1 and the decoder must delay the output display for re-ordering. 

However, some applications (such as video telephony) do not require such 

display delay. The host may set this flag to 0 to disable output display buffer 

reordering. Then the BIT processor does not re-order the output buffer when 

pic_order_cnt_type is 0 or 1. If pic_order_cnt_type is 2 or in MPEG4 or 

H.263 modes, this flag is ignored because output display buffer reordering 

is not allowed.

chromaInterleave 0 = CbCr not interleaved, 1 = CbCr interleaved

filePlayEnable 0 = disable, 1 = enable and file-play mode is enabled for decoder 

operations. File-play mode means applications provide the chunk size and 

reset the write pointer at each frame processing.

picWidth Horizontal picture size read from the file format header used for codecs for 

which the picture size is not available in the bitstream, for example 

Divx3.11. 

picHeight Vertical picture size read from the file format header used for codecs for 

which the picture size is not available in the bitstream, for example 

Divx3.11.

dynamicBuffAllocEnable 1 = dynamic buffer allocation enabled under file-play mode for decoder 

operations. When enabled, the buffer start address specified in 

bitstreamBuffer is ignored in decoder operations and the picture buffer start 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 29

 

i.MX5x VPU Driver API Reference

address is specified in DecParam: picStreamBufferAddr, at every call of 

vpu_DecStartOneFrame().

0 = disable, picture buffer start address given by bitstreamBuffer is used in 

decoder operation, even though file-play mode is enabled. 

streamStartByteOffset Start byte offset of the stream buffer. Since the VPU has an internal 

limitation that the stream buffer start address must be 4-byte aligned, the 

host application may be required to copy the stream data to an 4-byte 

aligned buffer. This offset allows this overhead to be saved. This offset 

should be between 0 and 7.

mjpg_thumbNailDecEnable 0 = disable, 1 =  enable and the MJPEG decoder decodes a thumbnail 

image. This variable is only valid in STD_MJPG mode. 

psSaveBuffer Start address of the PS (SPS/PPS) save buffer which the decoder saves PS 

(SPS/PPS) RBSP. This address must be 4 byte-aligned. This variable is only 

valid for H.264 decoder mode.

psSaveBufferSize Size in bytes of a buffer pointed to by psSaveBuffer. This value must be a 

multiple of 1024. The maximum size is 65565×1024 bytes. This variable is 

only valid when decoding H.264 streams.

mp4Class MPEG4 class when codec is MPEG4 type

0 = MPEG-4; 1 = DivX 5.0 or higher; 2 = Xvid; 5 = DivX 4.0

3.2.2.20 DecReportBufSize

typedef struct {

int frameBufStatBufSize;

int mbInfoBufSize; 

int mvInfoBufSize; 

} DecReportBufSize;

Description

Data structure to get data report buffer size to start decoding from the decoder. Then user can allocate 

memory according to the size information for data report.

frameBufStatBufSize Buffer size to save frame buffer status

mbInfoBufSize Buffer size to save MB information for error concealment

mvInfoBufSize Buffer size to save Motion Vector information

3.2.2.21 DecInitialInfo

typedef struct {

int picWidth;

int picHeight;

Uint32 frameRateInfo;

Rect picCropRect;

int mp4_dataPartitionEnable;

int mp4_reversibleVlcEnable;

int mp4_shortVideoHeader;

int h263_annexJEnable;



i.MX5x VPU Application Programming Interface Linux Reference Manual

30 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

int minFrameBufferCount;

int frameBufDelay;

int nextDecodedIdxNum;

int normalSliceSize;

int worstSliceSize;

int mjpg_thumbNailEnable;

int mjpg_sourceFormat;

int streamInfoObtained;

int profile;

int level;

int interlace;

int constraint_set_flag[4];

int direct8x8Flag;

int vc1_psf;

int aspectRateInfo;

Uint32 errorcode;

DecReportBufSize reportBufSize;

} DecInitialInfo;

Description

Data structure to get information necessary to start decoding

picWidth Horizontal picture size in pixels. This width value is used when allocating 

decoder frame buffers. In some cases, this returned value, the display picture 

width declared on the stream header, should be modified before allocating the 

frame buffers. When the picture width is not a multiple of 16, the picture 

width for buffer allocation should be re-calculated from the declared display 

width as: picBufWidth = ((picWidth + 15)/16) × 16,

where picBufWidth is the horizontal picture buffer width. When picWidth is 

a multiple of 16, picWidth = picBufWidth.

picHeight Vertical picture size in pixels. This height value is used when allocating 

decoder frame buffers. In some cases, this returned value, the display picture 

height declared on the stream header, should be modified before allocating the 

frame buffers. When the picture height is not a multiple of 16, the picture 

height for buffer allocation should be re-calculated from the declared display 

height as: picBufHeight = ((picHeight + 15)/16) × 16,

where picBufHeight is the vertical picture buffer height. When picHeight is a 

multiple of 16, picHeight = picBufHeight.

frameRateInfo The 16 least significant bits, [15:0] is a numerator and 16 most significant bits 

[31:16], is a denominator for calculating the frame rate. The numerator is the 

clock ticks per second, and the denominator is the clock ticks between frames 

minus 1. So the frame rate can be defined by (numerator/(denominator + 1)), 

which equals to (frameRateInfo & 0xffff) /((frameRateInfo >> 16) + 1).

For example, the value of 30 for frameRateInfo represents 30 frames/sec, and 

the value of 0x3e87530 represents 29.97 frames/sec.

picCropEnable Indicates if picCropRect is valid. If picCropEnable = 0,the picCropRect 

should be ignored. picCropEnable = 1, there is cropping rectangle 

information picCropRect.



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 31

 

i.MX5x VPU Driver API Reference

picCropRect Picture cropping rectangle information. If picCropEnable = 0, this field is 

invalid. This structure specifies the cropping rectangle information only for a 

H.264 decoder. The size and position of the cropping window in a full frame 

buffer is presented in this structure. This structure is only valid for H.264 

decoder mode. 

mp4_dataPartitionEnable 0 = disable, 1 = enable

mp4_reversibleVlcEnable 0 = disable, 1 = enable

mp4_shortVideoHeader 0 = disable, 1 = enable

H263_annexJEnable 0 = disable, 1 = enable

minFrameBufferCount Minimum number of frame buffers required for decoding. The application 

must allocate at least this number of frame buffers and register those number 

of buffers to the VPU using vpu_DecRegisterFrameBuffer() before 

decoding pictures.

frameBufDelay Maximum display frame buffer delay for buffering decoded picture reorder. 

The VPU may delay decoded picture displays for display reordering H.264 

mode, when pic_order_cnt_type is 0 or 1 and for B-frame handling in VC-1 

decoder. (By default, some H.264 encoder set pic_order_cnt_type to 0 or 1, 

but in BP applications, this setting is not actually used in practice.)

nextDecodedIdxNum Maximum number of indexes which are returned after decoding one frame. 

the VPU may return 1 for MPEG-4, H.264, Divx and MPEG-2 cases. For 

VC-1 decoding only, this variable may have a value between 1 and 3.

normalSliceSize Recommended size of buffer to save slice in normal case. Value is determined 

by a quarter of the memory size of one raw YUV image in Kbytes.

worstSliceSize Recommended size of buffer used to save slice in worst case. Value is 

determined by half of the memory size for one raw YUV image in Kbytes.

mjpg_thumbNailEnable 0 = disable, 1 = enable and the stream which is decoded as thumbnail

mjpg_sourceFormat The chroma format of encoded image of the stream. The format defines the 

chrominance size of the source image and can be a value between 0 and 4.

0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0

streamInfoObtained Set to zero so the stream information cannot be obtained in the current 

firmware. It is true always on i.MX5x.

profile Profile information in the stream. And this value is used as bellows.

H.264 : profile_idc, 

Vc1 : 0~2 (SMTPE reserved), 3(advanced profile), 

MP2 : 3'b101: Simple, 3'b100: Main, 3'b011: SNR Scalable, 3'b10: Spatially 

Scalable, 3'b001: High

MP4 : If VOS header is existed, 8'b00000000: Simple Profile, 8’b00001000: 

Advanced coding efficiency; 8'b00001111: Advanced Simple Profile;

If there is only VOL header, 8'b00000001: Simple Profile, 8'b00001100: 

Advance coding efficiency, 8'b00010001: Advanced Simple Profile.



i.MX5x VPU Application Programming Interface Linux Reference Manual

32 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

Real Video : 8 (version 8), 9 (version 9), 10 (version 10)

level Level information in the stream. And this value is used as bellows.

H.264 : level_idc, 

Vc1 : level, 

MP2 : 4'b1010: Low, 4'b1000: Main, 4'b0110: High 1440, 4'b0100: High

MP4 : If VOS header is existed(high bit is 1, 8’b10000000), 4'b0000 or 

4’b1000: L0, 4'b0001: L1, 4'b0010: L2, 4'b0011: L3...; If There is VOS 

header, level cannot be gotten.

Real Video : N/A (real video does not have level info).

interlace Interlace information in the stream.

0 = only progressive frames in the stream, 1 = may have interlaced frame in 

stream.

constraint_set_flag Syntax element in H.264, used to make level in H.264. Ignored in other 

standards.

direct8x8Flag H.264 SPS syntax element and used in B picture. 

vc1_psf PSF information in VC1 stream information.

aspectRateInfo Aspect rate information in stream information. If the value is 0, then aspect 

ratio information is not present.

[H.264] - if aspectRateInfo [31:16] is 0, aspectRateInfo [7:0] means 

aspect_ratio_idc. Otherwise, AspectRatio means Extended_SAR.

sar_width = aspectRateInfo [31:16],

sar_height = aspectRateInfo [15:0]

[VC-1]- Aspect Width = aspectRateInfo [31:16], 

Aspect Height = aspectRateInfo [15:0]

[MP4] - This value is index of Table 6-12 in ISO/IEC 14496-2

[MP2] - This value is index of Table 6-3 in ISO/IEC 13818-2. It is determined 

by half of the memory size for one raw YUV image in KB unit.

reportBufSize Data report requested buffer size information

3.2.2.22 DecAvcSliceBufInfo

typedef struct {

PhysicalAddress sliceSaveBuffer;

int sliceSaveBufferSize;

} DecAvcSliceBufInfo;

Description

Data structure used when the host application transfers H.264 decoder slice save buffer information



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 33

 

i.MX5x VPU Driver API Reference

sliceSaveBuffer Start address of slice save buffer which the decoder can save slice RBSP. This 

address must be 4 byte-aligned. This variable is only valid for H.264 decoder.

sliceSaveBufferSize Size in bytes of a buffer pointed by sliceSaveBuffer. This value must be a multiple 

of 1024. The maximum size is 65535×1024 bytes. This variable is only valid for 

H.264 decoder.

3.2.2.23 DecBufInfo

typedef struct {

DecAvcSliceBufInfo avcSliceBufInfo;

DecMaxFrmInfo maxDecFrmInfo;

} DecBufInfo;

Description

Data structure used when the host application transfers additional buffer information except frame buffer

avcSliceBufInfo Start address and size of slice save buffer which the decoder can save slice RBSP. 

This variable is only valid for H.264 decoder.

maxDecFrmInfo Maximum supported info of frame buffer.

3.2.2.24 DecParam

typedef struct {

int prescanEnable;

int prescanMode;

int dispReorderBuf;

int iframeSearchEnable;

int skipframeMode;

int skipframeNum;

int chunkSize;

int picStartByteOffset;

PhysicalAddress picStreamBufferAddr;

}DecParam;

Description

Data structure for picture decoding options

prescanEnable 0 = disable, 1 = enable

If this option is enabled, the decoder performs scanning stream buffers to check 

whether a full picture stream exists or not. If there is no full picture stream, 

decoding picture is not initiated. This option is provided to prevent the decoder 

from hanging. When multiple picture decoding is needed, for example, for the first 

picture decoding with display reordering enabled, pre-scan does not prevent 

decoder hanging. So in this cases, it is recommended to disable this option.

prescanMode Operation mode of decoder after pre-scan detects a full picture stream

0 = Start decoding, 1 = Returns without decoding

If this option is enabled, the decoder returns without picture decoding even though 



i.MX5x VPU Application Programming Interface Linux Reference Manual

34 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

there is a full picture stream in the stream buffer. This option is provided for 

general usage of pre-scan option as a useful tool for stream buffer check.

iframeSearchEnable 0 = disable, 1 = enable and the decoder performs skipping frame decoding until 

decoder meets an I (IDR) frame. If there is no I frame in the stream, the decoder 

waits for a I (IDR) frame. If skipframeNum is n, the decoder seeks the (n + 1)th I 

(IDR) frame. When decoder meets an EOS (End Of Sequence) code during 

I-Search, the decoder returns –1 (0xFFFF). If this option is enabled, 

prescanEnable, prescanMode and skipframeMode options are ignored.

skipframeMode Skip frame function enable and operation mode: 

0 = skip frame disable

1 = skip frame enabled (skip frames but I (IDR) frame)

2 = skip frame enabled (skip any frames)

If this option enabled, the decoder skip decoding as many as skipframeNum 

frames. If skipframNum is 1, the prescan function is enabled and prescanMode is 

0. After the decoder skips frames, the decoder returns decoded index –2 (0xFFFE) 

when decoder does not have any frames displayed. When decoder meets EOS 

(End Of Sequence) code during frame skip, the decoder returns –1 (= 0xFFFF). If 

this option is enabled, prescanEnable and prescanMode options are ignored.

skipframeNum Number of skip frames. If the iframeSearchEnable option is enabled, this number 

is the number of skipping I (IDR) frame. If the iframeSearchEnable option is 

disabled and the skipframeMode option is enabled, this number is the number of 

skipping frames. When this number is 0, the skipframeMode option is disabled.

chunkSize Byte size of a picture stream to be decoded. This variable represents the byte size 

of a picture stream, and can be read from file container header field. This variable 

is crucial in file-play mode operation. In packet-based streaming with ring-buffer, 

this variable is ignored. When this number is 0, skipframeMode option is disabled.

picStartByteOffset Start byte offset of the picture stream buffer. Since the VPU has an internal 

limitation that stream buffer start address must be 4-byte aligned, the host may be 

required to copy the stream data to a separate 4-byte aligned buffer. This offset 

allows this overhead to be saved. This offset should be between 0 and 3.

picStreamBufferAddr Physical address of the start address of the picture stream buffer in file-play mode

This variable represents the start of a picture stream to be decoded. In file-play 

mode, the application might use multiple picture stream buffers for the best 

performance. Using this variable, the application can re-register the start position 

of the picture stream while issuing a picture decoding operation. The start address 

of this buffer must be 4-byte aligned, and its size is specified in the variable, 

chunkSize. This variable is only meaningful when both file-play mode and 

dynamic buffer allocation are enabled.

3.2.2.25 DecReportInfo

typedef struct {

int enable;

int size;



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 35

 

i.MX5x VPU Driver API Reference

union {

int mvNumPerMb;

int userDataNum;

};

union {

int reserved;

int userDataBufFull;

};

Uint8 *addr;

} DecReportInfo;

Description

Data structure of data report information in the decoded frame

enable Data report enable or disable. Other parameters in this structure are valid when 

this flag is 1.

size Data report size

mvNumPerMb Motion vector number per macro block for mvInfo data report

userDataNum User data number for user data report

userDataBufFull User data buffer full indication for user data report. User may allocate more buffer 

space if this flag is 1

addr Address saved report information

3.2.2.26 DecOutputInfo

typedef struct {

int indexFrameDisplay;

int indexFrameDecoded;

int picType;

int numOfErrMBs;

PhysicalAddress qpInfo;

int hScaleFlag;

int vScaleFlag;

int indexFrameRangemap;

int prescanresult;

int notSufficientPsBuffer;

int notSufficientSliceBuffer;

int decodingSuccess;

int interlacedFrame;

int mp4PackedPBframe;

int h264Npf;

int pictureStructure;

int topFieldFirst;

int repeatFirstField;

union {

int progressiveFrame;

int vc1_repeatFrame;

};

int fieldSequence;

int decPicHeight;

int decPicWidth;

Rect decPicCrop;

DecReportInfo mbInfo;



i.MX5x VPU Application Programming Interface Linux Reference Manual

36 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

DecReportInfo mvInfo;

DecReportInfo frameBufStat;

DecReportInfo userData;

} DecOutputInfo;

Description

Data structure to get information resulting from decoding a frame.

indexFrameDisplay Frame buffer index of a picture to be displayed among frame buffers which were 

registered using vpu_DecRegisterFrameBuffer(). Frame data to be displayed 

is stored into the frame buffer specified by this index. When a delay in display 

does not exist, this index always is the same as indexFrameDecoded. But if not, 

(for example, display reordering in AVC or B-frames in VC-1), this index is not 

the same value with indexFrameDecoded. If the decoder cannot provide a 

display output at the beginning of sequence decoding with different display 

order, this index always has –2 (0xFFFE) or –3 (0xFFFD) depending on the 

decoder skip option. And at the end of sequence decoding, if there is no more 

output for display, this value has –1 (0xFFFF). By checking this index, the host 

application can easily know whether sequence decoding has finished or not. 

indexFrameDecoded Frame buffer index of decoded picture among frame buffers which were 

registered using vpu_DecRegisterFrameBuffer(). A decoded frame during 

current picture decoding operation is stored into the frame buffer specified by 

this index. If decoder meets EOS or skip, the decoder return –1 (0xFFFF) to 

represent that no decoded output is generated. Because of delays in display, the 

return value of –1 does not mean end of decoding. In order to check the end of 

decoding, the host application should refer to indexFrameDisplay.

picType Picture type of the decoded picture

0 = I picture, 1 = P picture, 2 = B picture

For H.264, Bit[0] indicates IDR frame. 0 = current frame is IDR. 1 = non-IDR 

frame. If 0, the Bit[2:1] should be ingored. If 1 of bit[0], bit[2:1] represents the 

slice types of current picture. 0 = I-slice, 1 = P-slice, 2 = B-slice.The actual 

value is the value of the ORed value of all slices of current picture.

numOfErrMBs Number of erroneous macroblocks while decoding a picture

qpInfo Not used in the i.MX5x

hScaleFlag Flag for reduced resolution output in horizontal direction. For VC1 decoding, 

the resulting picture width from the decoder may be half the decoded picture 

width. In this case, this flag is set, and the host application should scale up the 

picture by two times in the horizontal direction to get proper display output.

vScaleFlag Flag for reduced resolution output in vertical direction. For VC1 decoding, the 

resulting picture height from the decoder may be half the decoded picture 

height. In this case, this flag is set, and the host application should scale up this 

picture by two times in the vertical direction to get proper display output.

indexFrameRangemap Not used in the i.MX5x



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 37

 

i.MX5x VPU Driver API Reference

prescanResult 0 = incomplete picture stream, 1 = full picture stream exists, 2 = pre-scan 

disabled. If the application enables pre-scan mode for running a picture 

decoding task, then it should check this flag first. If this flag is equal to 0, all the 

other output information has no meaning and the application should ignore all 

output information. Only if prescanResult is greater than 0 is the other output 

information meaningful for the application. 

notSufficientPsBuffer Flag that represents whether PS (SPS/PPS) save buffer is sufficient to decode 

the current picture. The VPU does not get the last part of the current picture 

stream because of buffer overflow. The host must close the current instance 

because the picture streams cannot be decoded properly because of loss of 

SPS/PPS data.

notSufficientSliceBuffer Flag that represents whether slice save buffer is sufficient to decode the current 

picture. The VPU does not get the last part of the current picture stream, and 

macroblock errors are issues because of buffer overflow. The host can continue 

decoding the remaining pictures of the current input stream without closing the 

current instance, even though several pictures can be error-corrupted.

decodingSuccess 0 = incomplete finish of decoding process, 1 = complete finish of decode 

process. This variable means that the decoding process is finished completely. 

If stream has errors in the picture header syntax or the first slice header syntax 

of H.264 stream, The VPU does not initiate the MB decoding routine and 

returns immediately. In this case, the VPU returns 0 which means incomplete 

finish of decoding process.

interlacedFrame 0 = progressive frame which consists of one frame picture

1 = interlaced frame which consists of two field picture (top field and bottom 

field);

This variable indicates that the frame is the interlaced frame. If this value is set, 

the host application may use a de-interlacing filter to enhance image quality.

mp4PackedPBframe 0 = normal frame chunk data, 1 = packed PB frame chunk data.

This variable indicates that the frame chunk data is a packed PB frame chunk. 

If this value is set, the host application must re-use this chunk in the next 

decoding command. This variable is only valid for MPEG-4 file-play mode.

h264Npf Flag indicate that a top or bottom field is absent when NPF is occurred in 

display picture.

PictureStructure Picture structure in picture coding ext in MP2, interlaced in Video Object Layer 

in MP4, MBAFF (MB Adaptive frame/field mode) flag in H.264, FCM in 

picture header in VC1.

topFieldFirst 0 = Bottom field first, 1 = Top field first. Ignored if interlacedFrame is 0.

repeatFirstField Repeat first field for repeat counter

progressiveFrame Progressive_frame in picture coding extention in MP2. 

vc1_repeatFrame 0 = not repeat frame, 1 = repeat frame

fieldSequence Field sequence in picture extension of MP2



i.MX5x VPU Application Programming Interface Linux Reference Manual

38 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

decPicHeight Picture height of current decoded frame

decPicWidth Picture width of current decoded frame. For MJPEG decoding, the 

decPicHeight and decPicWidth are the size of the decoded rotator frame saved 

in the rotation frame buffer that is registered by the SET_ROTATOR_OUTPUT 

command. The VPU supports the changed resolution decoding. The VPU only 

supports the changed resolution not larger than the original size. For example, 

the changed sequence of VGA > QVGA > VGA is supported

decPicCrop Picture crop information of current decoded frame. Only effective with the 

H.264 decoder.

mbInfo MB information in the decoded picture. If the application does not give the 

DEC_SET_REPORT_MBINFO command to enable the report before starting 

one frame decoder, this information is invalid.

mvInfo Motion vector in the decoded picture. If the application does not give the 

DEC_SET_REPORT_MBINFO command to enable the report before starting 

one frame decoder, this information is invalid.

frameBufStat Frame status in the decoded picture. If the application does not give the 

DEC_SET_REPORT_BUFSTAT command to enable the report before starting 

one frame decoder, this information is invalid.

userData Motion vector in the decoded picture. If the application does not give the 

DEC_SET_REPORT_USERDATA command to enable the report before 

starting one frame decoder, this information is invalid.

3.2.2.27 vpu_versioninfo

typedef struct {

int fw_major; /* firmware major version */

int fw_minor; /* firmware minor version */

int fw_release; /* firmware release version */

int lib_major; /* library major version */

int lib_minor; /* library minor version */

int lib_release; /* library release version */

} vpu_versioninfo;

Description

Data structure to get the VPU firmware and library version

fw_major, fw_minor, fw_release Firmware version, naming convention is similar to Linux kernel

lib_major, lib_minor, lib_release VPU library version, naming convention is similar to Linux kernel

3.2.2.28 VPUMemAlloc

typedef struct {

int size;

unsigned long phy_addr;

unsigned long cpu_addr;

unsigned long virt_uaddr;

} vpu_mem_desc;



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 39

 

i.MX5x VPU Driver API Reference

Description

Data structure used when the host application allocates physically contiguous memory for the VPU

size Requested memory size

phy_addr Physical base address of the buffer allocated by driver if allocated successfully

cpu_addr Kernel virtual address corresponding to phy_addr, the programmer of the user-space 

application does not need to care about this

virt_uaddr User-space virtual address corresponding to phy_addr, which the host application can 

access

3.2.2.29 iram_t 

typedef struct iram_t {

unsigned long start;

unsigned long end;

} iram_t;

Description

start Start address of internal memory for VPU use

end End address of internal memory for VPU use

3.3 API Definitions

This section provides a description of the i.MX5x VPU API definitions.

3.3.1 Overview

This section provides an overview of the VPU API definitions. The basic API architecture is presented as 

well as the operation flow of both decoder and encoder based VPU API functions.

3.3.1.1 Basic Architecture

The i.MX5x VPU API has the following three basic categories:

• Control API—API functions for general control of the VPU such as initialization

• Decoder API—API functions for VPU decoding operations

• Encoder API—API functions for VPU encoding operations

The i.MX5x VPU API functions are based on a frame-by-frame picture processing scheme. To run a 

picture decoder or encoder, the application calls a API function and after completion the processing, the 

application can check the results of the picture processing. 

To support multi-instance decoding and encoding, the i.MX5x VPU API functions use a handle for specify 

a certain instance. The handle for each instance is provided when the application creates a new decoder or 

encoder instance. If the application wants to give a command to a specific instance, the corresponding 

handle is used in every API function call for that instance.



i.MX5x VPU Application Programming Interface Linux Reference Manual

40 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

3.3.1.2 Decoder Operation Flow

To decode a bitstream, the application completes the following steps:

1. Call vpu_Init() to initialize the VPU

2. Open a decoder instance using vpu_DecOpen()

3. To provide the proper amount of bitstream, get the bitstream buffer address using 

vpu_DecGetBitstreamBuffer()

4. After transferring the decoder input stream, inform the amount of bits transferred into the 

bitstream buffer using vpu_DecUpdateBitstreamBuffer()

5. Before starting a picture decoder operation, get the crucial parameters for decoder operations such 

as picture size, frame rate, required frame buffer size using vpu_DecGetInitialInfo()

6. Using the returned frame buffer requirement, allocate the proper size of the frame buffers and 

convey this data to the i.MX5x VPU using vpu_DecRegisterFrameBuffer()

7. Start a picture decoder operation picture-by-picture using vpu_DecStartOneFrame()

8. Wait for the completion of the picture decoder operation interrupt event

9. Check the results of the decoder operation using vpu_DecGetOutputInfo()

10. After displaying nth frame buffer, clear the buffer display flag using vpu_DecClrDispFlag()

11. If there is more bitstream to decode, go to Step 7, otherwise e go to the next step

12. Terminate the sequence operation by closing the instance using vpu_DecClose()

13. Call vpu_UnInit() to release the system resources



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 41

 

i.MX5x VPU Driver API Reference

The decoder operation flow is shown in Figure 4.

Figure 4. Decoder Operation Flow

vpu_Init()

vpu_DecStartOneFrame()

vpu_DecRegisterFrameBuffer()

vpu_DecSetEscSeqInit(handle,1)
vpu_DecGetInitialInfo()
vpu_DecSetEscSeqInit(handle,0)

vpu_DecUpdateStreamBuffer()

vpu_DecOpen()

vpu_IsBusy()?

vpu_DecGetOutputInfo()

Exit?

Process output picture
E.g, show on display or save to 

mem

vpu_DecClrDisp()

vpu_DecClose()

vpu_DecGetBittreamBuffer()

vpu_DecUpdateBitstream
Buffer()

Line-buffer mode?

Set  bit steam to 
bitstreambuffer start address

Lack of bitstream?

vpu_DecUpdateBitstream
Buffer(handle, 0)

Fill bit stream ring buffer

End of stream?

No

No

Yes

No

Yes

No

Yes

Decode finished?

No

Yes

vpu_UnInit()

End

Yes

Yes

Line-buffer mode?

No

Yes

No



i.MX5x VPU Application Programming Interface Linux Reference Manual

42 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

3.3.1.3 Encoder Operation Flow

To encode a bitstream, the application completes the following steps:

1. Call vpu_Init() to initialize the VPU

2. Open a encoder instance using vpu_EncOpen()

3. Before starting a picture encoder operation, get crucial parameters for encoder operations such as 

required frame buffer size using vpu_EncGetInitialInfo()

4. Using the returned frame buffer requirement, allocate size of frame buffers and convey this 

information to the VPU using vpu_EncRegisterFrameBuffer()

5. Generate high-level header syntaxes using vpu_EncGiveCommand()

6. Start picture encoder operation picture-by-picture using vpu_EncStartOneFrame()

7. Wait the completion of picture encoder operation interrupt event

8. After encoding a frame is complete, check the results of encoder operation using 

vpu_EncGetOutputInfo()

9. If there are more frames to encode, go to Step 4, otherwise go to the next step

10. Terminate the sequence operation by closing the instance using vpu_EncClose()

11. Call vpu_UnInit() to release the system resources



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 43

 

i.MX5x VPU Driver API Reference

The encoder operation flow is shown in Figure 5. 

Figure 5. Encoder Operation Flow

vpu_Init()

vpu_EncStartOneFrame()

vpu_EncGiveCommand()

vpu_EncGetInitialInfo()

vpu_EncOpen()

vpu_IsBusy()?

vpu_EncGetOutputInfo()

Exit?

Process output data

vpu_EncClose()

Copy source data to source 
frame buffer

No

Yes

vpu_UnInit()

End

Yes

vpu_EncRegisterFrameBuffer()

Left source data?

Yes

No

No



i.MX5x VPU Application Programming Interface Linux Reference Manual

44 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

3.3.2 Control API

The following sections describe the control API functions.

3.3.2.1 vpu_Init()

Prototype

RetCode vpu_Init();

Parameter

None

Return Value

RETCODE_SUCCESS VPU initialized successfully

RETCODE_FAILURE VPU initialization unsuccessful

Description

This function initializes the VPU hardware and proper data structures/resources. The application must call 

this function before using the VPU. If the VPU hardware is initialized after boot at first usage, the VPU 

library does not need to initialize the hardware again, for example, there is no need to load the firmware 

again. This is transparent to the application.

3.3.2.2 vpu_UnInit()

Prototype

void vpu_UnInit();

Parameter

None

Description

This function deinitializes the VPU hardware and releases the resources that are allocated in the vpu_Init() 

function. The application must call this function before exiting.

3.3.2.3 vpu_IsBusy()

Prototype

RetCode vpu_IsBusy();

Parameter

None

Return Value

0 VPU hardware is idle

1 VPU hardware is busy processing a frame



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 45

 

i.MX5x VPU Driver API Reference

Description

This function tells the application if decoder or encoder frame processing is completed or not at any time.

3.3.2.4 vpu_WaitForInt()

Prototype

int vpu_WaitForInt(int timeout_in_ms);

Parameter

timeout_in_ms [input] wait time in milliseconds

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

The application waits for the decoder or encoder to completed the interrupt. This function returns 

immediately if the interrupt has been received, otherwise, it returns after timeout_in_ms.

3.3.2.5 vpu_GetVersionInfo()

Prototype

RetCode vpu_GetVersionInfo(vpu_versioninfo * verinfo);

Parameter

verinfo [output] The pointer to vpu_versionInfo data

Return Value

RETCODE_SUCCESS Version information acquired successfully 

RETCODE_FAILURE Current firmware does not contain any version information

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application 

should initialize VPU by calling vpu_Init() before calling this 

function.

Description

This function provides the version information running on the system to the application.

3.3.2.6 IOGetPhyMem()

Prototype

int IOGetPhyMem(vpu_mem_desc * buff);

Parameter

buff [input] Pointer to memory information stored in allocated memory. The user needs 

to input buff > size, then buff > phy_addr is outputted after return success.



i.MX5x VPU Application Programming Interface Linux Reference Manual

46 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function allocates physically contiguous memory. When the application calls this function, the driver 

allocates physically contiguous memory. 

3.3.2.7 IOFreePhyMem()

Prototype

int IOFreePhyMem(vpu_mem_desc * buff);

Parameter

buff [input] Pointer to memory information stored in allocated memory. The user needs 

to input buff > size, then buff > phy_addr is outputted after return success.

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function frees the physical memory allocated by IOGetPhyMem back to the system. 

3.3.2.8 IOGetVirtMem()

Prototype

int IOGetVirtMem(vpu_mem_desc * buff);

Parameter

buff [input] Pointer to memory information stored in allocated memory. The user needs 

to input buff > size, then buff > phy_addr is outputted after return success.

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function gets the virtual address of the given physical address. If the allocated physical continuous 

memory needs to be accessed in user space, this function is used to map physical memory.

3.3.2.9 IOFreeVirtMem()

Prototype

int IOFreeVirtMem(vpu_mem_desc * buff);



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 47

 

i.MX5x VPU Driver API Reference

Parameter

buff [input] Pointer to memory information stored in allocated memory. The user needs 

to input buff > size, then buff > phy_addr is outputted after return success.

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function is used to un-map physical memory to user space.

3.3.2.10 IOGetIramBase()

Prototype

int IOGetIramBase(iram_t * iram);

Parameter

iram [input] Pointer to memory information that stores the internal memory

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function is used to get the internal memory information for search RAM, including the start address 

and available size. The returned information is used in the ENC_SET_SEARCHRAM_PARAM 

command.

3.3.2.11 vpu_SWReset()

Prototype

RetCode vpu_SWReset(DecHandle handle, int index);

Parameter

handle [input] An encoder/decoder handle obtained from 

vpu_EncOpen()/vpu_DecOpen()

index [input] The index of instance will be reset

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function resets the instance specified by the handle or index. Host application can use this function 

with two methods: 



i.MX5x VPU Application Programming Interface Linux Reference Manual

48 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

1) Calling with handle parameter. If handle is given, the index parameter will be ignored automatically. 

2) Calling with index parameter. This method is for special case in which the application exists without 

instance closed and the resouces need to be released and the host knows the index of instance exactly.

In normal case, it’s encouraged to reset VPU with a specified handle. You should know what you are doing 

exactly if resetting VPU with an index parameter not a handle.

3.3.3 Encoder API

The following sections describe the encoder API functions.

3.3.3.1 vpu_EncOpen()

Prototype

RetCode vpu_EncOpen(EncHandle * pHandle, EncOpenParam * pop);

Parameter

pHandle [output] Pointer to EncHandle type variable which specifies instance for an 

application. If no instance is available, a null handle is returned.

pop [input] Pointer to a EncOpenParam type structure which describes the parameters 

for the new encoder instance.

Return Value

RETCODE_SUCCESS New encoder instance opened successfully 

RETCODE_FAILURE New encoder instance not opened successfully. If there is no free 

instance available, this value is returned in the function call.

RETCODE_INVALID_PARAM Given argument parameter, pop, is invalid—it has a null pointer or 

contains improper values for some member variables. 

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application must 

initialize VPU by calling vpu_Init() before calling this function. 

Description

To start a new encoder operation, the application must open a new instance for this encoder operation. By 

calling this function, the application gets a handle specifying a new encoder instance. Because the i.MX5x 

VPU supports multiple instances of codec operations, the application needs this kind of handle for the all 

running codec instances. Once the application received a handle, the application uses this handle to 

represent the target instances for all subsequent encoder-related operations.

3.3.3.2 vpu_EncClose()

Prototype

RetCode vpu_EncClose(EncHandle handle);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 49

 

i.MX5x VPU Driver API Reference

Return Value

RETCODE_SUCCESS Encoder instance closed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be returned if handle has not been obtained by 

vpu_EncOpen(), for example a decoder handle, or if handle is of an 

instance which has been closed.

RETCODE_FRAME_NOT_COMPLETE

Frame decoding or encoding operation is not completed yet, so the 

API function call cannot be performed at this time. A frame encoding 

or decoding operation should be completed by calling 

vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even 

though the result of the current frame operation is not necessary, the 

application should call vpu_EncGetOutputInfo() or 

vpu_DecGetOutputInfo() to proceed with this function call. 

RETCODE_FAILURE_TIMEOUTHardware is already busy with other operation and unavailable for 

current API calling.

Description

This function is called by the application to close an instance when the application completes the encoding 

operations and wants to release this instance for other processing. After completion of this function call, 

the instance referred to by handle is free. Once the application closes an instance, the application cannot 

call any further encoder-specific function with this handle before re-opening a new instance with the same 

handle.

3.3.3.3 vpu_EncGetInitialInfo()

Prototype

RetCode vpu_EncGetInitialInfo(EncHandle handle, EncInitialInfo * info);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

info [output] Pointer to a EncInitialInfo type structure which describes the 

parameters required before starting encoder operations

Return Value

RETCODE_SUCCESS Receiving the initial parameters completed successfully

RETCODE_FAILURE There is an error getting the configuration information for the encoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be returned if handle has not been obtained by 

vpu_EncOpen(), for example a decoder handle, or if handle is of an 

instance which has been closed.

RETCODE_INVALID_PARAM The given argument parameter, info, is invalid—it has a null pointer 

or contains improper values for some member variables.



i.MX5x VPU Application Programming Interface Linux Reference Manual

50 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API 

function for a given instance are not allowed. The encoder initial 

information has already been received, so this function call is 

meaningless and not allowed.

RETCODE_FAILURE_TIMEOUTHardware is already busy with other operation and unavailable for 

current API calling.

Description

Before starting the encoder operation, the application must allocate the frame buffers according to the 

information obtained from this function. This function returns the required parameters for 

vpu_EncRegisterFrameBuffer(), which is followed by this function call.

3.3.3.4 vpu_EncGetBitstreamBuffer()

Prototype

RetCode vpu_EncGetBitstreamBuffer(EncHandle handle,

PhysicalAddress * prdPrt,

PhysicalAddress * pwrPtr, Uint32 * size);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

prdPrt [output] Stream buffer read pointer for the current encoder instance

pwrPtr [output] Stream buffer write pointer for the current encoder instance

size [output] Variable specifying the available space in the bitstream buffer 

for the current encoder instance

Return Value

RETCODE_SUCCESS Required information for encoder stream buffer received successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be returned if handle has not been obtained by 

vpu_EncOpen(), for example a decoder handle, or if handle is of an 

instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameters, prdPrt, pwrPtr or size, is invalid—it has 

a null pointer or contains improper values for some member variables. 

Description

After encoding a frame, the application must get the bitstream from the encoder using the stream location 

and the maximum size. The application gets the information by calling this function. 

3.3.3.5 vpu_EncUpdateBitstreamBuffer()

Prototype

RetCode vpu_EncUpdateBitstreamBuffer(EncHandle handle, Uint32 size);

Parameter



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 51

 

i.MX5x VPU Driver API Reference

handle [input] Encoder handle obtained from vpu_EncOpen()

size [input] Variable specifying the amount of bits retrieved from the 

bitstream buffer for the current encoder instance

Return Value

RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be returned if handle has not been obtained by 

vpu_EncOpen(), for example a decoder handle, or if handle is of an 

instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, size, is invalid—it is larger than the value 

obtained from vpu_EncGetBitstreamBuffer()

Description

The application must let the encoder know how much bitstream has been transferred from the address 

obtained from vpu_EncGetBitstreamBuffer(). By giving the size as an argument, the API automatically 

handles pointer wrap-around and updates the read pointer. 

3.3.3.6 vpu_EncRegisterFrameBuffer()

Prototype

RetCode vpu_EncRegisterFrameBuffer(EncHandle handle,

FrameBuffer * bufArray, int num, int frameBufStride, int sourceBufStride);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

bufArray [input] Pointer to the first element of an array of FrameBuffer data 

structure

num [input] Number of frame buffers

frameBufStride [input] Stride value of the given frame buffers for encoder

sourceBufStride [input] Stride value of the source frame buffer for encoder

The distance between a pixel in a row and the corresponding pixel in the next row is called stride. The 

value of stride must be a multiple of 8. The address of the first pixel in the second row does not necessarily 

coincide with the value next to the last pixel in the first row. In other words, stride can have values greater 

than the picture width in pixels. The application should not set a stride value smaller than the picture width. 

For the Y component, the application must allocate at least a space of size (frame height × stride), and for 

Cb or Cr components, (frame height/2 × stride/2). For MJPEG encoding, the address of the frame buffer 

is not necessary. Only the frameBufStride and frameBufStride values are necessary.

Return Value

RETCODE_SUCCESS Registering the frame buffers completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be returned if handle has not been obtained by 



i.MX5x VPU Application Programming Interface Linux Reference Manual

52 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

vpu_EncOpen(), for example a decoder handle, or if handle is of an 

instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences 

between API functions. In this case, the application may have called 

this function before successfully calling vpu_EncGetInitialInfo(). 

This function should be called after successfully calling 

vpu_EncGetInitialInfo().

RETCODE_INVALID_FRAME_BUFFER

Argument bufArray is invalid, it is not initialized or not valid

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given number of frame buffers, num, is not enough for the encoder 

operations of the given handle. num should be greater than or equal to 

the value of minFrameBufferCount obtained from 

vpu_EncGetInitialInfo().

RETCODE_INVALID_STRIDE Given argument stride is invalid—it is 0 or is not a multiple of 8

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API 

function for a given instance are not allowed. The encoder initial 

information has already been received, so this function call is 

meaningless and not allowed.

Description

This function registers frame buffers requested by vpu_EncGetInitialInfo(). The frame buffers pointed 

to by bufArray are managed internally within the VPU. These include reference frames, reconstructed 

frames, and so on. The application must not change the contents of the array of frame buffers during the 

life time of the instance, and num must not be less than minFrameBufferCount obtained by 

vpu_EncGetInitialInfo().

3.3.3.7 vpu_EncStartOneFrame()

Prototype

RetCode vpu_EncStartOneFrame(EncHandle handle, EncParam * param);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

param [input] Pointer to a EncParam type structure which describes the 

picture encoding parameters for the current encoder instance

Return Value

RETCODE_SUCCESS Encoding a new frame started successfully. This return value does not 

mean that encoding a frame completed successfully.

RETCODE_FAILURE There is an error in starting one frame encoding operation



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 53

 

i.MX5x VPU Driver API Reference

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be returned if handle has not been obtained by 

vpu_EncOpen(), for example a decoder handle, or if handle is of an 

instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences 

between API functions. In this case, the application may have called 

this function before successfully calling 

vpu_EncRegisterFrameBuffer(). This function should be called 

after successfully calling vpu_EncRegisterFrameBuffer().

RETCODE_INVALID_PARAM The given argument parameter, param, is invalid—it has a null pointer 

or contains improper values for some member variables.

RETCODE_INVALID_FRAME_BUFFER

sourceFrame in the input structure EncParam is invalid— 

sourceFrame is not valid even though picture-skip is disabled

RETCODE_FAILURE_TIMEOUTHardware is already busy with other operation and unavailable for 

current API calling.

Description

This function starts encoding one frame. Returning from this function does not mean the completion of 

encoding one frame, only that encoding of one frame successfully initiated. This function should be 

followed by vpu_EncGetOutputInfo() with the same encoder handle. Before vpu_EncGetOutputInfo() 

is called, the application can not call other API function except for vpu_IsBusy(), 

vpu_EncGetBitstreamBuffer(), or vpu_EncUpdateBitstreamBuffer().

3.3.3.8 vpu_EncGetOutputInfo()

Prototype

RetCode vpu_EncGetOutputInfo(EncHandle handle, EncOutputInfo * info)

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

info [output] Pointer to an EncOutputInfo type structure which describes 

picture encoding results for the current encoder instance

Return Value

RETCODE_SUCCESS Output information of current frame encoding received successfully 

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be returned if handle has not been obtained by 

vpu_EncOpen(), for example a decoder handle, or if handle is of an 

instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE



i.MX5x VPU Application Programming Interface Linux Reference Manual

54 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

Current API function call is invalid considering the allowed sequences 

between API functions. In this case, the application may have called 

this function before successfully calling vpu_EncStartOneFrame(). 

This function should be called after successfully calling 

vpu_EncStartOneFrame().

RETCODE_INVALID_PARAM The given argument parameter, info, is invalid—it has a null pointer 

or contains improper values for some member variables.

Description

This function gives the information about the encoding output such as the picture type, the address and 

size of the generated bitstream, the number of generated slices, the end addresses of the slices, and the 

macroblock bit position information. The host application should call this function after frame encoding 

is complete and before starting further processing. 

3.3.3.9 vpu_EncGiveCommand()

Prototype

RetCode vpu_EncGiveCommand(EncHandle handle, CodecCommand cmd, void *param);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

cmd [input] Variable specifying the command of CodecComand type

param [intput/output] Pointer to a command-specific data structure which 

describes picture I/O parameters for the current encoder instance

Return Value

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not allowed in 

the current instance

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be returned if handle has not been obtained by 

vpu_EncOpen(), for example a decoder handle, or if handle is of 

an instance which has been closed.

RETCODE_FRAME_NOT_COMPLETE

Frame encoding operation is not complete, so the given API 

function call cannot be performed this time. A frame encoding or 

decoding operation should be completed by calling 

vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even 

though the result of the current frame operation is not necessary, 

the application should call vpu_EncGetOutputInfo() or 

vpu_DecGetOutputInfo() to proceed this function call.

Description



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 55

 

i.MX5x VPU Driver API Reference

This function is provided to give the application a certain level of freedom for reconfiguring the encoder 

operation after creating an encoder instance. The options which can be changed dynamically while 

encoding a video sequence as well as some command-specific return codes are shown in Table 5.

Table 5. Encoder Commands

Command Description

ENABLE_ROTATION handle is ignored. This command returns RETCODE_SUCCESS.

DISABLE_ROTATION handle is ignored. This command returns RETCODE_SUCCESS.

ENABLE_MIRRORING handle is ignored. This command returns RETCODE_SUCCESS.

DISABLE_MIRRORING handle is ignored. This command returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION handle is a pointer to MirrorDirection. *param should be one of the following:

 • MIRDIR_NONE—No mirroring

 • MIRDIR_VER—Vertical mirroring

 • MIRDIR_HOR—Horizontal mirroring

 • MIRDIR_HOR_VER—Both directions

Return values are as follows:

RETCODE_SUCCESS Given mirroring direction is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given 

mirroring direction is invalid

SET_ROTATION_ANGLE param a pointer to an integer which represents rotation angle in degrees. Rotation angle 

should be 0, 90, 180, or 270. Return values are as follows:

RETCODE_SUCCESS Given rotation angle is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given 

rotation angle is invalid

Note:  Rotation angle can not be changed after sequence initialization, because it might cause 

problems in handling frame buffers. 

ENC_GET_SPS_RBSP param is a pointer to an EncParamSet type structure. The first variable, paraSet, is a physical 

address where the generated stream is located, and size is the size of the stream in bytes. 

Return values are as follows: 

RETCODE_SUCCESS SPS successfully generated and available at the received 

buffer pointer

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid—it has a null pointer or 

contains improper values for some member variables.

ENC_GET_PPS_RBSP param is a pointer to an EncParamSet type structure. Return values are as follows:

RETCODE_SUCCESS PPS successfully generated and available at the received 

buffer pointer

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid—it has a null pointer or 

contains improper values for some member variables.



i.MX5x VPU Application Programming Interface Linux Reference Manual

56 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

ENC_PUT_MP4_HEADER param is a pointer to an EncHeaderParam structure, where buf is a physical address pointing 

to the generated stream location, and size is the size of the generated stream in bytes. 

headerType is a type of header that the application wants to generate and has values such as 

VOL_HEADER, VOS_HEADER, or VO_HEADER. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an MPEG-4 encoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid—it has a null pointer or 

contains improper values for some member variables.

ENC_PUT_AVC_HEADER param is a pointer to an EncHeaderParam structure, where buf is a physical address pointing 

the generated stream location and size is the size of generated stream in bytes. headerType 

is a type of header that the application wants to generate and has values such as SPS_RBSP 

or PPS_RBSP. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an AVC (H.264) encoder instance.

RETCODE_INVALID_PARAM Given argument, param or headerType, is invalid—it has 

a null pointer or contains improper values for some 

member variables

ENC_SET_SEARCHRAM_

PARAM

param is a pointer to a SearchRamParam structure where searchRamAddr is internal memory 

returned by the IOGetIramBase() function and SearchRamSize is the size of the search RAM 

in bytes. Return values are as follows:

RETCODE_SUCCESS Operation completed successfully

RETCODE_INVALID_PARAM Given argument, param, is invalid—it has a null pointer or 

contains improper values for some member variables. 

ENC_SET_INTRA_MB_

REFRESH_NUMBER

param is a pointer to an integer which represents the intra refresh number. The intra refresh 

number should be between 0 and the macroblock number of the encoded picture. Return 

values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

ENC_ENABLE_HEC param is ignored. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an MPEG-4 encoder instance

ENC_DISABLE_HEC param is ignored. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an MPEG-4 encoder instance

ENC_SET_SLICE_INFO param is a pointer to an EncSliceMode structure, where sliceMode enables a multi slice 

structure, sliceSizeMode represents the mode of calculating one slicesize, and sliceSize is the 

size of one slice. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is 

invalid—it has a null pointer or contains improper values for 

some member variables

Table 5. Encoder Commands (continued)

Command Description



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 57

 

i.MX5x VPU Driver API Reference

ENC_SET_GOP_NUMBER param is a pointer to an integer which represents the GOP number. Return values are as 

follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is 

invalid—it has a null pointer or contains improper values for 

some member variables

ENC_SET_INTRA_QP param is a pointer to an integer which represents constant I frame QP. Constant I frame QP 

should be between 1 and 31 for MPEG-4, and between 0 and 51 for AVC (H.264). Return 

values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an encoder instance.

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is 

invalid—it has a null pointer or contains improper values 

for some member variables 

ENC_SET_BITRATE param is a pointer to an integer which represents the bitrate. The bitrate should be between 0 

and 32767. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an encoder instance.

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is 

invalid—it has a null pointer or contains improper values 

for some member variables 

ENC_SET_FRAME_RATE param is a pointer to an integer which represents the frame rate value. The frame rate should 

be greater than 0. Return values are as follows:

RETCODE_SUCCESS Requested header syntax inserted successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, the current 

instance might not be an encoder instance.

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is 

invalid—it has a null pointer or contains improper values 

for some member variables

ENC_SET_REPORT_

MBINFO

param is a pointer to an EncReportInfo. addr cannot be a null pointer when the enable flag is 

1, so the user needs to allocate memory according to mbInfoBufSize returned by 

vpu_EncGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous 

physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null 

pointer or addr in EncReportInfo is a null pointer when 

enable is 1

Table 5. Encoder Commands (continued)

Command Description



i.MX5x VPU Application Programming Interface Linux Reference Manual

58 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

3.3.4 Decoder API

The following sections describe the decoder API functions.

3.3.4.1 vpu_DecOpen()

Prototype

RetCode vpu_DecOpen(DecHandle * pHandle, DecOpenParam * pop);

Parameter

pHandle [output] Pointer to a DecHandle type variable which specifies each 

instance for an application

pop [input] Pointer to a DecOpenParam type structure which describes the 

required parameters for creating a new decoder instance

Return value

RETCODE_SUCCESS New decoder instance created successfully

RETCODE_FAILURE New decoder instance not opened successfully. If there is no free 

instance available, this value is returned in the function call. 

RETCODE_INVALID_PARAM Given argument parameter, pop, is invalid—it has a null pointer or 

contains improper values for some member variables.

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application must 

initialize the VPU by calling vpu_Init() before calling this function.

Description

To decode, the application must open the decoder. By calling this function, the application receives a 

handle by which the application can refer to a decoder instance. Because the VPU is a multiple instance 

codec, the application requires this kind of handle. Once the application receives a handle, the application 

must pass the handle to all subsequent decoder-related functions.

ENC_SET_REPORT_

MVINFO

param is a pointer to an EncReportInfo. addr cannot be a null pointer when the enable flag is 

1, so the user needs to allocate memory according to mvInfoBufSize returned by 

vpu_EncGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous 

physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null 

pointer or addr in EncReportInfo is a null pointer when 

enable is 1

ENC_SET_REPORT_

SLICEINFO

param is a pointer to an EncReportInfo. addr cannot be a null pointer when the enable flag is 

1, so the user needs to allocate memory according to mvInfoBufSize returned by 

vpu_EncGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous 

physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null 

pointer or addr in EncReportInfo is a null pointer when 

enable is 1

Table 5. Encoder Commands (continued)

Command Description



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 59

 

i.MX5x VPU Driver API Reference

3.3.4.2 vpu_DecClose()

Prototype

RetCode vpu_DecClose(DecHandle handle);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

Return Value

RETCODE_SUCCESS Current decoder instance closed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been 

closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the 

VPU. In normal operation, the API call should not return a 

RETCODE_FAILURE_TIMEOUT value. If the application 

receives this value, the VPU internal function may be corrupted.

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for 

current API calling.

Description

When the application is finished decoding a sequence and wants to release this instance for other 

processing, the application should close the instance. After completion of this function call, the instance 

referred to by handle is free. Once the application closes an instance, the application cannot call any further 

decoder-specific function with this handle before re-opening a new decoder instance with the same handle.

3.3.4.3 vpu_DecGetInitialInfo()

Prototype

RetCode vpu_DecGetInitialInfo(DecHandle handle, DecInitialInfo * info);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

info [output] Pointer to a DecInitialInfo data structure

Return Value

RETCODE_SUCCESS Required information of the stream data to be decoded received 

successfully

RETCODE_FAILURE: There is an error in getting the configuration information for the 

decoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been 

closed.



i.MX5x VPU Application Programming Interface Linux Reference Manual

60 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

RETCODE_INVALID_PARAM Given argument parameter, info, is invalid—it has a null pointer or 

contains improper values for some member variables.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the 

VPU. In normal operation, the API call should not return a 

RETCODE_FAILURE_TIMEOUT value. If the application 

receives this value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed 

sequence between API functions. In this case, the application might 

call this function before successfully putting the bitstream into the 

buffer data by calling vpu_DecUpdateBitstreamBuffer(). In order 

to perform this functions call, the bitstream data including the 

sequence level header should be transferred into the bitstream buffer 

before calling vpu_DecGetInitialInfo().

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API 

function for a given instance are not allowed. The decoder initial 

information has been already received, so this function call is 

meaningless and not allowed.

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for 

current API calling.

Description

The application must pass the address of a DecInitialInfo structure where the decoder stores the 

information such as picture size, number of necessary frame buffers, and so on. For details, see the 

definition of the DecInitialInfo data structure in Section 3.2.2.21, “DecInitialInfo.” This function should 

be called after creating a decoder instance and before starting frame decoding. The application must 

provide sufficient amount of bitstream to the decoder by calling vpu_DecUpdateBitstreamBuffer() so 

bitstream buffer does not empty before this function returns. 

In file-play mode with MPEG-4 or H.264, vpu_DecGetInitialInfo() operates only with sequence level 

header syntaxes which might be much smaller than the 256 byte minimum transfer unit. If the application 

cannot ensure to feed enough data for the stream, the application can use the forced escape option using 

vpu_DecSetEscSeqInit(). 

3.3.4.4 vpu_DecSetEscSeqInit()

Prototype

RetCode vpu_DecSetEscSeqInit(DecHandle handle, int escape);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

escape [input] Flag to enable or disable forced escape from SEQ_INIT

Return Value

RETCODE_SUCCESS Force escape flag successfully provided to the BIT processor



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 61

 

i.MX5x VPU Driver API Reference

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been closed.

Description

This is a special function to provide a way of escaping the VPU hanging during DEQ_SEQ_INIT. When 

this flag is set to 1 and the stream buffer becomes empty, the VPU automatically terminates the 

DEC_SEQ_INIT operation. If the target application ensures that a high layer header syntax is periodically 

sent through the channel, the application does not need this option. However, if the target application 

cannot ensure that a high layer header syntax is periodically sent through the channel (such as file-play 

mode), this function is useful to avoid the VPU hanging because of crucial errors in the header syntax.

NOTE

This flag is applied to all decoder instances together; therefore, it is 

recommended to reset this flag to 0 after successfully finishing the sequence 

initialization.

3.3.4.5 vpu_DecGetBitstreamBuffer()

Prototype

RetCode vpu_DecGetBitstreamBuffer(DecHandle handle,

PhysicalAddress * paRdPtr,

PhysicalAddress * paWrPtr, Uint32 * size);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

paRdPtr [output] Stream buffer read pointer for the current decoder instance

paWrPtr [output] Stream buffer write pointer for the current decoder instance

size [output] Variable specifying the available space in the bitstream buffer 

for the current decoder instance

Return Value

RETCODE_SUCCESS Required information for the decoder stream buffer received 

successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, paRdPtr, paWrPtr or size, is invalid—it 

has a null pointer or given values for some member variables have 

improper values.

Description

Before decoding a bitstream, the application must give the bitstream data to the decoder. First, the 

application must know where bitstream can be placed and the maximum size. The application receives this 



i.MX5x VPU Application Programming Interface Linux Reference Manual

62 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

information from this function. For the VPU, using the data from this function is more efficient than 

providing an arbitrary bitstream buffer to the decoder.

NOTE

The given size is the total sum of the free space in the ring buffer. So when 

the application downloads a bitstream of this given size, Wrptr can reach the 

end of the stream buffer. In this case, the application should wrap-around 

Wrptr to the beginning of the stream buffer and download the remaining 

bits. If not, the decoder operation can fail.

3.3.4.6 vpu_DecUpdateBitstreamBuffer()

Prototype

RetCode vpu_DecUpdateBitstreamBuffer(DecHandle handle, Uint32 size);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

size [input] Variable specifying the amount of bits transferred into the 

bitstream buffer for the current decoder instance

Return Value

RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been 

closed.

RETCODE_INVALID_PARAM The given argument parameter, size, is invalid—it is larger than the 

value obtained from vpu_DecGetBitstreamBuffer() or larger than 

the available space in the bitstream buffer.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the 

VPU. In normal operation, the API call should not return a 

RETCODE_FAILURE_TIMEOUT value. If the application 

receives this value, the VPU internal function may be corrupted.

Description

The application must let the decoder know how much bitstream has been transferred to the address 

obtained from vpu_DecGetBitstreamBuffer(). By giving the size as argument, the API automatically 

handles pointer wrap-around and write pointer update.

3.3.4.7 vpu_DecRegisterFrameBuffer()

Prototype

RetCode vpu_DecRegisterFrameBuffer(DecHandle handle,

FrameBuffer * bufArray, int num, int stride,

DecBufInfo * pBufInfo);



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 63

 

i.MX5x VPU Driver API Reference

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

bufArray [input] Pointer to the first element of an array of FrameBuffer for the 

current decoder instance

num [input] Number of frame buffers

stride [input] Stride value of the given frame buffers

pBufInfo [input] Pointer to a DecBufInfo type structure which describes the 

additional work buffers. sliceSaveBuffer is only declared by this 

structure

Return Value

RETCODE_SUCCESS Registering the frame buffer information completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been 

closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the 

VPU. In normal operation, the API call should not return a 

RETCODE_FAILURE_TIMEOUT value. If the application 

receives this value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed 

sequence between API functions. In this case, the application might 

have called this function before successfully calling 

vpu_DecGetInitialInfo().

RETCODE_INVALID_FRAME_BUFFER

bufArray is invalid—it is not initialized or is not valid anymore

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given number of frame buffers, num, is not enough for the decoder 

operations of the given handle. num should be greater than or equal 

to the value requested by vpu_DecGetInitialInfo().

RETCODE_INVALID_STRIDE The given argument stride is invalid—it is smaller than the decoded 

picture width, or is not a multiple of 8.

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API 

function for a given instance are not allowed. The decoder initial 

information has been already received, so this function call is 

meaningless and not allowed.

Description

This function is used for registering frame buffers with the information from vpu_DecGetInitialInfo(). 

The frame buffers pointed to by bufArray are managed internally within the VPU. These include reference 



i.MX5x VPU Application Programming Interface Linux Reference Manual

64 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

frames, reconstructed frame, and so on. The application must not change the contents of the array of frame 

buffers during the life time of the instance, and num must not be less than minFrameBufferCount obtained 

from vpu_DecGetInitialInfo(). 

3.3.4.8 vpu_DecStartOneFrame()

Prototype

RetCode vpu_DecStartOneFrame(DecHandle handle, DecParam * param);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

param [input] Pointer to a DecParam type structure which describes the 

decoder options

Return value

RETCODE_SUCCESS Decoding a new frame started successfully. This return value does not 

mean that decoding a frame completed successfully.

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence 

between API functions. The application might have called this 

function before successfully calling 

vpu_DecRegisterFrameBuffer(). This function should be called 

after successfully calling vpu_DecRegisterFrameBuffer().

RETCODE_DEBLOCKING_OUTPUT_NOT_SET

Deblocking filter option is activated but required deblocking output 

information is not available. If deblocking filter is enabled for 

MPEG-4, the application should register the frame buffer information 

of deblocking filtered output using vpu_DecGiveCommand().

RETCODE_FAILURE_TIMEOUTHardware is already busy with other operation and unavailable for 

current API calling.

Description

This function starts decoding one frame. Returning from this function does not mean the completion of 

decoding one frame, only that encoding of one frame successfully initiated. If this event is signaled, then 

vpu_DecGetOutputInfo() is called to get the decoded output information. Every call of this function 

should be matched with vpu_DecGetOutputInfo() with the same handle. Before 

vpu_DecGetOutputInfo() is called, the application cannot call another API function except for 

vpu_IsBusy(), vpu_DecGetBitstreamBuffer(), or vpu_DecUpdateBitstreamBuffer(). 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 65

 

i.MX5x VPU Driver API Reference

When the application uses pre-scan mode, there is only a very small chance that the decoder may hang. 

For the VC-1 decoder, pre-scan mode is not supported. Do not use prescan mode for MPEG4 decoding or 

in file-play mode. 

3.3.4.9 vpu_DecGetOutputInfo()

Prototype

RetCode vpu_DecGetOutputInfo(DecHandle handle, DecOutputInfo * info);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

info [output] Pointer to a DecOutputInfo type structure which describes the 

picture decoding results for the current decoder instance

Return Value

RETCODE_SUCCESS Receiving the output information of current frame completed 

successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been closed. 

Also, this value is returned when vpu_DecStartOneFrame() is 

matched with vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence 

between API functions. vpu_DecStartOneFrame() with the same 

handle might not have been called before calling this function

RETCODE_INVALID_PARAM Given argument parameter, pInfo, is invalid—it has a null pointer or 

contains improper values for some member variables.

Description

The application received the output information of the decoder by calling this function after the 

VPU_INT_PIC_RUN_NAME event is signaled. The output information includes the frame buffer 

information containing the reconstructed image. The host application calls this function after the frame 

decoding is finished and before starting further processing.

NOTE

If pre-scan mode is enabled, the application should check prescanResult. If 

the value of prescanResult = 0, the other output information is meaningless. 

vpu_DecStartOneFrame() and vpu_DecGetOutputInfo() must be 

matched.

3.3.4.10 vpu_DecBitBufferFlush()

Prototype



i.MX5x VPU Application Programming Interface Linux Reference Manual

66 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

RetCode vpu_DecBitBufferFlush(DecHandle handle);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

Return Value

RETCODE_SUCCESS Receiving the output information of the current frame completed 

successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been closed. 

Also, this value is returned when vpu_DecStartOneFrame() is 

matched with vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence 

between API functions. vpu_DecRegisterFrameBuffer() with the 

same handle might not have been called before calling this function. 

Description

The application flushes the bitstream in the decoder bitstream buffer without decoding by calling this 

function. If the bitstream buffer is flushed, the read and write pointers of the bitstream buffer of each 

instance are set to the bitstream buffer start address.

3.3.4.11 vpu_DecClrDispFlag()

Prototype

RetCode vpu_DecClrDispFlag(DecHandle handle, int index);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

index [input] Frame buffer index to be cleared

Return Value

RETCODE_SUCCESS Receiving the output information of the current frame completed 

successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been closed. 

Also, this value is returned when vpu_DecStartOneFrame() is 

matched with vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence 

between API functions. vpu_DecRegisterFrameBuffer() with the 

same handle might not have been called before calling this function. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 67

 

i.MX5x VPU Driver API Reference

RETCODE_INVALID_PARAM Given argument parameter, index, is invalid—it has improper values.

Description

The application clears the display flag of each frame buffer by calling this function after creating a decoder 

instance. If the display flag of the frame buffer is cleared, the frame buffer can be used in the decoding 

process. Therefore, the application controls displaying a buffer by clearing the display flag which is set by 

the VPU at every display index output process. This API is not needed for the STD_MJPG codec.

3.3.4.12 vpu_DecGiveCommand()

Prototype

RetCode vpu_DecGiveCommand(DecHandle handle, CodecCommand cmd, void *param);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

cmd [input] Variable specifying the given command of CodecComand 

type

param [input/output] Pointer to a command-specific data structure which 

describes picture I/O parameters for the current decoder instance

Return Value

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not allowed in 

the current instance

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This 

return code might be caused if handle has not been obtained by 

vpu_DecOpen() or if handle is of an instance which has been 

closed.

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for 

current API calling.

Description

This function is provided to give applications a certain level of freedom for reconfiguring decoder 

operations after creating a decoder instance. The options which can be changed dynamically while 

decoding a video sequence are shown in Table 6.

Table 6. Decoder Commands

Command Description

ENABLE_ROTATION Enables rotation of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

DISABLE_ROTATION Disables rotation of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

ENABLE_MIRRORING Enables mirroring of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

DISABLE_MIRRORING Disables mirroring of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.



i.MX5x VPU Application Programming Interface Linux Reference Manual

68 Freescale Semiconductor

 

i.MX5x VPU Driver API Reference

SET_MIRROR_DIRECTION Sets the mirror direction of the post-rotator. param is a pointer to MirrorDirection. *param should 

be one of the following:

 • MIRDIR_NONE—No mirroring

 • MIRDIR_VER—Vertical mirroring

 • MIRDIR_HOR—Horizontal mirroring

 • MIRDIR_HOR_VER—Both directions

Return values are as follows:

RETCODE_SUCCESS Given mirroring direction is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given 

mirroring direction is invalid

SET_ROTATION_ANGLE Sets the counter-clockwise angle for post-rotation. param a pointer to an integer which 

represents rotation angle in degrees. The rotation angle should be 0, 90, 180, or 270. Return 

values are as follows:

RETCODE_SUCCESS Given rotation angle is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given rotation 

angle is invalid

SET_ROTATOR_OUTPUT Sets the rotator output buffer address. param a pointer to a structure representing the physical 

addresses of the YCbCr components of the output frame. For storing the rotated output for a 

display, at least one more frame buffer should be allocated. When multiple display buffers are 

required, the application changes the buffer pointer of the rotated output at every frame by 

issuing this command. Return values are as follows:

RETCODE_SUCCESS Given frame buffer pointer is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given frame 

buffer pointer is invalid

SET_ROTATOR_STRIDE Sets the stride size of the frame buffer containing rotated output. param is the stride value of the 

rotated output. Return values are as follows:

RETCODE_SUCCESS Given stride value is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given stride 

value is invalid. The stride value must be greater than 0 and a 

multiple of 8. 

DEC_SET_SPS_RBSP Applies the SPS stream to the decoder received from a certain out-of-band reception scheme. 

The stream should be in RBSP format and big endian. param is a pointer to a DecParamSet 

structure. paraSet is an array of 32 bits which contains SPS RBSP, and size is the size of the 

stream in bytes. Return values are as follows:

RETCODE_SUCCESS Transferring a SPS RBSP to a decoder completed 

successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, the current 

instance might not be an AVC (H.264) decoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid—it has a null pointer or 

contains improper values for some member variables.

Table 6. Decoder Commands (continued)

Command Description



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 69

 

i.MX5x VPU Driver API Reference

DEC_SET_PPS_RBSP Applies the PPS stream to the decoder received from a certain out-of-band reception scheme. 

The stream should be in RBSP format and big endian. param is a pointer to a DecParamSet 

structure. paraSet is an array of 32 bits which contains PPS RBSP, and size is the size of the 

stream in bytes. Return values are as follows:

RETCODE_SUCCESS Transferring a PPS RBSP to decoder completed 

successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid—it is undefined or not 

allowed in the current instance. In this case, current 

instance might not be an AVC (H.264) decoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid—it has a null pointer or 

contains improper values for some member variables. 

ENABLE_DERING Enables the VPU internal dering operation. Returns RETCODE_SUCCESS.

DISABLE_DERING Disables the VPU internal dering function. Returns RETCODE_SUCCESS.

DEC_SET_REPORT_

BUFSTAT

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag is 1, 

so the user needs to allocate memory according to frameBufStatBufSize returned by 

vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous 

physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null 

pointer or addr in EncReportInfo is a null pointer when enable 

is 1

DEC_SET_REPORT_

MBINFO

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag is 1, 

so the user needs to allocate memory according to frameBufStatBufSize returned by 

vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous 

physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null 

pointer or addr in EncReportInfo is a null pointer when 

enable is 1

DEC_SET_REPORT_

MVINFO

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag is 1, 

so the user needs to allocate memory according to frameBufStatBufSize returned by 

vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous 

physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null 

pointer or addr in EncReportInfo is a null pointer when 

enable is 1

DEC_SET_REPORT_

USERDATA

param is a pointer to an DecReportInfo. addr cannot be a null pointer and size cannot be zero 

when the enable flag is 1, so the user needs to allocate memory. The user can call malloc() to 

allocate the buffer since continuous physical memory is not needed. Return values are as 

follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid—it has a null 

pointer or addr in EncReportInfo is a null pointer when 

enable is 1

Table 6. Decoder Commands (continued)

Command Description



i.MX5x VPU Application Programming Interface Linux Reference Manual

70 Freescale Semiconductor

 

VPU Control

4 VPU Control

This section describes the VPU control scheme based on the API functions and includes some practical 

programming issues.

4.1 VPU Initialization

When the host processor enables the VPU for the first time, the following initialization process should be 

performed. These operations are completed by calling a single API function, vpu_Init().

• Disable the BIT processor by setting BIT_CODE_RUN (BASE + 0x000) = 0

• Write the BIT processor microcode to the SDRAM accessible by the VPU during run-time

• Download the first N Kbytes of microcode to the BIT processor code memory

• Set the BIT processor buffer pointers, working buffer, parameter buffer and code buffer

• Set the stream buffer control options and the frame buffer endian mode

• Enable interrupt and reset registers

• Enable the BIT processor by setting BIT_CODE_RUN register = 1

• Wait until vpu_IsBusy() returns RETCODE_IDLE

Detailed information about each of these initialization steps and some programming tips are presented in 

the following sections.

4.1.1 Version Check of BIT Processor Microcode

The application can check the version information of the BIT processor microcode during runtime. The 

version number of microcode is a 32-bit value. The 16 most significant bits are the internal product 

number, and the 16 least significant bits are the version number specified by the following rule:

• Bits 15:12 = Major revision

• Bits 11:8 = Minor revision

• Bits 7:0 = Revision patches

This version number can have a value from 0.0.0 to 15.15.255. A dedicated command, 

vpu_GetVersionInfo(), is used for this version check and is supported after initialization.

4.1.2 BIT Processor Enable and Disable

The BIT processor has a dedicated register that activates or deactivates the BIT processor during run-time, 

BIT_CODE_RUN (BASE + 0x000). During initialization, the BIT processor program memory is updated 

and some configuration registers for controlling VPU operations are also set. During this process, the BIT 

processor should be disabled. After finishing the initialization process, the host processor enables the BIT 

processor. Then the BIT processor starts its own internal initialization process and is ready for operation.



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 71

 

VPU Control

4.1.3 BIT Processor Data Buffer Management

The BIT processor requires a certain amount of SDRAM space for its codec operations. This dedicated 

memory space includes memory space for the BIT processor microcode, internal work buffer, parameter 

buffers, and so on. The size of each sub-buffer as follows:

#define CODE_BUF_SIZE (132*1024) // byte size of Code buffer

#define WORK_BUF_SIZE (256*1024) // byte size of Work Buffer

#define PARA_BUF_SIZE (8*1024) // byte size of Parameter Buffer

In the VPU API, the initialization function only receives the start address of this internal buffer as an 

argument. Therefore, the total sum of the VPU processing buffer space starting from the start address 

should be dedicated memory space for the VPU and no other process should access this memory space 

while the VPU is enabled. It is highly recommended for the host processor to reserve the specified size of 

the dedicated buffer for the BIT processor and call vpu_Init() with the start address of the reserved 

memory. The start addresses of internal buffer partitions, code buffer, work buffer and parameter buffer, 

are calculated inside of the vpu_Init() function and the calculated start addresses are set in the host 

interface.

In addition to the above sub-buffers, the VPU requires buffers for saving SPS/PPS and SLICE RBSP when 

decoding a H.264 stream. In general, 5 Kbytes is sufficient for the SPS/PPS save buffer and a quarter of 

the raw YUV image size is sufficient for the SLICE save buffer. If the VPU requires more buffer space to 

decode a H.264 stream, the VPU reports a buffer overflow.

4.1.4 BIT Processor Microcode Management

The BIT processor has its own program memory inside of the VPU, but the content of this program 

memory is dynamically updated according to the required codec standard. The advantage of this dynamic 

microcode reloading is the reduction of program memory size. This advantage is meaningful because the 

BIT processor generally requires many sets of microcode to support several codec standards in duplex 

mode. Generally speaking, it seldom happens that the codec standard is changed in the middle of a codec 

application. So dynamic reloading for changing the codec is not a burden in cycle consumption. In the 

worst case, the dynamic code reloading happens once per picture processing, but considering the amount 

of maximum reloaded code, it is not a large burden to the VPU cycle consumption.

Since the dynamic reloading is completed by the VPU itself, the host processor only needs to copy the 

given microcode to the reserved code buffer before initializing the VPU. Of course, the first loading of the 

microcode to the BIT processor program memory should be completed separately by the host processor.

4.1.5 Stream Buffer Management

The stream buffer is a shared buffer between the host processor and the VPU for exchanging stream data. 

There are two different streaming schemes for decoding: ring-buffer and line-buffer. The ring-buffer 

scheme is used for host applications to reserve a fixed size of memory space and use it during codec 

operations. On the other hand, the line buffer scheme is used for host application to allocate a stream buffer 

dynamically and use it frame-by-frame.

The host processor also can choose the endian option of the stream buffer and can enable or disable the 

buffer full/empty check option. All these options for stream buffer data management are stored in a 



i.MX5x VPU Application Programming Interface Linux Reference Manual

72 Freescale Semiconductor

 

VPU Control

dedicated host interface register, BIT_BITSTREAM_CTRL, and are referenced by the BIT processor 

during run-time.

For decoding, the VPU provides both streaming options. But sometimes multiple-instance decoding may 

require a different streaming option for each decoder instance. For example, while playing a local video 

file, the application might need to decode a digital video broadcast. In this case, the different types of 

streaming mode can be helpful for the application design and the different streaming option is applied to 

each decoder instance independently. 

4.1.5.1 Ring-Buffer Scheme (Packet Mode)

The ring-buffer scheme is preferred in packet-based video communication and streaming applications. In 

packet-based streaming based on a ring-buffer, the read and write pointers automatically wrap around at 

the boundaries. When the application downloads a new chunk of the bitstream, the application should 

check the available space in the bitstream buffer. Even though the available space can easily be calculated 

from the read pointer, write pointer and buffer size, the VPU API provides a dedicated function for 

providing the buffer read pointer, buffer write pointer and the available space in the stream buffer, 

vpu_DecGetBitStreamBuffer(). Based on the returned value from this API function, the application 

downloads a new chunk of bitstream data whose size should be smaller than the available buffer space. 

The amount of bits transferred into the stream buffer should be notified to the VPU using 

vpu_DecUpdateBitStreamBuffer(). 

4.1.5.2 Line-Buffer Scheme (File-Play Mode)

The line-buffer based streaming scheme is suitable for local file-play applications where a picture stream 

is completely separated by file container structures. For decoding, the line-buffer based streaming scheme 

is only allowed if the application always sends the stream data for only one frame. This means, when the 

line-buffering scheme, or file-play mode, is enabled, the VPU resets the read pointer to the start address 

of the bitstream buffer. 

File-play mode is used when an application allocates the bitstream buffer dynamically as dynamic buffer 

allocation is only allowed when file-play mode is enabled. As well as this dynamic buffer allocation 

option, the byte offset of each dynamically allocated stream buffer can be used to avoid unnecessary 

stream copies because of the 8-byte alignment restriction in the VPU. By providing a byte offset between 

zero and three, the host application can avoid the overhead of coping the stream to an 4-byte aligned input 

stream buffer. 

The application does not need to use two dedicated APIs, vpu_DecGetBitStreamBuffer() and 

vpu_DecUpdateBitStreamBuffer().The start address and the size of bitstream buffer is provided as an 

argument of vpu_DecStartOneFrame() to the VPU frame-by-frame.

4.1.6 Interrupt Signaling Management

To achieve maximum efficiency in VPU control, the VPU IP provides interrupt signaling for completion 

of a requested operation as well as stream buffer empty/full. For some commands with a quick return, 

interrupt signaling is not helpful so interrupt signaling is not provided.



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 73

 

VPU Control

The VPU provides interrupt signaling for the following commands:

• BIT_RUN_COMPLETE—BIT processor initialization complete after setting BIT_CODE_RUN

• DEC_SEQ_INIT—Decoder sequence initialization complete

• DEC_SEQ_END—Decoder sequence termination complete

• DEC_PIC_RUN—Decoder picture processing complete

• DEC_SET_FRAME_BUF—Decoder frame buffer registration complete

• DEC_PARA_SET—External header syntax transfer to decoder complete

• DEC_BUF_FLUSH—Flushing decoder stream buffer complete

DEC_SEQ_INIT and DEC_PIC_RUN can cause the VPU to stall when the input bitstream is not large 

enough. So enabling the bitstream buffer-empty interrupt with these two interrupts, avoids unnecessary 

cycle consumptions in the host application. Each interrupt is easily enabled or disabled by writing 0 or 1 

to the corresponding bit field of interrupt enable register. When an interrupt is signaled, the application 

checks the source of the interrupt by checking the value of interrupt reason register. When interrupt 

signaling is not easily applicable, these interrupt can be replaced by a polling scheme by reading the BIT 

processor busy-flag.

NOTE

Only the DEC_PIC_RUN interrupt is used by applications. The other 

interrupts are used internally by the API or not supported.

4.2 Encoder Control

4.2.1 Creating an Encoder Instance

After initialization of the VPU, an application creates an encode instance and acquires a handle for 

specifying that encoder instance as the first step to run an encoder operation. This is accomplished using 

a single API function called vpu_EncOpen().

When creating a new encoder instance, the application specifies the internal features of the encoder 

instance through the EncOpenParam structure. This structure includes the following information about the 

new encoder instance:

• Bitstream buffer address and size—Physical address of the bitstream buffer start and its size

• Codec standard—Video codec standard such as H.263, MPEG-4, H.264 or MJPEG

• Picture size—Picture width and height

• Target frame rate and bitrate with Video Buffer Verifier (VBV) model parameters, initialDelay and 

vbvBufferSize—VBV mode parameters are optional even when rate control is enabled

• Gop size—Frequency of periodic intra (or IDR) pictures in the encoded stream output

• Slice enable/disable, slice size mode and slice size—Slice mode enable or disable as well as the 

slice size and size mode (number of bits or number of Mbytes in each slice)

• Output report such as sliceReport, mbReport and qpReport, and so on. qpReport option is only 

supported in H.263/MPEG-4 encoders—Informative output data such as slice boundary, MB 

boundary in encoded bitstream



i.MX5x VPU Application Programming Interface Linux Reference Manual

74 Freescale Semiconductor

 

VPU Control

• Miscellaneous options such as enableAutoSkip and intraRefresh—Enable auto-skipping of 

pictures when the output bit count is large enough as well as enable intra-refresh for error 

robustness and the number of intra MB in a non-intra picture 

• Ring buffer mode enable, allows streaming mode setting for each encoder instance 

independently—Application decides whether a ring-buffer based streaming scheme is used or not. 

When this option is disabled, a frame-based streaming scheme is used with a line-buffer scheme

• Dynamic buffer allocation enable—Application allocates the picture stream buffer dynamically by 

enabling dynamic buffer allocation only if ring-buffer mode is disabled. If dynamic buffer 

allocation is disabled, the address and size of the bitstream buffer is used in picture encoding. If 

dynamic buffer allocation is enabled, the address and the size of picture stream buffer is 

dynamically given by the application while issuing the picture encoding operation. 

• Intra quantization step—Intra Qstep value is configurable by specifying this value greater than 0. 

Even if rate control is enabled, the VPU encoder uses this fixed quantization step for all I-frames. 

This intra quantization step is re-configurable after creating an instance dynamically. 

• Video standard specific parameters—Specify standard-specific parameters for each video codec 

standard such as error resilience tools in MPEG-4, Annexes in H.263, deblocking and FMO 

parameters in H.264, source chroma format and thumbnail parameters and table coefficients in 

MJPEG and so on.

Using these options, the application receives a well optimized output for the requirements of the target 

application. Some output information options such as sliceReport, mbReport, qpReport, and so on, help 

application developers satisfy the constraints for target applications. 

For example, for a fixed packet size, an application might need to insert one slice to a certain amount of 

bits. If the slice size is given by the number of bits, it does not ensure that the output slice size is smaller 

than the given size because of the variable length characteristics of the encoding process. Therefore, the 

application divides the slice into two packets which causes an inefficiency in the packetization. To achieve 

an easy packetization, the application sets the slice size to (packet_size – N) with a certain margin of N, 

which allows the output slice size to be less than the packet size. Then the application easily adds a slice 

into a packet by referring to the slice boundary information provided by the VPU as encoder output. 

MJPEG can be encoded with various YUV format such as 4:4:4 by setting source format variable. 4:0:0, 

4:2:0, 4:2:2 horizontal/vertical and 4:4:4 formats are supported in the i.MX5x MJPEG encoder. The 

i.MX5x VPU also supports encoding using a user defined Huffman Table and Q matrix. To encode using 

a user defined Huffman Table and Q matrix, the host must save the coefficients in a pre-defined format and 

set the pointer to the area.

After creating an encoder instance with these parameters, the application cannot change these parameters. 

If the application wants to change any of these basic parameters, it should close this instance and re-create 

another encoder instance with new initial parameters. However, the application may need to change some 

of these initial parameters depending on the target application environment. Using the dynamic 

configuration command, the VPU API enables the application to configure part of these initial parameters 

dynamically. For details, refer to Section 3.3.3.9, “vpu_EncGiveCommand().”

The API function, vpu_EncOpen(), does not require any operations on the VPU side but declares all of 

the internal parameters used in later stages as well as the bitstream buffer information. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 75

 

VPU Control

4.2.2 Configuring VPU for Encoder Instance

4.2.2.1 Sequence Initialization

After registering all of the required information for the new encoder instance, the host application 

configures the VPU to support the new encoder instance. This procedure is completed by setting the 

encoder related information in the VPU host interface registers and giving a command, ENC_SEQ_INIT, 

to the VPU for initiating the internal configuration operation in the VPU. 

This process is mainly completed by an API function, vpu_EncGetInitialInfo(), and this function return 

a crucial output parameter for encoder operations, the minimum number of frame buffers. Normally, this 

process does not require much time, and it should be done only once at the beginning of each encoder 

instance. Therefore, it is not recommended to use an interrupt signal for this function, but interrupt 

signaling is allowed after completion of this operation by enabling the corresponding bit on interrupt 

enable register. 

4.2.2.2 Registering Frame Buffers

The configuration process is completed by registering the frame buffers to the VPU for picture encoding 

operations. In this final stage of configuration, the parameter returned from vpu_EncGetInitialInfo(), the 

minimum number of frame buffers, has an important meaning. This parameter means that the application 

should reserve at least the same number of frame buffers to the VPU for proper encoding operation. For 

MJPEG, the frame buffer is not necessary, because MJPEG does not need motion compensation. 

Therefore, only the frame buffer stride is transferred to the VPU in this stage. The stride value is used as 

the stride of the source image frame buffer.

4.2.2.3 Generating High-Level Header Syntaxes 

Automatic header syntax generation (such as VOL in MPEG-4, SPS/PPS in AVC) is not supported.

When the encoder instance has been opened by calling vpu_EncGetInitialInfo(), the application 

generates the high-level header syntaxes such as VOS/VO/VOL headers in MPEG-4 and SPS/PPS in AVC 

from the VPU using vpu_EncGiveCommand(). These high-level syntaxes can also be used directly for 

negotiation in the transport protocol layer of the application. 

There are two possible methods for generating these header syntaxes: by PARA_BUF or by the stream 

buffer. The recommended way for generating the header syntaxes is to use the ENC_PUT_AVC/MP4 

_HEADER command by the stream buffer. If the application uses this set of commands, the resulting 

header syntaxes are stored into the bitstream buffer according to the given endian setting. 

If DecBufReset is enabled, the output header syntaxes are written to the bitstream buffer starting from the 

base address of the bitstream buffer. If the application does not read out each header syntax one-by-one, 

they are overwritten by the following header syntaxes. If the application wants to read out a set of header 

syntaxes (such as VOS/VO/VOL or SPS/PPS), then the application should disable DecBufReset and 

enable the DecBufFlush bit. After completing the generation of the last header syntax, the application can 

read out a cascaded set of header syntaxes together. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

76 Freescale Semiconductor

 

VPU Control

The other method for generating header syntaxes, by PARA_BUF, is used when the application wants to 

generate header syntaxes in the middle of encoding. It can be accomplished using 

ENC_GET_XXX_HEADER for MPEG-4, and ENC_GET_XXX_RBSP for AVC. Regardless of the 

streaming mode, this command generates header syntaxes successfully, but the endian setting is always 

big endian. So for little endian systems, an endian conversion should be performed. 

4.2.3 Running Picture Encoder on VPU

4.2.3.1 YUV Input Loading

Before running a picture encoder operation, the host application should provide a 4:2:0 or 4:2:2 vertical 

formatted input YUV image with a pre-defined size for H.263, MPEG-4 and H.264. The host should 

provide 4:2:0, 4:2:2 vertical/horizontal, 4:4:4 or 4:0:0 formatted input YUV for MJPEG. If the input image 

is coming from an external video input device, such as a CMOS sensor, the VPU idles while waiting for 

completion of the receiving input picture. To avoid this idling, use a dual buffering scheme for the input 

image so that the encoder does not spend any cycles idling before starting operation.

4.2.3.2 Initiating Picture Encoding

When activating picture encoding operations, the application provides the following information to the 

VPU:

• Source frame address—Base address of each component of input YUV picture

• Quantization step—for the current picture which is ignored when rate control is enabled

• Forced frame skip and forced I-picture options—Forced frame skip is skipping the current frame 

encoding unconditionally and force I-picture is encoding current frame as I-frame unconditionally

• Source format—The VPU supports 4:2:2 vertical format source image. The source image is 

converted to 4:2:0 format automatically

After providing this information to the VPU, the host processor initiates a picture encoding operation by 

sending a ENC_PIC_RUN command to the VPU. 

These processes can be performed by calling a single API function, vpu_EncStartOneFrame() with the 

EncParam structure. This API function initiates a picture encoding operation. Return from this API does 

not mean that picture encoding is completed, only that the encoding operation began successfully. 

The quantization step size given to the VPU with ENC_PIC_RUN is only meaningful when the rate 

control option is disabled. This additional feature is provided to support application-specific VBR encoder 

operations. 

The forced frame skip option is used when encoding a new picture is not allowed temporarily. Automatic 

frame skipping in the VPU rate control is used for limiting the output amount of the bitstream under the 

given target bit-rate. Also, the forced frame skip can be used by the application when encoding a picture 

is problematic under certain external situations, for example, if the channel condition is temporarily 

unacceptable and transmitting the encoded stream is impossible. Then the application can suspend the 

encoder operation for a while using this forced frame skip option. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 77

 

VPU Control

The forced I-frame option is used when the remote receiver side reports an error during decoder operation. 

Even though a certain error concealment or error robustness scheme might be implemented on the decoder 

side, the best way to recover from a decoder error is to send an I-frame. Using this forced I-frame option, 

the application can achieve error-recovery of the remote receiver side very effectively. 

4.2.3.3 Completion of Picture Encoding

Picture encoder operation takes a certain amount of time and the application can be completing other tasks 

while waiting for the completion of picture encoding operation, such as packetization of the encoded 

stream for transmission. The application can use two different type of schemes for detecting completion 

of the picture encoding operation: polling a status register or interrupt signaling. When the application is 

using a polling scheme, the application checks the BusyFlag register of the BIT processor. Calling 

vpu_IsBusy() gives the same result. 

Interrupt signaling can be the most efficient way to check the completion of a given command. An 

interrupt signal for the ENC_PIC_RUN command is mapped on bit 3 of the interrupt enable register. 

Therefore, the application can use this dedicated interrupt signal from the VPU to determine the 

completion of the picture encoder operation. 

4.2.3.4 Encoder Stream Handling

When the encoder stream buffer is large enough to store any size of picture stream, the encoder does not 

need to retrieve any bitstream data during the picture encoder operation. After the encoder operation is 

complete, the host application reads the encoded bitstream according to the requirements of packetization. 

When the encoder stream buffer is not large enough to store a complete picture stream, the encoder 

buffer-full occurs and until this buffer-full situation is resolved, the encoder task running on the VPU is 

stalled. Therefore, while the picture is encoding, the application should continue reading out the encoded 

bitstream from stream buffer to avoid this stalling. 

When using a ring-buffer scheme with a limited size of encoder stream buffer, stream reading during 

encoder operation is recommended. Using two dedicated functions, vpu_EncGetBitStreamBuffer() and 

vpu_EncUpdateBitStreamBuffer(), the application can easily handle the read pointer while accessing 

the encoder bitstream buffer. If the ring-buffer option is disabled with a stream buffer large enough to store 

one encoded picture data, the host can wait to read the encoded bitstream at the end of each picture 

encoding. In this case, the application can safely complete other tasks while the picture encoding is running 

on the VPU. The vpu_EncGetBitStreamBuffer() and vpu_EncUpdateBitStreamBuffer() functions 

have no meaning when the application uses the frame-based streaming option.

4.2.3.5 Acquiring Encoder Results

When picture encoding is complete, the host application retrieves the encoded output such as the encoded 

picture type, number of slices, and so on. According to the input parameter settings of the picture encoding, 

the slice boundary and MB boundary information can also be acquired from the VPU. For H.263/MPEG-4 

decoding, the MB Qstep information can be acquired from the VPU. This encoder output information is 

generally placed on the parameter buffer with pre-defined formats (for the predefined formats of the output 



i.MX5x VPU Application Programming Interface Linux Reference Manual

78 Freescale Semiconductor

 

VPU Control

information, refer to the i.MX5x Applications Processor Reference Manual). Therefore, the application can 

read out this information directly from the parameter buffer using the base address of each data structure. 

The VPU API provides a function for retrieving the output results of the picture encoder, 

VPU_EncGetOutputInfo(), which has a output data structure that includes the following information:

• Start address of encoded picture and its size

• Number of slices in the encoded picture

• Slice boundary information in the encoded bitstream

• MB boundary information in the encoded bitstream

• Application-specific information for packetization such as MB Qstep information

Some packetization schemes, such as Real-time Transfer Protocol (RTP), require some internal 

information of encoded picture depending on the codec standard.

The slice information is useful for packet-based applications which have limitations of the slice start in the 

video packet. The slice information is also useful for implementing slice re-ordering on the application 

side such as Arbitrary Slice Ordering (ASO) in the H.264 standard.

The VPU API includes a constraint on using the encoder initiation function and the encoder result 

acquisition. When using the VPU API, the application should always use these two functions as a pair. 

This means that without calling the result acquisition function, vpu_EncGetOutputInfo(), the next 

picture encoding operation is not initiated by calling vpu_EncStartOneFrame(). Most VPU commands 

are not allowed unless the application calls VPU_EncGetOutputInfo() after completion of the picture 

encoding operation. This constraint is used to protect the encoded results from being overwritten from 

another thread by mistake in a multi-instance environment. Therefore, the application should regard the 

vpu_EncGetOutputInfo() function as a releasing command of the VPU from the current picture encoding 

operation. 

4.2.4 Terminating an Encoder Instance

When the application finishes with the encoder operation and terminates an encoder instance, the 

application releases the handle of this instance to inform the VPU that this instance is terminated by giving 

the SEQ_END command to the VPU. This can be accomplished by calling vpu_EncClose() function. 

4.2.5 Dynamic Configuration Commands

While running sequential picture encoding operations, the application may need to give special commands 

to the VPU such as rotating the input pictures before encoding, inserting a high layer header syntaxes, and 

so on. The VPU API provides a set of commands to support the following special requests from the host 

application:

• Rotate and mirror source frame before encoding

• Extract high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264 for 

external use

• Insert high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 79

 

VPU Control

• Change encoder parameters such as bitrate, frame rate, GOP number, slice mode and so on 

dynamically between picture encoding operations

4.3 Decoder Control

4.3.1 Creating a Decoder Instance

After initialization of the VPU, the next step to run a decoder operation is to create a decoder instance and 

acquire a handle for specifying that decoder instance. This is accomplished using a single API function, 

vpu_DecOpen(). 

When creating a new decoder instance, the application specifies the internal features of this decoder 

instance through the DecOpenParam structure. This structure includes the following information about the 

new decoder instance:

• Bitstream buffer address and size—Physical address of bitstream buffer start address and its size

• Codec standard—Video codec standard such as H.263, MPEG-4, H.264 or VC-1

• MPEG-4 deblocking filter enable—Enable or disable MPEG-4 deblocking filter option

• ReorderEnable—Enable or disable H.264 display reordering option, this option is ignored for other 

decoder standards. It should usually be set to 1.

• File-play mode enable and picture size information—Enable or disable frame-based streaming 

option for local file-play mode. The application allocates the picture stream buffer dynamically by 

enabling dynamic buffer allocation. If dynamic buffer allocation is disabled, the address and size 

of the bitstream buffer is used in picture decoding. If dynamic buffer allocation is enabled, the 

address and the size of the picture stream buffer is given dynamically by the application while 

enabling the picture decoding operation. Using the start byte-offset, the host application eliminates 

the limitation for 4-byte alignment of the bitstream buffer.

• Picture size information—Picture size information is used only if file-play mode is enabled. This 

information can be read from the file-format and is generally included in stream header itself. 

Therefore, it is not necessary to give this information for file-play mode. But this field is available 

for general usage of file-play mode. The given picture size information is ignored when the 

bitstream includes the decoded picture size.

• SPS/PPS RBSP save buffer address and size—Physical address and size of buffer for SPS and PPS

• Enable thumbnail decoding of MJPEG—Enable thumbnail decoding. If the host enables thumbnail 

decoding, the decoded output is s thumbnail

For decoding, most information is acquired from the input stream, so there are few required parameters for 

creating a decoder instance. The VPU API function, VPU_DecOpen(), does not require any operations on 

the VPU side but declares all the internal parameters to be used in later stage as well as the bitstream buffer 

information.

4.3.1.1 AVC Display Reordering

The AVC-specific display reordering option should be used carefully, because it drastically varies the 

behavior of the AVC decoder. In principle, this option should always be enabled because the flag for this 



i.MX5x VPU Application Programming Interface Linux Reference Manual

80 Freescale Semiconductor

 

VPU Control

option is embedded in the header syntax. According to the options in the header, the required frame buffer 

size is automatically determined by the VPU. 

When creating a decoder instance for H.264, the application should decide if display reordering is used. 

In principle, this bit field should be set to 1, because the display reordering option is enabled or disabled 

automatically according to the values of the corresponding header fields. But in practice, there are too 

many streams which do not actually use display reordering but display reordering option is enabled. 

Display reordering generally requires many more decoder buffers, a much longer delay, and some complex 

constraints in decoder operations. When display reordering is not used even though the display reordering 

option is enabled on the baseline profile stream, the application can force the VPU decoder to ignore this 

option and a flag is provided for this case. 

When this option is disabled, the minimum number of frame buffers is reference frame number + 2. 

Whenever one frame decoding is complete, a display (or decoded) output is provided from the VPU, so 

the decoder operation is the same as a normal decoder operation. 

But when this option is enabled, the minimum number of frame buffers is 

MAX(reference frame number, 16) + 2 for the worst case. After decoding one frame, the VPU cannot 

provide a display output because display order can be different from the decoding order. In the worst case, 

the first display output is provided from the VPU after decoding 17 frames. Because of this characteristic 

of display reordering, the VPU AVC decoder always decodes display delay + 1 frames during the first call 

of the picture decoding when display reordering is enabled in the stream. 

In practice, there are many streams which do not use display reordering, but the flag in the header is 

enabled. In this case, the host application must allocate unnecessarily more frame buffers and apply large 

delays. Considering this practical cases, this option for forced-disable of display reordering is provided in 

the VPU API.

4.3.2 Configuring VPU for Decoder Instance

4.3.2.1 Feeding Bitstream into Stream Buffer 

For the decoder, sequence initialization performs parsing of high level header syntaxes such as 

VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264 for reading out decoder configurations. To start 

sequence initialization, the application fills the decoder stream buffers with enough bitstream data. In some 

applications, the host applications can not guarantee that those kinds of header syntaxes are placed at the 

beginning of the bitstream. In this case, until the VPU successfully receives all of the required information 

from the input stream, the application should keep feeding the input data stream to the decoder bitstream 

buffer. 

In file-play mode for MPEG-4 and H.264, vpu_DecGetInitialInfo() operates only with sequence level 

header syntaxes (VOS/VO/VOL headers or SPS/PPS), which might be much smaller than the 512 byte 

minimum transfer unit. Because of the start-codes in these codec standards, reinsertion of the header data 

does not cause any problems while decoding the first picture. So the application can also use dynamic 

buffer allocation with the same buffer start address for the first picture decoding.

In file-play mode of VC-1, SEQ_META, FRAME_META and chunk data should be fed into the stream 

buffer before calling vpu_DecGetInitialInfo(). Inserting only the SEQ_META information is not allowed 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 81

 

VPU Control

in this case because the VC-1 MP standard does not use start-codes. For dynamic allocation, the VPU 

decoder does not use the new buffer start-address, but instead uses the previous buffer pointer updated by 

vpu_DecGetInitialInfo() because of this limitation. For the second picture decoding, FRAME_META 

and a chunk of data placed at a different buffer can be used in dynamic allocation. 

To feed the input bitstream, the host application should know the available space in the bitstream buffer. 

This is determined using the read pointer, write pointer and stream buffer size because the stream buffer 

operates as a ring-buffer. Getting the available space in the stream buffer, the application can directly 

download the decoder input stream to the bitstream buffer. After completing the stream download, the 

application informs the amount of downloaded stream data by updating the stream write pointer. 

The VPU API provides an API function to get the stream read pointer, write pointer and available space, 

vpu_DecGetBitstreamBuffer(). Updating the write pointer is accomplished using the API function, 

vpu_DecUpdateBitstreamBuffer(). 

4.3.2.2 Sequence Initialization

After creating a new instance and feeding the input bitstream to the stream buffer, the application gives the 

DEC_SEQ_INIT command to the VPU to get the decoder configuration information from the bitstream. 

After parsing the header syntaxes, the decoder returns the following crucial information about the decoder 

configuration:

• Picture size—Picture width and height

• Frame rate—Decoder frame rate

• Picture cropping rectangle information—Information about H.264 decoder picture cropping 

rectangle which is the offset of top-left point and bottom-right point from the origin of frame buffer

• Minimum number of frame buffers

• MPEG-4 option information—Enable or disable MPEG-4 error resilience options such as data 

partitioned or Reversible VLC as well as short video header mode

• Frame buffer delay for display reordering—The number of frame delays for supporting display 

reordering in H.264 decoder

• Annex-J (Deblocking) option indication—This flag indicates whether the deblocking option of the 

H.263 decoder is enabled or disabled. When the external post-deblocking filter is used for H.263, 

this flag is used to avoid repetition of the H.263 in-loop deblocking filter and external 

post-deblocking filter

• Number of returned next decoded index after decoding one frame—The number of returned 

indexes which are used in next decoding after decoding one frame

• Estimated slice save buffer sizes—The size of the slice save buffer. The VPU reports two different 

sizes: recommended and worst-case 

• MJPEG thumbnail enable information—This flag indicates whether thumbnail image of MJPEG 

exists or not. When thumbnail does not exist in the stream, the VPU returns failure if the host 

application enables the thumbnail decoding option

• MJPEG image YUV format—Image YUV format. The host must allocate frame buffer by this 

value



i.MX5x VPU Application Programming Interface Linux Reference Manual

82 Freescale Semiconductor

 

VPU Control

The picture size acquired from the bitstream might not be a multiple of 16×16. However, to perform the 

decoder operation properly, frame buffer size should be a multiple of 16×16. Therefore, the returned size 

is modified to be a multiple of 16×16 after a ceiling operation. Using the picture size and the minimum 

number of frame buffers, the application reserves frame buffers and provides them to the VPU before 

starting the picture decoding operation.

The frame buffer delay is an H.264-specific parameter for supporting display reordering. If the application 

supports display reordering and reordering requires five additional frame buffers, for example, then the 

first display output comes out from decoder after decoding the 6th frame. Theoretically, the maximum 

delay for display reordering is a 16-frames.

The VPU API provides a function to handle the DEC_SEQ_INIT operations, vpu_DecGetInitialInfo(). 

Completion of this function is signaled by a dedicated interrupt or by polling the BusyFlag.

An important issue in SEQ_INIT operation is error-handling because any errors in the high layer header 

syntaxes cause serious problems in decoding operations. Generally, many marker bits are added to the 

header syntaxes to assist error detection. When header syntaxes included in the stream have crucial errors, 

or when header syntaxes are not received for a long time, the VPU can be stuck on this task and no other 

instances can run on the VPU. Therefore, the VPU API provides a special function which is used in this 

situation, called vpu_SetSeqInitEsc(). When this function is called and the stream buffer is empty, the 

VPU automatically terminates the SEQ_INIT operation. Then the host application decides whether to 

close this instance or retry SEQ_INIT after running a different codec instance. After escaping from this 

situation, it is highly recommend to reset the internal ESCAPE flag by calling the vpu_SetSeqInitEsc() 

function again. This flag affects all the decoder instances performing a DEC_SEQ_INIT operation.

4.3.2.3 Registering Frame Buffers

This configuring process is completed by registering the frame buffers to the VPU for picture decoding 

operations. In this final stage of configuration, the parameter returned from vpu_DecGetInitialInfo(), the 

minimum number of frame buffer, has an important meaning. This parameter means that the application 

should reserve at least the same number of frame buffers to the VPU for proper decoding operation. 

The size of the frame buffers is calculated from the picture width and height. When both the picture width 

and height are a multiple of 16, the picture size is the size as the frame buffers. If both the picture width 

and height are not a multiple of 16, the application should apply a ceiling operation to the picture width or 

picture height to get the smallest multiple of 16 larger than picture width or picture height.

In addition to registering the frame buffers to the VPU, the slice save buffer is also registered in this step. 

The recommended buffer size is given by calling vpu_DecGetInitialInfo().

4.3.3 Running Picture Decoder On VPU

4.3.3.1 Initiating Picture Decoding

When activating a picture decoding operation, the application provides the following information to the 

VPU:

• Pre-scan Enable—Enable or disable pre-scan option for checking whether full picture stream exists 

in the stream buffer



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 83

 

VPU Control

• Pre-scan Mode—Specify decoder operation mode after pre-scan

• I-Frame Search Enable—Enable or disable I-(IDR for H.264) frame search option

• Frame Skip Mode—Enable or disable skipping bitstream for the next frame decoding

• DispOrderBuf—Enable or disable the next display output without decoding

• picStreamBufferAddr and picStartByteOffset—Start address of the picture stream buffer to be 

decoded in file-play mode and the byte offset of the actual start bytes of the picture data

• chunkSize—Byte size of the picture stream to be decoded which is read from the file-container 

information

After providing these parameters to the VPU, the application starts the picture decoding operation by 

sending a DEC_PIC_RUN command. 

The pre-scan option is a special option for scanning the bitstream buffer to check if a full picture stream 

exists in the stream buffer. This option allows the application to determine whether the bitstream empty 

and decoder stalls or not before running the actual decoder operation. When this option is enabled and 

there is not a full picture stream in the decoder buffer, the DEC_PIC_RUN command does not initiate the 

picture decoding operation and returns immediately. Then the application decides whether to retry the 

picture decoding after feeding more bitstream data or to handle other tasks for a while. 

The pre-scan mode is also given as an option for general usage of the pre-scan operation. When this flag 

is set to 0 and there is at least one full picture stream in the stream buffer, the decoder operation is 

automatically initiated. On the contrary, when this flag is set to 1, the DEC_PIC_RUN command returns 

immediately with a return code representing whether a full picture stream exists or not. In this case, no 

picture decoding is initiated. To run picture decoding in this case, the application resets this flag to 0 and 

re-sends the DEC_PIC_RUN command. 

When display reordering in H.264 is enabled, the first decoded output is only available after decoding 

many frames. To avoid this, a constraint is added to the H.264 decoder that requires the decoder to fill all 

the reordering display buffers at the first time of picture decoding. That means, if the frame buffer delay 

received from the stream header is five, the H.264 decoder should decode six frames at once at the first 

DEC_PIC_RUN operation. Then, the picture decoding always provides a picture output to be displayed. 

In this scenario, the pre-scan might cause problems, because it is designed for the case of one picture 

decoding. So when display reordering is enabled, it is recommend that the first DEC_PIC_RUN be 

performed with pre-scan disabled. 

To support display reordering in H.264 mode, a special parameter is used to flush the stored decoder output 

from the display reorder buffer without picture decoding. This option is designed for flushing out the 

decoded picture not yet displayed at the end of the decoding video sequence. When the display reordering 

option is enabled and the reordering frame buffer stores five decoded pictures, the first display output is 

available after the 6th frame decoding. Therefore, at the end of the stream decoding, there are five decoded 

pictures which are not displayed yet even though there is no more available bitstream data to decode. In 

this case, the application may ignore these five non-displayed pictures or display them by setting the 

dispReorderBuf parameter to 1 and sending the DEC_PIC_RUN command until the VPU returns the 

decoded picture index of –1.

In file-play mode, the decoder refers the start address of the picture stream from picStreamBufferAddr 

given with the DEC_PIC_RUN command or BitStreamBuffer given with the DEC_SEQ_INIT command 



i.MX5x VPU Application Programming Interface Linux Reference Manual

84 Freescale Semiconductor

 

VPU Control

depending on the dynamicBuffAllocEnable setting. When dynamicBuffAllocEnable is set, the stream 

buffer information, BitStreamBuffer, specified during DEC_SEQ_INIT is ignored. The size of the picture 

stream always refers chuckSize given with the DEC_PIC_RUN command.

It is necessary for the application to read this chunk size from the file format header for every frame 

processing. The application might use dual or multiple picture stream buffers for speed optimization or 

might also use dynamic allocation for better memory management with the dynamicBuffAllocEnable 

option. In file-play mode, the application can achieve higher efficiency of stream buffering and memory 

management with dynamic buffer allocation. 

NOTE

There might be empty chunks whose chunk size equals zero. These empty 

chunks should be removed in the file format parser because they might 

cause improper operations in the VPU.

The VPU API provides an API for handling all these complex operations, vpu_DecStartOneFrame(), 

which initiates the picture decoding operation and returns as soon as picture decoding has started on the 

VPU. Completion of picture decoding is checked using a different method.

4.3.3.2 Frame Skipping Option

When a decoder error is detected, the application might want to hide the corrupted decoder output. Even 

though error concealment is applied to that decoder output, some applications would like to the freeze 

display instead of showing the corrupted picture. This output-hiding operation should continue until the 

decoder meets the next I (or IDR) frame. Considering AV synchronization, skipping one frame can be a 

good way to hide a sequence of pictures without affecting the audio decoding operation. 

The frame skipping option is supported for the picture decoding command. As well as skip enable or 

disable, the skipping option of detecting an I (or IDR in H.264)-frame can be chosen by the application. 

So when an error is detected during picture decoding and the application would like to hide the 

error-defected pictures, the application can achieve this using the picture skipping option with I-frame 

detection enabled. By setting skipframeMode of DecParam to 1, the application easily performs skipping 

of non-intra (or non-IDR) frames. While the application enables one frame skipping by setting 

skipframeNum of DecParam to 1, pre-scan is automatically enabled and therefore, the frame skip result is 

translated to a pre-scan result. While doing one frame skip, the application can detect the results of the 

frame skipping by checking prescanresult of DecOutputInfo. 

This frame skip feature can be used by the application when the system performance is temporarily 

degraded and video decoding is significantly delayed. In this case, it is recommended for the application 

to use the I-(IDR in H.264 case) frame detect option. Using this option, the application can only decode 

I-(or IDR) frame properly without displaying error-defected frame output. 

Multi-frame skipping is also supported by setting skipframeNum of DecParam greater than 1. But 

multi-frame skipping is not recommended in normal usage because it may cause problems with AV 

synchronization.

In file-play mode, frame skipping can be easily achieved on the application side by referring the file format 

header syntax. Therefore, it is not required to support this feature in the frame-based streaming case. But 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 85

 

VPU Control

in the random access case, the I-frame search option can be useful when the keyframe information in the 

file container is incorrect. 

4.3.3.3 I-Frame Search for Random Access and Trick Mode

When a media player application is designed, trick modes and random access may be desirable features. 

To achieve these operations the application, decoder should support a feature for searching the I-frame in 

the middle of the decoder bitstream.

The I-frame search option is accomplished by setting the iframeSearchEnable of DecParam. The number 

of I-frames skipped is also set by setting skipframeNum of DecParam. (The same skipframeNum of 

DecParam is used for specifying the skipped frame number in frame skipping and I-search; however, the 

meaning of this value is somewhat different.) If skipframeNum = N, all the intermediate frames before the 

(N+1)th next I-frame are skipped. This multiple I-frame skipping might be used for high speed playback 

such as fast forward. By increasing the number N, the application can increase the speed of the fast 

forward. This kind of fast forward operation depends on the frequency of the I-(IDR) frames in the decoder 

input bitstream. Therefore, this type of trick mode can be applicable to applications specifying the 

maximum interval between I-frames. 

Random access is generally supported with a form of slide-bar in a graphic user interface of a player. For 

supporting this random access, an I-(or IDR in H.264) frame search operation is needed because decoding 

intermediate inter-frames causes visual artifacts on displayed pictures. As well as I-frame search 

functionality, random access also requires a buffer-reset scheme that does not cause unexpected artifacts 

in the decoded output. The steps of random access for the video decoder are as follows:

1. Freeze the display and reset the decoder bit-stream buffer

2. Read the bitstream from the new file read pointer and transfer it into the decoder

3. Enable I-Search and run the picture decoding operation 

4. If the buffer empty interrupt is signaled, feed more bitstream and wait for decoding completion

5. If decoding completion is detected, read the decoder results and resume display 

Resetting the bitstream buffer in Step 1 can be accomplished by calling vpu_DecBitBufferFlush(). 

Starting the decoder operation with I-frame search can also be accomplished by calling 

vpu_DecStartOneFrame() with iframeSearchEnable of DecParam set to 1. The number of skipped 

frames specified by skipframeNum of DecParam is given by 1 in random access operation. When an 

interrupt of decoder completion or non-busy state of the BIT processor is detected, the I-frame is searched 

and decoded. 

When the application uses the I-frame search option, the decoder should skip many bits in the decoder 

stream buffer. Therefore, the pre-scan option can be meaningless when used simultaneously with the 

I-search. In the VPU firmware; therefore, the pre-scan option is automatically disabled and settings for the 

pre-scan option are ignored. The application should handle stream buffer filling until the end of the 

I-search operation. Larger stream units are recommended in this case; otherwise, too many stream buffer 

empty interrupts might occur from the VPU side.



i.MX5x VPU Application Programming Interface Linux Reference Manual

86 Freescale Semiconductor

 

VPU Control

4.3.3.4 Decoder Stream Handling

When the decoder stream buffer includes a full picture stream, the host application does not need to worry 

about streaming in the middle of the decoder operation. Using the pre-scan option, the application can 

determine the status of the bitstream buffer in advance. If there is no full picture in the stream buffer, the 

application might feed more stream data to the stream buffer and start the picture decoding operation. 

The VPU API provides an API function to get the stream read pointer, write pointer and available space 

in one function call, vpu_DecGetBitstreamBuffer(). The application can get the information about the 

available space in the stream buffer using this API and transfer an amount of stream data to the stream 

buffer which is less than or equal to the available size. When transferring the stream data, the application 

should take care of the end of the stream buffer to avoid unexpected data corruption. When transferring 

stream data to the stream buffer and the write pointer reaches the end of the stream buffer, the application 

should wrap the write pointer around to the beginning of the stream buffer and then continue downloading 

to avoid data corruption. 

Updating the write pointer is accomplished using, vpu_DecUpdateBitstreamBuffer(). The write pointer 

wrap-around and updating of the write pointer is done by this API function by providing the downloaded 

stream size. Before updating the write pointer, the host application must finish transferring the stream data 

to the stream buffer. If not, a mismatch in access time may cause problems in the decoder operation.

In file-play mode, the two APIs for streaming are meaningless because the VPU always assumes the 

bitstream buffer is flushed at the end of every picture decoding operation. The application only needs to 

feed the stream buffer with one frame stream and then call vpu_DecStartOneFrame().

4.3.3.5 Completion of Picture Decoding

Picture decoder operations take a certain amount of time, and the application can complete other tasks 

while calling vpu_WaitForInt() to wait for the completion of the picture decoding operation, such as 

display processing of the previously decoded output. The application can use two different schemes for 

detecting the completion of the picture decoding operation: polling a status register or waiting for an 

interrupt signal. When the application uses the polling scheme, the application checks the BusyFlag 

Register of the BIT processor. Calling vpu_IsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An 

interrupt signal for the DEC_PIC_RUN command is mapped to bit 3 of the interrupt enable register. So 

the application can easily determine the completion of the picture decoder operation from this dedicated 

interrupt signal from the VPU.

4.3.3.6 Acquiring Decoder Results

When picture decoding is complete, the host application retrieves the decoded output, such as the display 

frame index, decoded frame index, decoded frame picture type, number of error concealed MBs, Pre-scan 

result, and so on. The VPU API provides a function for retrieving the output results of the picture decoder, 

vpu_DecGetOutputInfo(). 

The VPU API includes a constraint on using the decoder initiation function and decoder result acquisition. 

When using the VPU API, the application should always use these two functions as a pair. This means that 

without calling the result acquisition function, vpu_DecGetOutputInfo(), the next picture decoding 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 87

 

VPU Control

operation is not initiated by calling vpu_DecStartOneFrame(). This constraint is used to protect the 

decoded results from being overwritten from other thread by mistake in multi-instance environment. 

Therefore, the application should regard vpu_DecGetOutputInfo() function as a releasing command of 

the VPU from the current picture decoding operation. 

Reading Display Output

The display frame index, indexFrameDisplay, is used to represent the frame buffer number where the 

display output picture is stored. It always equals the frame buffer index to be displayed and it can be 

different from the decoded picture index when display ordering control is enabled, such as display 

reordering of H.264, B-frame in VC-1, and so on. 

At the beginning of sequence decoding, even after decoding several frames, there is no display output from 

decoder because of the order of display. For H.264 reordering, in worst case, the first display output can 

come out after the 17th frame decoding. Therefore, at times there is no proper display buffer index. In this 

case, the VPU decoder returns a negative frame buffer index for indexFrameDisplay of –3 or –2 depending 

on the frame skip option. Only at the end of sequence decoding is this value equal to –1 and the application 

can terminate the current decoder instance without any loss in picture display. 

Table 7 shows the display output status based on the indexFrameDisplay values.

Reading Decoded Output

The decoded frame index, indexFrameDecoded, is an optional output to the host application. This index 

is used to represent the frame buffer number where the decoded picture is stored. Usually, the host 

application does not need to worry about this index. The display index, indexFrameDisplay, is sufficient 

to handle the output of the VPU decoder. 

When there are not enough frame buffers to be written with decoded image data, this value is equal to –1 

(0xFFFF). In this situation, the application re-calls vpu_DecStartOneFrame() after clearing the display 

flag by calling vpu_DecClrDispFlag().

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the 

end of sequence decoding, the host application needs to flush out the decoded frames for display. During 

this flushing operation, no actual decoding operations are performed. Under this situation, this value is 

equal to –1 (0xFFFF) to represent that there is no decoded frame this time. This negative decoded index is 

also used when picture decoding is skipped because of skip option or picture header error. 

Table 7. indexFrameDisplay Values

indexFrameDisplay 

Value
Display Output Status

Non-negative value Output index value points to the frame buffer index of the display output

–1 Signals the end of sequence decoding, there is no more display output when the stream end 

is signaled to the VPU

–2 There is temporarily no display output because of the frame-skip option 

–3 There is temporarily no display output even without any action by the host application. Usually, 

this value occurs when an IDR picture is received for H.264 display-reordering mode 



i.MX5x VPU Application Programming Interface Linux Reference Manual

88 Freescale Semiconductor

 

VPU Control

Reading Pre-Scan Result

The pre-scan result flag represents whether a full picture stream is included in the bitstream buffer before 

picture decoding. When this flag is equal to 0, the decoding operation is not performed because there is no 

full picture stream in the stream buffer. If application enables pre-scan and sets pre-scan mode to 0 

(decoding a picture when full picture stream exists), the application should check this output parameter 

first to determine whether a decoding operation is performed or not. 

When pre-scan result is 0 and the stream buffer is full and the current stream buffer is too small to store a 

full picture stream. To avoid dead-lock, the host application should disable the pre-scan option and re-run 

the picture decoding operation.

Display Cropping in H.264

The display cropping option in H.264 forces the host application to display part of the frame buffers. The 

information about the cropping window is provided by SPS. In SPS, four offset values of cropping 

rectangles are presented, and these four offset values are given by the picCropRect structure to the host 

application. Using these four offset values, the host application can easily detect the position of the target 

output window. When display cropping is off, the cropping window size is 0.

Next Decoded Frame Index 

The next decoded frame index, indexNextFrameDecoded[3], is an optional output to the host application. 

This indexes are used to represent the frame buffer index which is used in the next 

VPU_DecStartOneFrame() call. The application might not stop calling VPU_DecStartOneFrame() to 

protect display corruption, if some of these indexes are not displayed yet.

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the 

end of sequence decoding, the host application needs to flush out the decoded frames for display. During 

this flushing operation, no actual decoding operations are performed. Under this situation, this value might 

be ignored.

Reading Lack of Additional Work Buffer

The VPU reports the status of the PS (SPS/PPS) save buffer and slice save buffer after it decodes one 

frame. If the VPU reports lack of PS save buffer, the VPU can not properly decode the remaining input 

stream; therefore, it is best to close current instance in this situation. If the VPU reports lack of slice save 

buffer, the VPU can choose to either close and reopen the current instance or continue picture decoding 

regardless of display corruption until the next I-frame.

4.3.3.7 Management of Displaying Buffers Decoded

The VPU has flags to indicate if the frame buffer is displayed or not internally. The flag is set after the 

VPU returns the display frame index automatically and the VPU never uses the buffer for which the 

display flag is set. Before starting the decoding process, the VPU checks if there is a frame buffer available 

and returns immediately if there is no frame buffer to be written with decoded image with a current 

decoded index of –1. The host application clears the flag after completion of displaying the frame buffers 

by calling vpu_DecClrDispFlag().



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 89

 

VPU Control

4.3.3.8 Escape from Decoder Hang

Even when pre-scan is used, it is still possible for an application to experience decoder hanging because 

of a stream error or lack of available stream at the end of sequence decoding. In the middle of picture 

decoding, decoder hanging is signaled to the application through the decoder buffer empty interrupt if this 

interrupt is enabled, and the application can avoid decoder hanging by putting more bitstream data to 

stream buffer. 

In some extraordinary cases and at the end of sequence decoding, the application avoids decoder hanging 

by means of garbage insertion or sending an end-of-stream command to the VPU decoder. this is 

accomplished by calling vpu_DecUpdateStreamBuffer() with size of 0. As soon as the VPU detects this 

setting, the VPU terminates the current picture decoding with error concealment if applicable.

4.3.4 Terminating a Decoder Instance

4.3.4.1 Stream End and Last Picture in Stream Buffer

After the host application meets the end of stream and sends all of the stream data in the stream buffer, the 

host application must determine when the last picture output is coming out. If there is no display delay, 

this task is simple. But if display delay exists (reordering of the decoded pictures for display), this task 

might be difficult for the host application. 

In the VPU API, a flag that indicates the end-of-stream is used. After sending the last byte of the stream 

data to bitstream buffer, the host application sets this flag and calls the vpu_DecStartOneFrame() 

function. After the last display output picture has come out, the decoded picture index is changed to –1. 

When the host application receives this index, host application detects the end of the sequence processing. 

When the display delay exists (display reordering option in H.264, B-frames in other codecs), the host 

application gets the buffered decoder output frame even after finishing actual decoding operation. In this 

case, the host application calls the VPU_DecStartOneFrame() as usual. Until the delayed display output 

frames are completely flushed out, the VPU decoder provides the frame index of the newly displayed 

output to the host application. And if there is no more available output, the VPU decoder returns a frame 

index of –1. 

4.3.4.2 Closing Current Instance

When the application finishes the last picture decoding operation and terminates a decoder instance, the 

application releases the handle of this instance and inform the VPU that this instance is terminated by 

giving the SEQ_END command to the VPU. This can be accomplished by calling the vpu_DecClose() 

function.

4.3.5 Dynamic Configuration Commands

While running sequential picture decoding operations, application may need to give a special command to 

the VPU. The VPU API provides a set of commands to support the following special requests from the 

host application:

• Rotate and mirror output frame before decoding



i.MX5x VPU Application Programming Interface Linux Reference Manual

90 Freescale Semiconductor

 

VPU Control

• Apply SPS and PPS from the external out-of-band protocol

• Specify the frame buffer address for the MPEG-4 deblocking filtered output 

4.4 Example Applications

This section discusses the example applications provided for the i.MX5x VPU API.

4.4.1 VPU Library

The VPU library and header file source code is located under rpm/BUILD/imx-lib*/vpu after selecting and 

unpacking the imx-lib package with the Linux Image Target Builder (LTIB). The detailed source code 

structure of the VPU library and kernel space is presented in the Video Processing Unit (VPU) Driver 

chapter of the i.MX5x EVK Linux Reference Manual.

The user may optionally configure the following following environment variables:

• VPU_FW_PATH—Directory where the vpu_fw_imx51.bin or vpu_fw_imx53.bin file is located. If 

this variable is not exported by the user, the vpu_fw_imx51.bin or vpu_fw_imx53.bin file must be 

located in the /lib/firmware/vpu directory.

4.4.2 VPU Example Application

The VPU example application is located under rpm/BUILD/imx-test*/test/mxc_vpu_test after selecting 

an unpacking the imx-test package with LTIB. This application gives an example of how to use the VPU 

API to control the VPU hardware to implement a decoder or an encoder. The following test cased are 

included in this test application:

• Decode streams to save to a YUV file or to display on a LCD

• Encode streams from a YUV file or from camera captured data

• Loopback—encode camera captured YUV data then decode it to a YUV and display on a LCD 

simultaneously

• Network—encode camera captured YUV data and send it to another side to decode by UDP

NOTE

Only packet-based streaming mode with ring-buffer is included in this 

example application

Refer to the readme file for details about the usage of the application example. Section 4.4.2.1, “Decode 

Stream to Display on LCD,” and Section 4.4.2.2, “Encode Stream from Camera Captured Data,” describe 

the example applications usage for decoding streams to display on a LCD and encoding streams from 

camera captured data. These two examples are described in detail to illustrate how proper frame buffer 

management between the VPU and V4L interface improves performance and avoids memory copy, 

especially memory for decoded YUV or captured YUV data. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 91

 

VPU Control

4.4.2.1 Decode Stream to Display on LCD

The application should complete the following steps to decode streams to display on a LCD:

1. Call vpu_Init() to initialize the VPU. If there are multi-instances supported in this application, this 

function only needs to be called once.

2. Open a decoder instance using vpu_DecOpen(). Call IOGetPhyMem() before opening the 

instance to input oparam.bitstreamBuffer. Call IOGetVirtMem() to get the corresponding virtual 

address of the bitstream buffer, then fill the bitstream at this address in user space. Call 

IOGetPhyMem() for both the physical PS save buffer and physical slice save memory for H.264.

3. Call vpu_DecGetBitstreamBuffer() to get the bitstream buffer address to provide the proper 

amount of bitstream.

4. After transferring the decoder input stream, declare the amount of bits transferred into the 

bitstream buffer using vpu_DecUpdateBitstreamBuffer().

5. Get crucial parameters for decoder operations such as picture size, frame rate, required frame 

buffer size, and so on using vpu_DecGetInitialInfo(). Set escape to 1 by calling 

vpu_DecSetEscSeqInit(handle, 1) before this function is called. Set escape to 0 by calling 

vpu_DecSetEscSeqInit(handle, 0) after vpu_DecGetInitialInfo() is called.

6. Using the frame buffer requirement returned from vpu_DecGetInitialInfo(), allocate the proper 

size of the frame buffers and notify the VPU using vpu_DecRegisterFrameBuffer(). The 

requested frame buffer in PATH_V4L2 case to display the stream on the LCD is as follows:

a) Add two more buffers than minFrameBufferCount to the frame buffer count: 

vpu_DecClrDispFlag() is used to control if the frame buffer can be used for decoder again. 

One framebuffer dequeue from IPU is delayed for performance improvement and one 

framebuffer is delayed for display flag clear. Performance is better when more buffers are 

used if IPU performance is bottleneck. 

b) Call v4l_display_open() to open the v4l device and request v4l buffers for image display. If 

VPU rotation or dering is enabled, larger frame buffers are needed. Two extra buffers are 

added in this example application. Register the first minFrameBufferCount + 2 buffers as 

bufY, bufCb, bufCr for the VPU decoder, and memory transfer is not needed for performance 

improvement. Call IOGetPhyMem() for bufMvCol part for VPU decoder usage.

c) Inform the VPU to register minFrameBufferCount + 2 buffers by calling 

vpu_DecRegisterFrameBuffer().

7. Start picture decoder operation picture-by-picture using vpu_DecStartOneFrame().

a) If rotation is enabled, the SET_ROTATION_ANGLE, SET_ROTATOR_STRIDE and 

ENABLE_ROTATION commands need to be given before starting decoding by calling 

vpu_DecGiveCommand(). The rotator stride is the picture height if the rotation angle is 90° 

or 270°; otherwise, the stride is the picture width.

b) If dering is enabled, the ENABLE_DERING command needs to be given before starting 

decoding. 

c) If mirror is enabled, the SET_MIRROR_DIRECTION and ENABLE_MIRRORING 

commands need to be given. 



i.MX5x VPU Application Programming Interface Linux Reference Manual

92 Freescale Semiconductor

 

VPU Control

d) Since there are two extra buffers used for rotation or dering, the SET_ROTATOR_OUTPUT 

commands need to be set before each picture decoder. 

e) Start the picture decoder operation by calling vpu_DecStartOneFrame().

8. Wait for the completion of the picture decoder operation interrupt event by calling 

vpu_WaitforInt(). vpu_IsBusy() is used to check if the VPU is busy. If the VPU is not busy, go 

to the next step. Otherwise, wait again and more bitstream can be filled to the bitstreamBuffer 

while waiting.

9. Check the results of the decoder operation using vpu_DecGetOutputInfo(). Go to different case 

as defined by outputinfo. For example, –1 in outinfo.indexFrameDisplay indicates that the 

decoder completed. Values of –2 or –3 in outinfo.indexFrameDisplay indicates that no picture 

needs to be displayed. A positive value in outinfo.indexFrameDisplay indicates the displayed 

buffer index, and v4l_put_data() can be called to display the image on the LCD. 

In the v4l_put_data() function, IOCTL VIDIOC_QBUF is set to queue the buffer to the v4l 

module for display. Also, IOCTL VIDIOC_DQBUF is used to get one buffer that image has been 

displayed and can be used again for the decoder. Here, one frame buffer dequeue from the IPU is 

delayed, then the VPU and IPU operate in an asynchronous method for performance improvement.

10. After displaying the nth frame buffer, clear the buffer display flag using vpu_DecClrDispFlag(). 

This function does not need to be called for the STD_MJPG codec. One frame buffer is delayed 

for display flag clear, that means, previous dequeued framebuffer index was cleared by the 

VIDIOC_DQBUF IOCTL.

11. If there is more bitstream to decode, go to step 7, otherwise go to the next step

12. Terminate the sequence operation by closing the instance using vpu_DecClose(). Make sure 

vpu_DecGetOutputInfo() is called for each corresponding vpu_DecStartOneFrame() call 

before closing the instance although the last output information may be not useful.

13. Free all memory that was allocate by calling IOFreePhyMem() and IOFreeVirtMem(). 

v4l_display_close() needs to be called to free all v4l related resource, including v4l buffers.

14. Call vpu_UnInit() to release the system resources before exit. If there are multi-instances 

supported in this application, this function only needs to be called once.

4.4.2.2 Encode Stream from Camera Captured Data

The application should complete the following steps to encode streams from camera captured data:

1. Call vpu_Init() to initialize the VPU. If there are multi-instances supported in this application, this 

function only needs to be called once.

2. Open a encoder instance using vpu_EncOpen(). Call IOGetPhyMem() to input 

encop.bitstreamBuffer for the physical continuous bitstream buffer before opening the instance. 

Call IOGetVirtMem() to get the corresponding virtual address of the bitstream buffer, then fill 

the bitstream to this address in user space. If rotation is enabled and the rotation angle is 90° or 

270°, the picture width and height must be swapped.

3. Give command of ENC_SET_SEARCHRAM_PARAM for search RAM usage. Use 

IOGetIramBase() to get the system internal RAM information for the VPU usage. If rotation is 

enabled, give commands ENABLE_ROTATION and SET_ROTATION_ANGLE. If mirror is 

enabled, give commands ENABLE_MIRRORING and SET_MIRROR_DIRECTION.



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 93

 

VPU Control

4. Get crucial parameters for encoder operations such as required frame buffer size, and so on using 

vpu_EncGetInitialInfo().

5. Using the frame buffer requirement returned from vpu_DecGetInitialInfo(), allocate the proper 

size of the frame buffers and notify the VPU using vpu_EncRegisterFrameBuffer(). The 

requested frame buffer for the source frame in PATH_V4L2 to encode camera captured data is as 

follows:

a) Allocate the minFrameBufferCount frame buffers by calling IOGetPhyMem() and register 

them to the VPU for encoder using vpu_EncRegisterFrameBuffer(). 

b) Another frame buffer is needed for the source frame buffer. Call v4l_capture_setup() to open 

the v4l device for camera and request v4l buffers. In this example, three v4l buffers are 

allocated. Call v4l_start_capturing() to start camera capture. Pass the dequeued v4l buffer 

address by calling v4l_get_capture_data() as encoder source frame in each picture encoder, 

then no need to memory transfer for performance improvement.

6. Generate the high-level header syntaxes using vpu_EncGiveCommand().

7. Start picture encoder operation picture-by-picture using vpu_EncStartOneFrame(). Pass 

dequeued v4l buffer address by calling v4l_get_capture_data() as the encoder source frame 

before each picture encoder is started.

8. Wait for the completion of picture decoder operation interrupt event calling vpu_WaitforInt(). 

Use vpu_IsBusy() to check if the VPU is busy. If the VPU is not busy, go to the next step; 

otherwise, wait again. 

9. After encoding a frame is complete, check the results of encoder operation using 

vpu_EncGetOutputInfo(). After the output information is received, call 

v4l_put_capture_data() to the VIDIOC_QBUF v4l buffer for the next capture usage.

10. If there are more frames to encode, go to Step 7; otherwise, go to the next step.

11. Terminate the sequence operation by closing the instance using vpu_DecClose(). Make sure 

vpu_DecGetOutputInfo() is called for each corresponding vpu_DecStartOneFrame() call 

before closing the instance although the last output information may be not useful.

12. Free all allocated memory and v4l resource using IOFreePhyMem() and IOFreeVirtMem(). 

Call v4l_stop_capturing() to stop capture.

13. Call vpu_UnInit() to release the system resources. If there are multi-instances supported in this 

application, this function only needs to be called once.

4.4.2.3 Other Issues

Some important issues are as follows:

• Performance is better both on the VPU and IPU when chromainterleave mode is enabled.

• To avoid the VPU hanging if there is not enough stream data, enable prescan in networking mode 

to first scan the stream buffer. This flag can be disabled if the bitstream buffer is large in real video 

playback and the application can guarantee the bitstream buffer is enough.

• Since IPU rotation performance is better than the VPU, use IPU rotation and not VPU rotation.



i.MX5x VPU Application Programming Interface Linux Reference Manual

94 Freescale Semiconductor

 

VPU Control

THIS PAGE INTENTIONALLY LEFT BLANK



i.MX5x VPU Application Programming Interface Linux Reference Manual

Freescale Semiconductor 95

 

VPU Control



Document Number: 924-76394

Rev. 10.10.00

10/2010

Information in this document is provided solely to enable system and software 

implementers to use Freescale Semiconductor products. There are no express or 

implied copyright licenses granted hereunder to design or fabricate any integrated 

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to 

any products herein. Freescale Semiconductor makes no warranty, representation or 

guarantee regarding the suitability of its products for any particular purpose, nor does 

Freescale Semiconductor assume any liability arising out of the application or use of 

any product or circuit, and specifically disclaims any and all liability, including without 

limitation consequential or incidental damages. “Typical” parameters which may be 

provided in Freescale Semiconductor data sheets and/or specifications can and do 

vary in different applications and actual performance may vary over time. All operating 

parameters, including “Typicals” must be validated for each customer application by 

customer’s technical experts. Freescale Semiconductor does not convey any license 

under its patent rights nor the rights of others. Freescale Semiconductor products are 

not designed, intended, or authorized for use as components in systems intended for 

surgical implant into the body, or other applications intended to support or sustain life, 

or for any other application in which the failure of the Freescale Semiconductor product 

could create a situation where personal injury or death may occur. Should Buyer 

purchase or use Freescale Semiconductor products for any such unintended or 

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor 

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all 

claims, costs, damages, and expenses, and reasonable attorney fees arising out of, 

directly or indirectly, any claim of personal injury or death associated with such 

unintended or unauthorized use, even if such claim alleges that Freescale 

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page: 
www.freescale.com 

Web Support: 
http://www.freescale.com/support

USA/Europe or Locations Not Listed: 

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road 
Tempe, Arizona 85284 
1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English) 

+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French) 
www.freescale.com/support

Japan: 

Freescale Semiconductor Japan Ltd. 
Headquarters
ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku 
Tokyo 153-0064
Japan 
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific: 

Freescale Semiconductor China Ltd. 

Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000

support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor 
Literature Distribution Center 

1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale are trademarks or registered trademarks of Freescale 
Semiconductor, Inc. in the U.S. and other countries. All other product or 
service names are the property of their respective owners. ARM is the 

registered trademark of ARM Limited. ARMnnn is the trademark of ARM Limited. 

© Freescale Semiconductor, Inc., 2010. All rights reserved.

 
 


