Input with Android on i.MX

Last Update: May 26th,2009

What's in this doc

An overview about the user input (on-board keypad, USB keyboard,
Touch Panel, USB mouse, etc) implementation in i.MX Android.
Mainly focus on how Android framework interact with Linux kernel to
grab user input and convert it to events which can be recognized by
framework and application.

Some aspects related to input are not covered in this version yet:

e How does KeyCharMap file (.kcm) work (only KeyLayout file .kl
is described)

e Special handling in framework code (e.g. wakeup LCD due to
special key)

e BT based HID device

"Input" in Android

Android use standard Linux input event device (/dev/input/eventX)
as defined in linux/input.h. There is no user space HAL for "input".
When any user input occur (e.g user press or release key, touch the
screen, move the mouse, or press the left button of mouse), kernel
driver will report the raw input event (with Type/Code/Value) to
Android via event device /dev/input/eventX. Android framework will
poll on all available event devices (e.g. eventO for keypad, eventl for
touchscreen, etc), read the raw event, convert the raw event in
"logic" way (e.g. map the "scancode" from kernel to "keycode" used
in framework/apps), do some "housekeeping" work (e.g. wakeup
LCD when pressing some special key during sleep, start timer for
detect long pressing), put the event in the queue, and then throw it
to view/widget one by one.

Currently Android framework handle three types of input events from
kernel:

1. EV_KEY (Key or Button press/release)
2. EV_REL (Relative Axes)
3. EV_ABS (Absolute Axes)

When pressing/releasing one key on keypad/keyboard, the following
events (in format TYPE/CODE/VALUE) will be generated by keypad
driver (or USB HID driver) and feed into Android framework:

(EV_KEY, 0x008b, 0x0001) - 0x008b is the scan code of "MENU" defined
in input.h; 0x0001 means "press"
(EV_KEY, 0x008b, 0x0000) - 0x0000 means "release"

When touch and scratch on the screen, the following event sequence
will be generated by touchscreen driver and feed into Android
framework:

(EV_ABS, 0x0000, 0x0189) - 0x0000 means "ABS_X" (X axes), 0x0189
the absolute X value of pen point

(EV_ABS, 0x0001, 0x001c) - 0x0001 means "ABS_Y" (Y axes), 0x001c
the absolute Y value of pen point

(EV_KEY, 0x014a, 0x0001) - 0Ox014a means "BTN_TOUCH" , 0x0001
means "pressing"

(0x0000, 0x0000, 0x0000) - sync event, no meaning, will be ignored
(EV_ABS, 0x0000, 0x0200) - pen is moving to another point with different
X

(EV_ABS, 0x0001, 0x0025) - pen is moving to another point with different
Y

(EV_ABS, 0x0000, 0x0287)

(EV_ABS, 0x0000, 0x0053)

(EV_KEY, 0x014a, 0x0000) - Here pen leave off the screen. 0x0000
means "up"

(0x0000, 0x0000, 0x0000)

When move mouse, scroll the wheel and press the left button, the
following event sequence will be generated by USB HID driver and
feed into Android framework:

(EV_REL, 0x0000, 0x0001) - 0x0000 means "REL_X" (move toward X
axes), 0x0001 is the relative X movement

(EV_REL, 0x0001, Oxffff) - 0x0001 means "REL_Y" (move toward Y
axes), Oxffff is the relative Y movement

(EV_REL, 0x0008, 0xffff) - 0x0008 means "REL_WHEEL" (scroll wheel)

(EV_KEY, 0x0110, 0x0001) - 0x0110 means "BTN_LEFT" (left button on
mouse), 0x0001 means "pressing"
(EV_KEY, 0x0110, 0x0000) - 0x0000 means "up"

You can watch all events reported by kernel in Android shell by:

getevent -v &

Components involved in "input"”

Below chart demonstrate all components (both Android framework
and kernel) involved in "input" event generation/grab/handling:

WindowlanagerService |

| WindowlanagerService |
L]

1 —1

Key Input Queue | InputDispatcherThread

1

Get everts and put into queue
1

?Inteface?

Android JNII/F

1

4 libui I

EventHub 1 " | KeyLayoutMap

L ———
M

Android Framew ork

Kernel Space Report input" event via /dev/inputieventX

INPUT l

| ev dev l_w inputcore |
i [
Zl

L]
AN

Kernel driver:

e inputcore/evdev: Input core for various input devices. Each
input driver need register into input core during initialization.

e mxc_kpd, mxc_tc: FSL keypad and touch panel driver

e USB HID device is not showed in above chart

The following kernel config need be enabled for "input":

CONFIG_INPUT

CONFIG_INPUT_EVDEV

CONFIG_INPUT_KEYBOARD

CONFIG_KEYBOARD_MXC (in case you want to use FSL

keypad driver)

CONFIG_INPUT_TOUCHSCREEN

e CONFIG_TOUCHSCREEN_MXC (in case you want to use
FSL touchscreen driver)

e CONFIG_HID, USB_HID (in case you have USB

keyboard/mouse)

Framework component:

e libui (frameworks/base/libs/ui/)
library for create instance for EventHub which will poll on all
input devices, read raw event, map "scancode" to "keycode"
according to key map file, and return the event (with both
scan/key code) to runtime service
For each "keyboard" device, EventHub will try search
corresponding key layout file (*.kl) under /system/usr/
keylayout/. For example, if you have a keypad device with
name "mxckpd

e Android JNI I/F (KeyInputQueue, frameworks/base/services/
jni/)
Java->C bridge between runtime service (i.e.
WindowManagerService here) and native library (i.e. libui
here)

e WindowManagerService (frameworks/base/services/java/com/
android/server/)
Read input events, do some special handling (e.g. generate

"long press" event, wakeup LCD for special key, re-map UP/
DOWN/LEFT/RIGHT/CENTER key when the device is rotated
with 90/180/270 degree), and then put events into queue.
With another thread (InputDispatcherThread), input event will
be dispatched to view/widget according to it's type (KEY, ABS,
REL).

Interaction between Android framework and Linux kernel

During kernel bootup, those kernel input drivers (e.g. keypad,
touchscreen) need register into input core so that "input" event can
be reported to upper layer via event devices (/dev/input/eventX).
USB HID driver register into input core when any USB HID device is
plugged in and probed by driver.

Here is an example for FSL keypad driver initializing:

Kermel Init MSL VF mxc_kpd InputCore Driver Model Kemel Utlity HW -
Routine I1F IF Keypad
- mxc_kpp_init ..
H platform_driver_register i

Re gister driver "mxc_keypad"

mixc_init_keypad

platform_device_rgister

Regigder mxc_keypad device
with specified ROWCOL, INT
number, and keymap table
(i.e. ROWICOL -> scan code)

mxc_kpp_probe

-l
-

request_irq

Y

clk_enable
gpio_keypad_active
]

Configure KPD controller (e.g. ROW/COL)

4

init_timer

.
|

input_allocate_device

device_initialize Init *polling™ Bmsrfor
= keypad scan

—_—

| —

input_register_ de\rioé"‘}

T— JI:-déTei’ ce_add
et

Then Android bootup with WindowManager Service created. Window
Manager service run two separate threads for input, one is a KeyQ
object (inherited from KeyInputQueue class) running as a thread,
read event from kernel and put into queue; another is a
InputDispatcherThread which retrieve events from queue and
dispatch them to view/widget.

WindowManagerService

revd 1 ?1 T1 ; InputDispatcherThread
Keylnputciuete RuninSeparateT hre ad 1 (L
Thread

Interaction between Android framework (e.qg.
WindowManagerService) and kernel is demonstrated in below chart:

WindowhanagerSenice KeyQ Input Os patcherThread Keyl nputQuete Thread Android JNI EventHub Keyl ayou Map libe libcutils
liF
Create E Create a separatethread
Create ' _ "InputDeviceReader" to read
o o -+ event from input device
! Create
! i i A
Create i
"
'
n _:
run
readEvent
Qrdate EventHub for1st time read Keep wetchinganyinpyt
Pk device cred eldelete by
regis Er inotify b path
/dewinput/
Open all devices under "fdevinput/" @.g. eve nil); Spenklatarmintat
Get device info via several ioctl (8.9. EVIOCGNAME to get device name); inotify_gdd_walch .
Detect event type which will be reported by device | . >
{CLASS_KEYB OARDICLASS_TRACKBALL/CLASS_TOUCHSCREEM) ===~ | open
. ioctl o
Foreach keyboard type device, tiy toload keylayout file For leybbarddenicd
{fsys tem /usr/keylayout/ XXX). "XX X" is the device name load
detected above (8. g. mxckpd) . ‘werty. K" will b2 used if no | =
matc hed key ayout fle | property| set
Key ayo ut i le dzfine the mapping betv ez n scanc ode (what's ol r L
read from /dewi nput /eventX) and ley c ode (what's ec ogni =d ul Let the world know all
by Android keyboards by set prop
T "hw.keyboards. X .devrame'. X
getEvent isthe indexed ID (e.g. 0)
poll
Poll {blockwai ing) on all opened A=
input devices (keyboard, == -U
touchscreen....) and inotify watch B
until any event occur {e.g. key ' taad
press/release, touch on o——————————————pp
tauchscreen new device in K
/dev/input, etc) For leybperddenice Get typelcodaivalue” of
fnag. input event. Be noticed that
i i f here "code " mean “scan
Before throwing th einput ewent to e “ 2 z
I, have this chance te do some Map "scan code” fiom deuce o "key L code"incaseofakeyboard
crack like wakeup LCD, or even eat code" defined in key layout file input
the event which is loaded before
i preprocessEvent

>l
U addLocked

+ Insertinput event into quewe based
on ewnt i meandwake upanythread
waiting for i nput event

getEvent

KEY ihput
di spat chKey

Touch ifipjt(ABS)
dispatchPainter

{

Mouse/Tracksdl | nput(REL)
dispatchTra ckball

L b W

Reference

"Keymaps and Keyboard Input" in Android Porting Guide under
"development/pdk/docs/"
input.txt under kernel tree "Documentation/input/"

	Input with Android on i.MX
	
	What's in this doc
	"Input" in Android
	Components involved in "input"
	Interaction between Android framework and Linux kernel
	Reference

