
i.MX 8M Plus Camera Sensor Porting User
Guide

NXP Semiconductors Document identifier: IMX8MPCSPUG
User's Guide Rev. 1, 03/2021

Contents
Chapter 1 Overview... 3

Chapter 2 ISP Software Architecture... 4

Chapter 3 ISP Independent Sensor Interface (ISI) API reference......................... 6

Chapter 4 IOCTL Introduction..12

Chapter 5 VVCam API Reference... 14

Chapter 6 Camera Sensor Driver in V4L2 Mode... 19

Chapter 7 Revision history...33

NXP Semiconductors

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 2 / 34

Chapter 1
Overview
This document describes the architecture of the i.MX 8M PLUS Image Signal Processing (ISP sensor driver, API functions, calling
process, methods to add new APIs, and how to implement the methods for mounting different sensors.

This document is applicable to BSP release 5.4.70_2.3.0.

Acronyms and Conventions

3A: Auto Exposure, Auto Focus, Auto White Balance

AE: Auto Exposure

AF: Auto Focus

API: Application Programming Interface

AWB: Automatic White Balance

BLC: Black Level Correction

fps: Frames Per Second

I2C: Inter-Integrated Circuit

IOCTL: Input Output Control

ISI: Independent Sensor Interface

ISP: Image Signal Processing

ISS: Image Sensor Specific

VVCAM: Vivante’s kernel driver integration layer

WB: White Balance

Hexadecimal numbers are indicated by the prefix “0x” or suffix “H” —for example, 0x32CF or 32CFH.

Binary numbers are indicated by the prefix “0b” —for example, 0b0011.0010.1100.1111

Code snippets are given in Consolas typeset.

NXP Semiconductors

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 3 / 34

Chapter 2
ISP Software Architecture
In the ISP framework, the application layer and 3A (Auto Exposure, Auto Focus, Auto White Balance) layer calls the sensor API
using function pointers in the ISS through the ISI layer code. The data stream which is output by the sensor is sent directly to ISP
for processing. In the following figure, the gray arrows represent the function calls and the white arrows represent the direction of
the output image data of the sensor.

Figure 1. ISP Software Architecture

2.1 ISS (Image Sensor Specific) Driver
• Sensor specific implementation

• Sensor specific attributes and behavior from:

— Sensor datasheet

— Calibration data

2.2 ISP Sensor Module Block Diagrams
The i.MX 8M Plus ISP sensor module is organized as shown in the following figures.

1. Sensor Module in Linux Kernel: I2C is called in the kernel to read and write the sensor register as shown in Figure 2
below.

• ISI Layer: includes the interface to call the corresponding sensor functions, function pointers to mount different sensors
and the structure composed of these function pointers.

— ISS: uses function pointers so that the ISP driver code can use different sensors independently without modifying the
code of other modules.

NXP Semiconductors

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 4 / 34

— Sensor API: includes sensor power on, initialization, reading and writing sensor registers, configuring sensor
resolution, exposure parameters, obtaining current sensor configuration parameters and other functions.

• VVCAM: i.MX 8M Plus ISP kernel driver integration layer which includes ISP, MIPI, camera sensor and I2C kernel driver.

— Sensor Driver: performs sensor API operations on sensor hardware.

— I2C: Read-Write Sensor Register. When writing a register, its value must be a 32-bit value. There is no restriction on
reading a register.

— Kernel Working Mode: VVCAM has two types of working modes in the kernel:

1. V4L2 Mode: kernel driver that acts as a part of V4L2 kernel driver, register device name and operations as a V4L2
sub-device style. This mode is compatible with the V4L2 sensor device format.

Figure 2. Sensor Module in Linux Kernel

NXP Semiconductors
ISP Software Architecture

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 5 / 34

https://en.wikipedia.org/wiki/Video4Linux

Chapter 3
ISP Independent Sensor Interface (ISI) API reference
Structures and functions are provided here for convenience.

3.1 ISI Structures

3.1.1 IsiCamDrvConfig_s
This structure defines camera sensor driver specific data. Refer to section 2.4.1 of the i.MX 8M Plus ISP ISI API document
for details.

3.1.2 IsiSensorInstanceConfig_s
This structure defines the configuration structure used to create a new sensor instance. Refer to section 2.4.8 of the i.MX 8M Plus
ISP ISI API document for details.

3.1.3 IsiSensor_s
This structure defines attributes for the sensor. Refer to section 2.4.5 of the i.MX 8M Plus ISP ISI API document for details.

3.2 ISI Functions
The following ISI API will use the function pointers defined in the IsiSensor_s data structure to call the corresponding sensor
functions defined in the Sensor API Reference section.

Refer to section 3 of the i.MX 8M Plus ISP ISI API document for details.

ISI API Function Description

IsiCreateSensorIss(…) Create a new sensor instance and assign resources to sensor

IsiInitSensor(…) Initialization of sensor

IsiGetSensorModeIss (…) Get the sensor mode information

IsiReleaseSensorIss(…) Release the sensor's resources

IsiGetCapsIss(…) Get the capabilities of sensor

IsiSetupSensorIss(…) Launch sensor

IsiChangeSensorResolutionIss(…) Change image sensor resolution while keeping all other static settings

IsiSensorSetStreamingIss(…) Enables/disables streaming of sensor data

IsiSensorSetPowerIss(…) Power-up/power-down the sensor

IsiCheckSensorConnectionIss(…) Checks the connection to the camera sensor

IsiGetSensorRevisionIss(…) Read sensor ID

Table continues on the next page...

NXP Semiconductors

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 6 / 34

Table continued from the previous page...

ISI API Function Description

IsiRegisterReadIss(…) Read sensor register

IsiRegisterWriteIss(…) Write a value to the sensor register

IsiGetGainLimitsIss(…) Get the minimum and maximum value of gain

IsiGetIntegrationTimeLimitsIss(…) Get the minimum and maximum exposure time

IsiExposureControlIss(…) Exposure control

IsiGetCurrentExposureIss(…) Get current gain and exposure time

IsiGetGainIss(…) Get the gain value of the current sensor

IsiGetVSGainIss(…) Get gain of the very short exposure frame in HDR mode

IsiGetLongGainIss(…) Get gain of the long exposure frame in HDR mode

IsiGetGainIncrementIss(…) Get step size of gain

IsiSetGainIss(…) Set sensor gain

IsiGetIntegrationTimeIss(…) Get current exposure time

IsiGetVSIntegrationTimeIss(…) Get exposure time of the very short exposure frame in HDR mode

IsiGetLongIntegrationTimeIss Get exposure time of the long exposure frame in HDR mode

IsiGetIntegrationTimeIncrementIss(…) Get the maximum exposure time of a row

IsiSetIntegrationTimeIss(…) Set exposure time

IsiQuerySensorIss(…) Query sensor support mode information

IsiGetSensorFpsIss(…) Get current framerate

IsiSetSensorFpsIss(…) Set the new framerate to sensor

IsiGetResolutionIss(…) Get the resolution of the sensor

IsiMdiInitMotoDrive(…) Initialization of moto control interface

IsiMdiSetupMotoDrive(…) Setup the mote control step parameter

IsiMdiFocusSet(…) Set the moto step value

IsiMdiFocusGet(…) Get the moto step value

IsiMdiFocusCalibrate(…) Handle of AF calibration

Table continues on the next page...

NXP Semiconductors
ISP Independent Sensor Interface (ISI) API reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 7 / 34

Table continued from the previous page...

ISI API Function Description

IsiGetSensorMipiInfoIss(…) Get the Mipi information of sensor configuration

IsiActivateTestPattern(…) Sensor TPG interface

IsiEnableHdr(…) Enable/disable sensor HDR function

IsiResetSensorIss(…) Reserved

IsiSetBayerPattern(…) Bayer Pattern interface

IsiDumpAllRegisters(…) Dump all the sensor registers to file

IsiTryToSetConfigFromPreferredCap(…) Reserved

IsiGetSensorAWBMode(…) Get AWB mode by sensor or ISP

IsiSensorSetBlcIss(…) Set sensor BLC

IsiSensorSetWBIss(…) Set sensor WB gain.

IsiSensorGetExpandCurveIss(…) Get the curve of the sensor extended bit width

IsiQuerySensorSupportIss(…) Get the current sensor information

3.3 Sensor API Reference
This section describes the API defined in units/isi/drv/<sensor>/source/<sensor>.c where <sensor> is the name of the sensor (for
example, OV2775). You can refer to the APIs in the following table to define your own API for the sensor which you are using. The
upper application layer can use the structure of IsiCamDrvConfig_t to call the following functions.

Table 1. Sensor API Reference

Sensor API Description

SENSOR DEFINES

<sensor>_SLAVE_ADDR I2C is used when reading and writing the register of sensor

<sensor>_MIN_GAIN_STEP When AE decomposes the exposure, it is the smallest unit of gain

<sensor>_MAX_GAIN_AEC AE will be used when decomposing exposure

<sensor>_VS_MAX_INTEGRATION_TIME The maximum exposure time for the very short exposure frame in HDR
mode. The maximum exposure time of ISP is 48 lines (the exposure
time of lines x 48 is: <sensor>_VS_MAX_INTEGRATION_TIME)

<sensor>_VTS_NUM The VTS of the sensor needs to be modified according to the
configuration of sensor, which affects the exposure

Table continues on the next page...

NXP Semiconductors
ISP Independent Sensor Interface (ISI) API reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 8 / 34

Table 1. Sensor API Reference (continued)

Sensor API Description

<sensor>_HTS_NUM The HTS of the sensor needs to be modified according to the
configuration of sensor, which affects the exposure time

<sensor>_PIX_CLOCK The pixel clock of the sensor needs to be modified according to the
sensor's configuration, which affects the sensor's exposure

SENSOR STRUCTURES

IsiCamDrvConfig_t IsiCamDrvConfig{} Provide a structure for upper layer to access function pointer

SENSOR FUNCTIONS

<sensor>_IsiGetSensorIss(…) Mount the sensor API under the ISI function pointer

<sensor>_IsiCreateSensorIss(…) Assign resources to sensor

<sensor>_IsiInitSensorIss(…) Initialization of sensor

<sensor>_IsiReleaseSensorIss(…) Release the sensor's resources

<sensor>_IsiResetSensorIss(…) Reset sensor

<sensor>_IsiGetCapsIss(…) Get the capabilities of sensor

<sensor>_IsiSetupSensorIss(…) Launch sensor

<sensor>_IsiChangeSensorResolutionIss(…) Change image sensor resolution while keeping all other static settings

<sensor>_IsiSensorSetStreamingIss(…) Enables/disables streaming of sensor data

<sensor>_IsiSensorSetPowerIss(…) Power-up/power-down the sensor

<sensor>_IsiCheckSensorConnectionIss(…) Check the connection to the camera sensor

<sensor>_IsiGetSensorRevisionIss(…) Read sensor ID

<sensor>_IsiActivateTestPattern(…) Sensor TPG interface

<sensor>_IsiRegisterReadIss(…) Read sensor register

<sensor>_IsiRegisterWriteIss(…) Write sensor register

<sensor>_IsiGetGainLimitsIss(…) Get the minimum and maximum value of gain

<sensor>_IsiGetIntegrationTimeLimitsIss(…) Get the minimum and maximum exposure time

<sensor>_IsiExposureControlIss(…) Exposure control

<sensor>_IsiGetCurrentExposureIss(…) Get current gain and exposure time

<sensor>_IsiGetGainIss(…) Get the gain value of the current sensor

Table continues on the next page...

NXP Semiconductors
ISP Independent Sensor Interface (ISI) API reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 9 / 34

Table 1. Sensor API Reference (continued)

Sensor API Description

<sensor>_IsiGetVSGainIss(…) Get gain of the very short exposure frame in HDR mode

<sensor>_IsiGetLongGainIss(…) Get gain of the long exposure frame in HDR mode

<sensor>_IsiGetGainIncrementIss(…) Step size of gain

<sensor>_IsiSetGainIss(…) Set sensor gain

<sensor>_IsiEnableHdr(…) Enable/disable sensor HDR function

<sensor>_IsiSetBayerPattern(…) Bayer Pattern interface

<sensor>_IsiGetIntegrationTimeIss(…) Get current exposure time

<sensor>_IsiGetVSIntegrationTimeIss(…) Get exposure time of the very short exposure frame in HDR mode

<sensor>_IsiGetLongIntegrationTimeIss(…) Get exposure time of the long exposure frame in HDR mode

<sensor>_IsiGetIntegrationTimeIncrementIss(…) Get the maximum exposure time of a row

<sensor>_IsiSetIntegrationTimeIss(…) Set exposure time

<sensor>_IsiQuerySensorIss(…) Query sensor supports

<sensor>_IsiGetResolutionIss(…) Get the resolution of the sensor

<sensor>_IsiGetSensorFpsIss(…) Get current frame rate

<sensor>_IsiSetSensorFpsIss(…) Set the new frame rate to sensor

<sensor>_IsiGetSensorModeIss(…) Get sensor mode information

<sensor>_pIsiGetSensorAWBModeIss(…) Get sensor AWB mode

<sensor>_pIsiSensorSetBlcIss(…) Set sensor sub BLC

<sensor>_IsiSensorSetWBIss(…) Set sensor WB gain

<sensor>_IsiSensorGetExpandCurveIss(…) Get sensor expand curve

3.4 ISS Sensor Driver User Space Flow
Function Pointers

In the ISS (Image Sensor Specific) driver, we define function pointers of the same type as the sensor API and integrate
these function pointers into the IsiSensor_s data structure. The driver then integrates the IsiSensor_s structure, camera driver
ID and IsiGetSensorIss_t function pointers into the IsiCamDrvConfig_s data structure. In the function corresponding to the
IsiGetSensorIss_t function pointer, the driver mounts the sensor API to the function pointer defined in the ISS layer. The
application layer can operate the sensor API by accessing this data structure. Refer to the Define the Camera Driver Configuration
Data Structure in ISS driver section for additional information.

Sensor Defines

NXP Semiconductors
ISP Independent Sensor Interface (ISI) API reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 10 / 34

There are #defines for the sensor which are unique to each sensor. These #defines need to be set according to the requirements
of the application. An example of a custom set of #defines for a sensor is given here in the Define the Camera Driver Configuration
Data Structure in ISS driver section.

Sensor Exposure Function

The exposure function in the sensor is also different for each sensor. To modify the exposure function, refer to the sensor’s data
sheet for specific implementation methods. An example of a customized exposure function is given here in the Modify the Sensor
Driver in V4L2 Mode section. The IsiGetSensorIss_t function pointer interface defined in ISI corresponds to the sensor API. Each
ISI API calls the corresponding sensor API through the function pointer.

The application layer obtains the address of the function pointer with the IsiCamDrvConfig_t data structure through the
SensorOps::driverChange() function.

SensorOps::driverChange(std::string driverFileName, std::string calibFileName) {
…..
DCT_ASSERT(!pCamDrvConfig->pfIsiGetSensorIss(&pCamDrvConfig->IsiSensor));
pSensor = &pCamDrvConfig->IsiSensor;

At the same time, the application layer will pass this address down to ISS so that ISS can access different sensors.

Figure 3. User Space Flow

NXP Semiconductors
ISP Independent Sensor Interface (ISI) API reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 11 / 34

Chapter 4
IOCTL Introduction
The interface in the user space cannot operate the functions directly in the kernel space. Commands and parameters of the
operations are called with the use of IOCTL commands.

4.1 IOCTL Commands
The corresponding operations for IOCTL commands in the kernel space are shown in the following table.

Table 2. IOCTL Commands (V4L2 Mode)

IOCTL IOCTL Operation

VVSENSORIOC_WRITE_REG Call <sensor>_write_reg to write the sensor register

VVSENSORIOC_READ_REG Call <sensor>_read_reg to read the sensor register

VVSENSORIOC_S_STREAM Call <sensor>_s_stream to set sensor stream start or stop

VVSENSORIOC_S_LONG_EXP Call <sensor>_s_long_exp to set long exposure frame exposure

VVSENSORIOC_S_EXP Call <sensor>_s_exp to set exposure frame exposure

VVSENSORIOC_S_VSEXP Call <sensor>_s_vsexp to set very short exposure frame exposure

VVSENSORIOC_S_LONG_GAIN Call <sensor>_s_long_gain to set long exposure frame gain

VVSENSORIOC_S_GAIN Call <sensor>_s_gain to set exposure frame gain

VVSENSORIOC_S_VSGAIN Call <sensor>_s_vsgain to set very short exposure frame gain

VVSENSORIOC_S_FPS Call <sensor>_s_fps to set the sensor fps

VVSENSORIOC_G_FPS Call <sensor>_g_fps to get the sensor fps

VVSENSORIOC_S_CLK Call <sensor>_s_clk to set the sensor clk

VVSENSORIOC_G_CLK Call <sensor>_g_clk to get the sensor clk

VIDIOC_QUERYCAP Call <sensor>_ioc_qcap

VVSENSORIOC_G_CHIP_ID Call <sensor>_g_chipid to get the sensor chip id

VVSENSORIOC_G_RESERVE_ID Return the sensor correct ID

VVSENSORIOC_S_HDR_MODE Call <sensor>_s_hdr to set the sensor HDR mode

VVSENSORIOC_QUERY Call <sensor>_ioc_query_mode to get all modes of the sensor

VVSENSORIOC_G_SENSOR_MOD
E

Call <sensor>_g_mode to get the sensor current mode

Table continues on the next page...

NXP Semiconductors

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 12 / 34

Table 2. IOCTL Commands (V4L2 Mode) (continued)

IOCTL IOCTL Operation

VVSENSORIOC_S_WB Call <sensor>_s_wb to set the sensor white balance register value

VVSENSORIOC_S_BLC Call <sensor>_s_blc to set the sensor BLC register value

VVSENSORIOC_G_EXPAND_CUR
VE

Call <sensor>_get_expand_curve to get the sensor expand curve

4.2 IOCTL Call Flow
The IOCTL supports V4L2 Mode as described below.

4.2.1 V4L2 Mode
The figure below shows the IOCTL call flow in V4L2 mode. For more details, refer to the VVCAM Flow in V4L2 Mode section.

Figure 4. IOCTL Call Flow in V4L2 Mode

NXP Semiconductors
IOCTL Introduction

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 13 / 34

Chapter 5
VVCam API Reference
This section describes the API declared in vvcam/common/vvsensor.h.

5.1 Sensor Driver Enumerations

5.1.1 SENSOR_BAYER_PATTERN_E

enum Members Description

BAYER_RGGB Bayer RGGB pattern mode

BAYER_GRBG Bayer GRBG pattern mode

BAYER_GBRG Bayer GBRB pattern mode

BAYER_BGGR Bayer BGGR pattern mode

5.1.2 sensor_hdr_mode_e

enum Members Description

SENSOR_MODE_LINEAR Linear mode

SENSOR_MODE_HDR_STITCH ISP HDR mode

SENSOR_MODE_HDR_NATIVE The different exposure image will be combined in sensor before being
processed by ISP.

5.1.3 sensor_stitching_mode_e

enum Members Description

SENSOR_STITCHING_DUAL_DCG Dual DCG mode 3x12-bit

SENSOR_STITCHING_3DOL 3 DOL frame 3x12-bit

SENSOR_STITCHING_LINEBYLINE 3x12-bit line by line without waiting

SENSOR_STITCHING_16BIT_COMPRESS 16-bit compressed data + 12-bit RAW

SENSOR_STITCHING_DUAL_DCG_NOWA
IT

2x12-bit dual DCG without waiting

SENSOR_STITCHING_2DOL DOL2 frame or 1 CG+VS sx12-bit RAW

SENSOR_STITCHING_L_AND_S L+S 2x12-bit RAW

NXP Semiconductors

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 14 / 34

5.2 Sensor Driver Structures

5.2.1 sensor_blc_t

Structure Members Type Description

red uint32_t Red Black Level Correction (BLC) level

gr uint32_t Gr BLC level

gb uint32_t Gb BLC level

blue uint32_t Blue BLC level

5.2.2 sensor_data_compress_t

Structure Members Type Description

enable uint32_t
0: sensor data is not compressed

1: sensor data is compressed

x_bit uint32_t If sensor data is compressed, x_bit represents the data bit width
before compression.

y_bit uint32_t If sensor data is compressed, y_bit represents the data bit width
after compression.

5.2.3 sensor_expand_curve_t

Structure Members Type Description

x_bit uint32_t Input bit width of data decompression curve

y_bit uint32_t Output bit width of data decompression curve

expand_px[64] uint8_t Data decompression curve input interval index.exp:
1<<expand_px[i] = expand_x_data[i+1] - expand_x_data[i]

expand_x_data[65] uint32_t 65 points of data decompression curve input

expand_y_data[65] uint32_t 65 points of data decompression curve output

NXP Semiconductors
VVCam API Reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 15 / 34

5.2.4 sensor_mipi_info

Structure Members Type Description

mipi_lane uint32_t MIPI lane

sensor_data_bit uint32_t Sensor data bit

5.2.5 sensor_white_balance_t

Structure Members Type Description

r_gain uint32_t White Balance (WB) R gain

gr_gain uint32_t WB Gr gain

gb_gain uint32_t WB Gb gain

b_gain uint32_t WB B gain

5.2.6 vvcam_ae_info_t

Structure Members Type Description

DefaultFrameLengthLines uint32_t Sensor default Frame length lines (always is sensor default mode vts)

CurFrameLengthLines uint32_t Current Frame length lines

one_line_exp_time_ns uint32_t One line exposure time (in ns)

(always = sensor PCLK * HTS)

max_interrgation_time uint32_t Maximum exposure line

(Maximum gain multiple *gain_accuracy. Fixed point processing of floating-
point numbers.)

min_interrgation_time uint32_t Minimum exposure line

(Mininum gain multiple *gain_accuracy. Fixed point processing of floating-
point numbers.)

interrgation_accuracy uint32_t Exposure accuracy, always is one line

max_gain uint32_t Maximum sensor gain

min_gain uint32_t Minimum sensor gain

gain_accuracy uint32_t Gain accuracy

(Fixed point precision of floating-point numbers.)

Table continues on the next page...

NXP Semiconductors
VVCam API Reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 16 / 34

Table continued from the previous page...

Structure Members Type Description

cur_fps uint32_t Current frame rate

hdr_radio uint32_t HDR radio

5.2.7 vvcam_mode_info_array_t
This structure is an abstraction of vvcam_mode_info.

Structure Members Type Description

count uint32_t Number of modes supported

modes[VVCAM_SUPPORT_MAX_MODE_COUNT] struct vvcam_mode_info Structure of sensor feature

5.2.8 vvcam_mode_info_t

Structure Members Type Description

index uint32_t Mode index

width uint32_t Image width

height uint32_t Image height

fps uint32_t frame rate

hdr_mode uint32_t HDR mode

stitching_mode uint32_t HDR stitching mode

bit_width uint32_t Sensor bit width

data_compress sensor_data_compress_t Sensor data is compressed

bayer_pattern uint32_t Bayer mode

ae_info vvcam_ae_info_t AE information

preg_data void * Sensor register configuration point

reg_data_count uint32_t Sensor register configuration size

5.3 Sensor Driver API
V4l2 Sensor Driver API is declared in file <sensor>_mipi_v3.c where <sensor> is the name of the sensor (for example, OV2775).

NXP Semiconductors
VVCam API Reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 17 / 34

Table 3. Sensor V4l2 Driver API

API Name Description

<sensor>_write_reg(…) Write data to the specified register

<sensor>_read_reg(…) Read data from the specified register

<sensor>_s_stream(…) Start or stop the sensor

<sensor>_s_long_exp(…) Write the exposure time of 3A decomposition exposure parameter for a long exposure
frame to the sensor's register

<sensor>_s_exp(…) Write the exposure time of 3A decomposition exposure parameter to the sensor's register

<sensor>_s_vsexp(…) Write the exposure time of 3A decomposition exposure parameter for a very short
exposure frame to the sensor's register

<sensor>_s_long_gain(…) Set the gain of the long exposure frame in multiples rather than dB

<sensor>_s_gain(…) Set the gain in multiples rather than dB

<sensor>_vs_gain(…) Set the gain of the very short exposure frame in multiples rather than dB

<sensor>_s_fps(…) Set sensor FPS

<sensor>_g_fps(…) Get sensor FPS

<sensor>_s_clk(…) Set sensor clock

<sensor>_g_clk(…) Get sensor clock

<sensor>_ioc_qcap(…) V4l2 query driver ability

<sensor>_g_chipid(…) Get sensor chip ID

<sensor>_s_hdr(…) Enable or disable sensor HDR combine

<sensor>_ioc_query_mode(…) Query sensor support mode information

<sensor>_g_mode(…) Get the sensor mode information according to the index

<sensor>_s_blc(…) Set sensor sub BLC

<sensor>_s_wb(…) Set white balance

<sensor>_get_expand_curve(…) Get sensor expand curve

NXP Semiconductors
VVCam API Reference

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 18 / 34

Chapter 6
Camera Sensor Driver in V4L2 Mode

6.1 VVCAM Flow in V4L2 Mode
Read through this section carefully before porting the new sensor driver in V4L2 Mode. If you have any problems during the sensor
porting process, refer to the existing sensor driver of the platform in your source code release.

To add a new function interface, refer to the following sections:

• ISI API Reference

• ISS Sensor Driver User Space Flow

• Sensor API Reference

• VVCAM Flow in V4L2 Mode

Both hub and sensor kernel driver must add corresponding interfaces and calls. While porting the sensor, be aware that different
sensors in the sensor data sheet have different conversion methods when converting the exposure parameters which are passed
down from the 3A modules to the values written in the registers. The sensor data must be accurately defined.

To port the camera sensor, the following steps must be taken as described in the following sections:

1. Define sensor attributes and create the sensor instance in CamDevice.

2. Define the camera driver configuration data structure in ISS driver.

3. Modify the sensor driver in VVCAM.

4. Setup HDR.

5. Define MIPI lanes.

6. Sensor Driver Configuration in V4L2.

6.1.1 Sensor Driver Software Architecture in V4L2 Mode
The software architecture of the sensor driver in V4L2 Mode is shown in the figure below. The V4L2-subdev driver is defined in
file vvcam/v4l2/sensor/<sensor>/<sensor>_xxxx.c where <sensor> is the name of the sensor (for example, OV2775).

A device node of the sensor named v4l-subdevx can be created in /dev for direct access. Function <sensor>_priv_ioctl() is used
in the kernel space to receive the commands and parameters passed down by the user space through ioctl() and to call the
corresponding functions in <sensor>_xxxx.c according to the commands.

Developers should replace the Vivante V4L2-Subdev Driver with their own sensor as shown in the figure below.

 NOTE

NXP Semiconductors

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 19 / 34

Figure 5. VVCAM Software Architecture in V4L2 Mode

6.2 Camera Sensor Porting Setup in V4L2 Mode

6.2.1 Define Sensor Attributes and Create Sensor Instance in CamDevice
The following three steps are already implemented in CamDevice and are included for reference only. Developers may not modify
any code in CamDevice.

step 1) Define the sensor attributes in the IsiSensor_s data structure.

step 2) Define the IsiSensorInstanceConfig_t configuration structure that will be used to create a new sensor instance.

step 3) Call the IsiCreateSensorIss() function to create a new sensor instance.

int32_t SensorOps::open() {
…
int32_t ret = RET_SUCCESS;
IsiSensorInstanceConfig_t sensorInstanceConfig;
sensorInstanceConfig.HalHandle = pHalHolder->hHal;
sensorInstanceConfig.pSensor = &pCamDrvConfig->IsiSensor;
ret = IsiCreateSensorIss(&sensorInstanceConfig);
…
}

6.2.2 Define the Camera Driver Configuration Data Structure in ISS driver
step 4) Define the IsiCamDrvConfig_s data structure. Data members defined in this data structure include the sensor ID
(CameraDriverID) and the function pointer to the IsiSensor data structure. Using the address of the IsiCamDrvConfig_s structure,
the driver can then access the sensor API attached to the function pointer.

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 20 / 34

For example:

IsiCamDrvConfig_t IsiCamDrvConfig = {
 0,
 <sensor>_IsiQuerySensorSupportIss,
 <sensor>_IsiGetSensorIss,
 {
 0, /**< IsiSensor_t.pszName */
 …
 }
};

• IsiCamDrvConfig is defined in file units/isi/drv/<sensor>/source/<sensor>.c.

• <sensor>_IsiQuerySensorSupportIss() uses the IOCTL command VVSENSORIOC_QUERY to get all the
modes supported by <sensor>

 NOTE

<sensor>_IsiGetSensorIss() can initialize the IsiSensor_s data structure. It is called by upper-level application described
in the ISS Sensor Driver User Space Flow section. Then the application can get address of all the callback functions.
<sensor>_IsiGetSensorIss is defined as follows:

RESULT <sensor>_IsiGetSensorIss(IsiSensor_t *pIsiSensor)
{
 …
pIsiSensor->pIsiCreateSensorIss = <sensor>_IsiCreateSensorIss;
pIsiSensor->pIsiInitSensorIss = <sensor>_IsiInitSensorIss;
pIsiSensor->pIsiGetSensorModeIss = <sensor>_IsiGetSensorModeIss;
pIsiSensor->pIsiResetSensorIss = <sensor>_IsiResetSensorIss;
…
}

<sensor>_IsiCreateSensorIss, <sensor>_IsiInitSensorIss, <sensor>_IsiGetSensorModeIss,
<sensor>_IsiResetSensorIss are described in the Sensor API Reference section.

 NOTE

Sensor macro must be modified to match the sensor attributes in the source file corresponding to the sensor as described below.

An example of a set of sensor defines is given in file units/isi/drv/<sensor>/source/<sensor>.c. See the example below.

#define SENSOR_MIN_GAIN_STEP
 (1.0f/16.0f)

6.2.3 Modify the Sensor Driver in V4L2 Mode
step 5) The V4L2 architecture of sensor driver is shown in Figure 5. To specify a camera sensor, the sensor driver must be added
by developers in file vvcam/v4l2/sensor/<sensor>/<sensor>_xxxx.c where <sensor> is the name of the sensor (for example,
OV2775). Developers can refer to the file ov2775_mipi_v3.c to add their own sensors.

In ov2775_mipi_v3.c, there are seven important parts:

1. Define the private data structure of struct ov2775 shown in the following table. This structure includes the key
parameters used by ov2775 sensor driver. Developers should modify the structure members according to their own
sensor drivers.

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 21 / 34

ov2775

Structure Members
Type Description

subdev struct v4l2_subdev A V4L2 sub-device struct presents the sensor device

v4l2_dev struct v4l2_device * Pointer to struct v4l2_device

i2c_client struct i2c_client * Pointer to an i2c slave device. The i2c_client identifies a
single device (that is, sensor) connected to an I2C bus

pix struct v4l2_pix_format Video image format

fmt const struct

ov2775_datafmt *

struct ov2775_datafmt {u32 code;

enum v4l2_colorspace colorspace;};

streamcap struct v4l2_captureparm Capture parameters

pads[1] struct media_pad A media pad graph object for sensor

on bool Sensor streaming on/off

brightness int Reserved

hue int Reserved

contrast int Reserved

saturation int Reserved

red int Reserved

green int Reserved

blue int Reserved

ae_mode int Reserved

mclk u32 Reference clock provided to sensor

mclk_source u8 mclk sources ID

sensor_clk struct clk * Pointer to struct clk used to manage the sensor clock

csi int ID number of MIPI CSI controller connected to the
current sensor

io_init void (*io_init)

(struct ov2775 *)

Function pointer to reset sensor with hardware I/O pin

pwn_gpio int GPIO number for powering down sensor

Table continues on the next page...

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 22 / 34

Table continued from the previous page...

ov2775

Structure Members
Type Description

rst_gpio int GPIO number for resetting sensor

hdr int HDR mode

fps int Frame rate

cur_mode vvcam_mode_info_t Current mode index of sensor

blc sensor_blc_t sensor_blc_t is used to store the BLC levels of red, GR,
GB, blue

wb sensor_white_balance_t sensor_white_balance_t is used to store the white balance
gains of red, GR, GB, blue in sensor

lock struct mutex Mutex lock to access the sensor driver

2. Include the initialization parameter header files for ov2775.

For example:

#include "ov2775_regs_1080p.h"
#include "ov2775_regs_1080p_hdr.h"
#include "ov2775_regs_1080p_native_hdr.h"
#include "ov2775_regs_720p.h"

Each header file includes an array for register settings. The initial array of registers can be obtained from the sensor vendor.

3. Add the vvcam_mode_info data structure array. The array stores all the supported mode information of ov2775. The ISI
layer can get all the modes with the VVSENSORIOC_QUERY command.

For example:

static struct vvcam_mode_info pov2775_mode_info[] = {
{
.index = 0,
.width = 1920,
.height = 1080,
.fps = 30,
.hdr_mode = SENSOR_MODE_LINEAR,
.bit_width = 12,
.data_compress.enable = 0,
.bayer_pattern = BAYER_BGGR,
.ae_info = {
.DefaultFrameLengthLines = 0x466,
.one_line_exp_time_ns = 29625,
.max_integration_time = 0x466 - 2,
.min_integration_time = 1,
.gain_accuracy = 1024,
.max_gain = 21 * 1024,
.min_gain = 1 * 1024,
},
.preg_data = ov2775_init_setting_1080p,

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 23 / 34

.reg_data_count = ARRAY_SIZE(ov2775_init_setting_1080p),
},
…
};

ov2775_init_setting_1080p is the register setting array which is defined in header file ov2775_regs_1080p.h which
is described in Step 5, Part 2 (above).

 NOTE

4. Define the v4l2-subdev ioctl function of ov2775_priv_ioctl. Function ov2775_priv_ioctl() is used to receive the commands
and parameters passed down by the user space through ioctl() and to control the ov2775 sensor.

For example:

long ov2775_priv_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg_user) {
…
switch (cmd) {
…
case VVSENSORIOC_S_LONG_GAIN:{
USER_TO_KERNEL(__u32);
ret = ov2775_s_long_gain(sensor, *(__u32 *)arg);
break;
}
case VVSENSORIOC_S_GAIN: {
USER_TO_KERNEL(__u32);
ret = ov2775_s_gain(sensor, *(__u32 *)arg);
break;
}
case VVSENSORIOC_S_VSGAIN: {
USER_TO_KERNEL(__u32);
ret = ov2775_s_vsgain(sensor, *(__u32 *)arg);
break;
}
…
default:
pr_err("unsupported ov2775 command %d.", cmd);
ret = -1;
break;
} /*end of switch*/
…
}

cmd is an IOCTL command described in the IOCTL Commands section. Developers should implement each IOCTL
function corresponding to their own sensors. These IOCTL functions include ov2775_s_gain(), ov2775_s_vsgain(),
ov2775_s_stream(), ov2775_s_fps(), and so on.

 NOTE

5. Since the exposure function in the sensor is unique for each sensor, a customized calculation of exposure parameters
must be written. The parameters include gain and integration time. Refer to the data sheet of the sensor for specific
implementation values.

Here is an example of a customized calculation for the gain of sensor OV2775 in linear mode. The function is in the file
vvcam/v4l2/sensor/ov2775/ov2775_mipi_v3.c.

int ov2775_s_gain(struct ov2775 *sensor, __u32 new_gain)
{
…
sensor_calc_gain(new_gain, &again, &dgain, &hcg);
ret = ov2775_read_reg(sensor, 0x30bb, ®_val);

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 24 / 34

if (hcg == 1) {
reg_val &= ~(1 << 6);
} else {
reg_val |= (1 << 6);
}
reg_val &= ~0x03;
reg_val |= again;
ret = ov2775_write_reg(sensor, 0x3467, 0x00);
ret |= ov2775_write_reg(sensor, 0x3464, 0x04);
ret |= ov2775_write_reg(sensor, 0x315a, (dgain >> 8) & 0xff);
ret |= ov2775_write_reg(sensor, 0x315b, dgain & 0xff);
ret |= ov2775_write_reg(sensor, 0x30bb, reg_val);
ret |= ov2775_write_reg(sensor, 0x3464, 0x14);
ret |= ov2775_write_reg(sensor, 0x3467, 0x01);
…
}

Developers should add the exposure function in VVCAM corresponding to their own sensor. Refer to the file
ov2775_mipi_v3.c for more information about setting or getting gain and integration time.

 NOTE

6. Define struct i2c_driver for the sensor driver. Because the sensor is connected to an I2C bus, the sensor driver also
serves as an I2C client driver. It should be registered to the I2C framework in the Linux kernel, then the sensor driver
can use the kernel functions of I2C to communicate with the sensor.

For example:

static const struct of_device_id ov2775_dt_ids[] = {
{ .compatible = "ovti,ov2775" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ov2775_dt_ids);
static struct i2c_driver ov2775_i2c_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "ov2775",
.pm = &ov2775_pm_ops,
.of_match_table = ov2775_dt_ids,
},
.probe = ov2775_probe,
.remove = ov2775_remove,
.id_table = ov2775_id,
};
module_i2c_driver(ov2775_i2c_driver);

ov2775_probe() is the I2C probe function; ov2775_remove() is the I2C detach function.

 NOTE

7. Define struct v4l2_subdev_ops for the sensor driver. Because the sensor also serves as a V4L2 sub-device, the sensor
driver should use the struct v4l2_subdev_ops to assign sub-device operations to the V4L2 framework in the Linux
kernel.

For example:

static struct v4l2_subdev_video_ops ov2775_subdev_video_ops = {
.g_parm = ov2775_g_parm,
.s_parm = ov2775_s_parm,
.s_stream = ov2775_s_stream,
};

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 25 / 34

static const struct v4l2_subdev_pad_ops ov2775_subdev_pad_ops = {
.enum_frame_size = ov2775_enum_framesizes,
.enum_frame_interval = ov2775_enum_frameintervals,
.enum_mbus_code = ov2775_enum_code,
.set_fmt = ov2775_set_fmt,
.get_fmt = ov2775_get_fmt,
};
static struct v4l2_subdev_core_ops ov2775_subdev_core_ops = {
.s_power = ov2775_s_power,
.ioctl = ov2775_priv_ioctl,
};
static struct v4l2_subdev_ops ov2775_subdev_ops = {
.core = &ov2775_subdev_core_ops,
.video = &ov2775_subdev_video_ops,
.pad = &ov2775_subdev_pad_ops,
};

After defining the struct v4l2_subdev_ops, the sensor driver uses the v4l2_i2c_subdev_init() function to initialize struct
v4l2_subdev and struct i2c_client in function ov2775_probe(). The function ov2775_probe() is shown below. The
v4l2_async_register_subdev_sensor_common() function is then used to register the sensor->subdev to V4L2 framework
of the Linux kernel.

static int ov2775_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int retval;
struct ov2775 *sensor;
sensor = devm_kmalloc(dev, sizeof(*sensor), GFP_KERNEL);
…
sd = &sensor->subdev;
v4l2_i2c_subdev_init(sd, client, &ov2775_subdev_ops);
…
retval = v4l2_async_register_subdev_sensor_common(sd);
…
}

6.2.4 Setup HDR
step 6) To setup HDR:

• Enable the HDR function of ISP. Define ISP_HDR_STITCH in the ISP configuration file.

For example, in the ISP configuration file:

vim units/mkrel/ISP8000xxxx_Vxxxx/product_cfg_ISP8000xxxx_Vxxxx.cmake

where: ISP8000xxxx_Vxxxx is the version number of the ISP you are using.

Add the following macro into the cmake file:

add_definitions(-DISP_HDR_STITCH)

• Enable the HDR function of the sensor. Modify the mode to HDR mode in files Sensor0_Entry.cfg and Sensor1_Entry.cfg.

— Sensor0_Entry.cfg is the configuration file for the sensor connected to ISP0.

— Sensor1_Entry.cfg is the configuration file for the sensor connected to ISP1.

An example of Sensor0_Entry.cfg for ov2775:

name="ov2775"
drv = "ov2775.drv"

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 26 / 34

mode= 1
[sensor_mode.0]
xml = "OV2775.xml"
[sensor_mode.1]
xml = "OV2775.xml"
[sensor_mode.2]
xml = "OV2775.xml"
[sensor_mode.3]
xml = "OV2775_8M_02_720p.xml"

When mode = 1, select the default mode as HDR mode. The assigned number is as the same as the index number
of mode information array (vvcam_mode_info).

 NOTE

6.2.5 Define MIPI Lanes
step 7) In the sensor driver, set SENSOR_MIPI_LANES for the MIPI Lane used by the sensor.

For example, in the OV2775 sensor driver file /isi/drv/OV2775/source/OV2775.c, modify the MipiLanes data member in the
OV2775_IsiGetCapsIss() function as shown:

pIsiSensorCaps->MipiLanes = ISI_MIPI_4LANES;

6.2.6 Sensor Driver Configuration in V4L2
The i.MX 8M PLUS ISP sensor driver supports V4L2, which is developed according to the standard V4L2 architecture on Linux
systems. The following the steps are used to configure V4L2 in the sensor driver.

1. Add -DAPPMODE=V4L2 and -DSUBDEV_V4L2=1 into the cmake command when building source code in user space.

cmake -DCMAKE_BUILD_TYPE=release -DISP_VERSION=ISP8000NANO_V1802 -
DPLATFORM=ARM64 -DAPPMODE=V4L2 -DQTLESS=1 -DFULL_SRC_COMPILE=1 -
DWITH_DWE=1 -DWITH_DRM=1 -DSERVER_LESS=1 -DSUBDEV_V4L2=1 -DENABLE_IRQ=1 .. -Wno-dev

2. Add the following configuration in vvcam/v4l2/sensor/Makefile, where <sensor> should be replaced by the name of the
new sensor:

obj-m += <sensor>/

3. Update the device tree file in Linux kernel.

For example:

&i2c0 {
…
ov2775_0: ov2775_mipi@36 {
compatible = "ovti,ov2775";
reg = <0x36>;
…
port {
ov2775_mipi_0_ep: endpoint {
data-lanes = <1 2 3 4>;
clock-lanes = <0>;
remote-endpoint = <&mipi_csi0_ep>;
};

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 27 / 34

https://en.wikipedia.org/wiki/Video4Linux

6.3 Sensor Compand Curve
In the vvcam_mode_info_t data structure, the sensor_data_compress_t data structure describes whether the sensor data
is compressed or not. If the sensor data is compressed, the sensor_data_compress_t data structure describes the data
compression type.

• The maximum bit width for the expand module is 20 bits

• To remove the expand module, set data_compress.enable = 0

 NOTE

Example:

For OV2775 native HDR, sensor data is compressed from 16 bits to 12 bits. So,

x_bit =16 and y_bit=12.

This determines the type of decompression curve used by the compand module.

{
.index = 2,
.width = 1920,
.height = 1080,
.fps = 30,
.hdr_mode = SENSOR_MODE_HDR_NATIVE,
.bit_width = 12,
.data_compress.enable = 1,
.data_compress.x_bit = 16,
.data_compress.y_bit = 12,
.bayer_pattern = BAYER_BGGR,
.ae_info = {
.DefaultFrameLengthLines = 0x466,
.one_line_exp_time_ns = 59167,
.max_interrgation_time = 0x466 - 2,
.min_interrgation_time = 1,
.gain_accuracy = 1024,
.max_gain = 21 * 1024,
.min_gain = 3 * 1024,
},
.preg_data = ov2775_1080p_native_hdr_regs,
.reg_data_count = ARRAY_SIZE(ov2775_1080p_native_hdr_regs),
}

ISP will decompress according to the specified compression method. If the sensor is compressed from 16-bit to 12-bit, the
compand module will call the <sensor>_get_expand_curve() function to get the 12-bit to 16-bit expand curve as defined in the
sensor_expand_curve_s data structure.

See below the limitations of the expand curve.

(1 << pexpand_curve->expand_px[i]) =
pexpand_curve->expand_x_data[i+1] - pexpand_curve->expand_x_data[i]

For example, OV2775 expand curve.

The OV2775 has a data compression from 16-bit to 12-bit by a 4-piece piece-wise linear (PWL) curve defined by the following
formula and shown in the following figure.

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 28 / 34

Figure 6. 16-bit to 12-bit PWL compression

The backend processor can decompress 12-bit data to 16-bit data using the following formula.

int ov2775_get_expand_curve(struct ov2775 *sensor,
sensor_expand_curve_t* pexpand_curve)
{
int i;
if ((pexpand_curve->x_bit) == 12 && (pexpand_curve->y_bit == 16))
{
uint8_t expand_px[64] = {6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6};
memcpy(pexpand_curve->expand_px,expand_px,sizeof(expand_px));

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 29 / 34

pexpand_curve->expand_x_data[0] = 0;
pexpand_curve->expand_y_data[0] = 0;
for(i = 1; i < 65; i++)
{
pexpand_curve->expand_x_data[i] =
(1 << pexpand_curve->expand_px[i-1]) +
pexpand_curve->expand_x_data[i-1];
if (pexpand_curve->expand_x_data[i] < 512)
{
pexpand_curve->expand_y_data[i] =
pexpand_curve->expand_x_data[i] << 1;
}
else if (pexpand_curve->expand_x_data[i] < 768)
{
pexpand_curve->expand_y_data[i] =
(pexpand_curve->expand_x_data[i] - 256) << 2;
}
else if (pexpand_curve->expand_x_data[i] < 2560)
{
pexpand_curve->expand_y_data[i] =
(pexpand_curve->expand_x_data[i] - 512) << 3;
}
else
{
pexpand_curve->expand_y_data[i] =
(pexpand_curve->expand_x_data[i] - 2048) << 5;
}
}
return 0;
}
return (-1);
}
ar0820 20-bit to12-bit as 16-bit output:

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 30 / 34

The automatic values of the knee-points can be read back from the oc_lut_XX registers but cannot be changed (writes to the
oc_lut_XX registers are ignored). All the knee-point registers are MSB-aligned. For example, a programmed value of 0x2000 acts
as 0x200 when the output is 12-bit data and acts as 0x2000 when the output is 16-bit data.

The expand curve is defined as follows:

expand_px[64] = {13, 13, 14, 9, 10, 11, 12, 13,
10, 11, 12, 13, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 31 / 34

0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,};
expand_x_data[65] ={0,0x2000,0x4000,0x8000,0x8200,0x8600,0x8e00,0x9e00,0xbe00,
0xc200,0xca00,0xda00,0xfa00,0xfa01,0xfa02,0xfa03,0xfa04,
0xfa05,0xfa06,0xfa07,0xfa08,0xfa09,0xfa0a,0xfa0b,0xfa0c,
0xfa0d,0xfa0e,0xfa0f,0xfa10,0xfa11,0xfa12,0xfa13,0xfa14,
0xfa15,0xfa16,0xfa17,0xfa18,0xfa19,0xfa1a,0xfa1b,0xfa1c,
0xfa1d,0xfa1e,0xfa1f,0xfa20,0xfa21,0xfa22,0xfa23,0xfa24,
0xfa25,0xfa26,0xfa27,0xfa28,0xfa29,0xfa2a,0xfa2b,0xfa2c,
0xfa2d,0xfa2e,0xfa2f,0xfa30,0xfa31,0xfa32,0xfa33,0xfa34};
expand_y_data[65] = {0x00,
0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000,
0x20000, 0x40000, 0x80000, 0x100000, 0x100000, 0x100000, 0x100000,0x100000,
0x100000,0x100000,0x100000,0x100000, 0x100000, 0x100000, 0x100000,0x100000,
0x100000,0x100000,0x100000,0x100000, 0x100000, 0x100000, 0x100000,0x100000,
0x100000,0x100000,0x100000,0x100000, 0x100000, 0x100000, 0x100000,0x100000,
0x100000,0x100000,0x100000,0x100000, 0x100000, 0x100000, 0x100000,0x100000,
0x100000,0x100000,0x100000,0x100000, 0x100000, 0x100000, 0x100000,0x100000,
0x100000,0x100000,0x100000,0x100000, 0x100000, 0x100000, 0x100000,0x100000};

Sensor data is 16-bit output, so data_compress must set x_bit = 20 and y_bit = 16.

 NOTE

.data_compress = {

.enable = 1,

.x_bit = 20,

.y_bit = 16,
},

6.4 Sensor White Balance
ISP AWB is used in normal mode, but in native HDR mode, black level and white balance calibration should be done before the
image synthesis at the sensor.

To enable the sensor’s WB mode, an interface must be provided to set the AWB mode to ISI_SENSOR_AWB_MODE_SENSOR.
In this ISI_SENSOR_AWB_MODE_SENSOR mode, ISP will not perform white balance and black level reduction. Set the sensor
for black level and white balance calibration using VVSENSORIOC_S_WB and VVSENSORIOC_S_BLC.

Example：

static RESULT OV2775_IsiGetSensorAWBModeIss(IsiSensorHandle_t handle,
IsiSensorAwbMode_t *pawbmode)
{
OV2775_Context_t *pOV2775Ctx = (OV2775_Context_t *) handle;
if (pOV2775Ctx == NULL || pOV2775Ctx->IsiCtx.HalHandle == NULL) {
return RET_NULL_POINTER;
}
if (pOV2775Ctx->SensorMode.hdr_mode == SENSOR_MODE_HDR_NATIVE) {
*pawbmode = ISI_SENSOR_AWB_MODE_SENSOR;
}
else {
*pawbmode = ISI_SENSOR_AWB_MODE_NORMAL;
}
return RET_SUCCESS;
}

NXP Semiconductors
Camera Sensor Driver in V4L2 Mode

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 32 / 34

Chapter 7
Revision history
Table 4. Revision history

Revision
number

Date Substantive changes

1 03/2021 Initial release

NXP Semiconductors

i.MX 8M Plus Camera Sensor Porting User Guide, Rev. 1, 03/2021
User's Guide 33 / 34

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 03/2021
Document identifier: IMX8MPCSPUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Overview
	2 ISP Software Architecture
	2.1 ISS (Image Sensor Specific) Driver
	2.2 ISP Sensor Module Block Diagrams

	3 ISP Independent Sensor Interface (ISI) API reference
	3.1 ISI Structures
	3.1.1 IsiCamDrvConfig_s
	3.1.2 IsiSensorInstanceConfig_s
	3.1.3 IsiSensor_s

	3.2 ISI Functions
	3.3 Sensor API Reference
	3.4 ISS Sensor Driver User Space Flow

	4 IOCTL Introduction
	4.1 IOCTL Commands
	4.2 IOCTL Call Flow
	4.2.1 V4L2 Mode

	5 VVCam API Reference
	5.1 Sensor Driver Enumerations
	5.1.1 SENSOR_BAYER_PATTERN_E
	5.1.2 sensor_hdr_mode_e
	5.1.3 sensor_stitching_mode_e

	5.2 Sensor Driver Structures
	5.2.1 sensor_blc_t
	5.2.2 sensor_data_compress_t
	5.2.3 sensor_expand_curve_t
	5.2.4 sensor_mipi_info
	5.2.5 sensor_white_balance_t
	5.2.6 vvcam_ae_info_t
	5.2.7 vvcam_mode_info_array_t
	5.2.8 vvcam_mode_info_t

	5.3 Sensor Driver API

	6 Camera Sensor Driver in V4L2 Mode
	6.1 VVCAM Flow in V4L2 Mode
	6.1.1 Sensor Driver Software Architecture in V4L2 Mode

	6.2 Camera Sensor Porting Setup in V4L2 Mode
	6.2.1 Define Sensor Attributes and Create Sensor Instance in CamDevice
	6.2.2 Define the Camera Driver Configuration Data Structure in ISS driver
	6.2.3 Modify the Sensor Driver in V4L2 Mode
	6.2.4 Setup HDR
	6.2.5 Define MIPI Lanes
	6.2.6 Sensor Driver Configuration in V4L2

	6.3 Sensor Compand Curve
	6.4 Sensor White Balance

	7 Revision history

