
Application Note

FREESCALE SEMICONDUCTOR INTERNAL USE ONLY

© FREESCALE SEMICONDUCTOR, INC. 2010

All Rights Reserved. Presence of copyright notice is not an acknowledgement of publication

 semiconductor

freescale

TM

 08 10, 2010

NAND Flash Bad Block Management
---For Linux BSP

ABSTRACT:

This doc describe how to handle nand flash bad block with linux software

KEYWORDS: NAND BAD BLOCK BBI BBT

APPROVED:

AUTHOR COMMENTS

Jason Liu Initial draft

Application Note

FREESCALE SEMICONDUCTOR INTERNAL USE ONLY

© FREESCALE SEMICONDUCTOR, INC. 2010

All Rights Reserved. Presence of copyright notice is not an acknowledgement of publication

NAND Flash Bad Block Management
---For Linux BSP

1. What is bad block?

Nand flash will have some invalid blocks which is what we called bad blocks. This

invalid bad block can’t be used to store data because it’s not stable. Software should

avoid using these invalid blocks by means of checking the bad block first. If it’s bad, skip

it and not use it.

2. How to check bad block?

Nand flash manufactory will mark the bad block with one flag in the spare area of nand

flash out of factory. This bad block is what we called initial bad block. This flag is what

we called bad block indication (BBI). The location of BBI is defined by the NAND flash

manufacturer. Usually, the BBI will locate in the spare area as the following table shown.

Take 8bit NAND as example:

Nand Flash SLC(small page) SLC(large page) MLC

BBI offset in page 5
th

 byte
 1

 1
th

byte
1
 1

th
byte

1

Page offset in block first

 page

first

 page First or first 2 pages or

Last page or last 2

pages
2

Note1: 0xFF means good block, others means bad block

Note2: The page which contains the bad block marker differs between each vendors. Refer to the NAND spec for

detailed information about which pages contain the bad block marker.

3. Incompatibility

Nand flash has the initial data lout which is main + spare area when it come out of factory.

Take 2KB + 64B MLC nand flash as example, the layout of nand flash is:

2KB Main area 64B Spare

2112B total

Application Note

FREESCALE SEMICONDUCTOR INTERNAL USE ONLY

© FREESCALE SEMICONDUCTOR, INC. 2010

All Rights Reserved. Presence of copyright notice is not an acknowledgement of publication

But the FSL IMX NFC layout is as the followings,

So, the BBI of NAND flash out of factory is located in the main area of sections 4, as the

following shows,

Here is the summery of the incompatibility between the NAND flash layout and the FSL

NFC data layout:

� BBI of NAND flash out of factory is located in the data area of the last section of

NFC

� BBI byte of NFC layout is not correct with large page NAND flash, it only

compatible with small page NAND flash

In order to solve the incompatibility above, we need take one solution to preserve the

BBI out of factory not be overriden by user data, the solution is called BBI swap.

512B main 16B 512B main 16B 512B main 16B 512B main 16B

Section 1 Section 2 Section 3 Section 4

2KB Main area

64B Spare

spare

512B main 16B
spare

512B main 16B
spare

512B main 16B
spare

512B
main

16B
spare

Section 1 Section 2 Section 3 Section 4

bad block indicator at column address 2048,
which is NAND out of factory layout

0 527 0 527 0 527 0 527

bad block indicator at 4th Section, address offset is 464

Application Note

FREESCALE SEMICONDUCTOR INTERNAL USE ONLY

© FREESCALE SEMICONDUCTOR, INC. 2010

All Rights Reserved. Presence of copyright notice is not an acknowledgement of publication

4. BBI swap solution internals

From the above graph, the user data will overwrite with BBI out of factory during the use

of NAND flash and make the BBI lost. So, we need figure out one solution to record the

BBI of factory when the NAND flash is used for the first time with FSL NAND flash

driver. The solution is as followings:

Solution: Take 2K + 64B MLC NAND as example

1) Swap the byte in main area which denotes the BBI with one byte in the spare area

during program, and let the BBI byte is 0xFF. The user data is now swapped to

the spare area.

2) Swap back the user data with the spare area which is used to store the user data

during read.

3) the software always check the swapped byte of spare area to get the BBI

information and build the bad block table for use.

2KB Main area

64B Spare

512B main 16B
spare

512B main 16B
spare

512B main 16B
spare

512B
main

16B
spare

Section 1 Section 2 Section 3 Section 4

bad block at column address 2048

0 527 0 527 0 527 0 527

Move “real” data to spare area and put 0xFF
into offset 464

For read:
After reading data out of NAND flash,
copy the data from the “free” byte in the
spare-area RAM to the 464th byte in the
main area RAM buffer to “recover”

For write:
1: Before write, copy the 464th byte data
in the main area RAM buffer to a “free”
spare-area RAM buffer.
2. Write 0xFF to the 464th byte in the
main area RAM.
3. Start “write” operation.

For bad block detection:
After reading data out of NAND
flash, check the “free” byte

Page in use

“real” “free”

Free byte offset:
The second byte of last spare
section

Application Note

FREESCALE SEMICONDUCTOR INTERNAL USE ONLY

© FREESCALE SEMICONDUCTOR, INC. 2010

All Rights Reserved. Presence of copyright notice is not an acknowledgement of publication

5. Why Linux BSP need BBT solution?

BBT means bad block table which will be stored onto NAND flash.Without BBT, NAND

driver will scan all the blocks on NAND flash to get the bad block information . But with

BBT, NAND driver can just fetch the bad block information from bad blcok table which

has been stored onto NAND. We need BBT solution due to the following reasons:

� If run-time error occurs during write/erase, how to mark that block as bad

again? We may can't write to that block now

� Performance – without BBTgiven large size of NAND, the scanning time will

become pretty significant.

6. Why we have BBT solution, We still Need BBI swap?

Preserve the bad block indicator for NAND out of factory by using BBI swap will make

it possible for NAND driver to reconstruct the accurate BBT talbe once the bad block

table is been erased by other tools or bad block table gone corrupt or the bad blcok table

not exist.

7. NAND bad block management of Linux BSP

The following solution is the NAND bad block management applied into the Linux BSP:

Solution:(BBI swap + BBT)

1) Scan all the blocks to get the initial bad block information by checking the BBI

for a fresh NAND. BBI swap will be used to get the real BBI information from

the NAND out of factory.

2) Store the bad block information into the NAND flash . Thus all the bad block

information can be fetched from NAND during the following use. The bad block

information store on the NAND is what we called the BBT(Bad Block Table).

3) When run-time bad block happen, update BBT on the NAND flash.

Application Note

FREESCALE SEMICONDUCTOR INTERNAL USE ONLY

© FREESCALE SEMICONDUCTOR, INC. 2010

All Rights Reserved. Presence of copyright notice is not an acknowledgement of publication

8. NAND driver upgrade notes

We add the BBI swap solution in the Linux BSP 10.05 release which will cause some

incompatible issue when we try to upgrade Linux BSP release to 10.05 or higher version.

Issues:

The NAND data which written by old NAND driver will become corrupt when using the

new NAND driver. This is due to that one byte of user data written by old driver is

swapped to spare area and is replaced with 0xFF by new driver.

What need to do:

If the NAND flash contains the valid user data, please do the following,

1. Use old NAND driver to back up all the user files.

2. Use old NAND driver to erase all the NAND partitions

3. Use new NAND driver to copy back all the user files.

Note: If don’t want to do back/restore, just take step 2

As for the BBT table which created by old NAND driver. Currently, the BBT can’t be

erased by NAND driver, which means the BBT table, will remain there. The new driver

Follow up Use:
1) Read the BBT from the nand flash

for the coming use of nand flash.
2) When run-time bad block happen,

update BBT on the nand flash.

First Time Use:
3) Scan all the blocks to get the initial

bad block information by checking
the BBI

4) Store the bad block information, we
also call it the bad block table
(BBT) into the nand flash.

.

For bad block detection:
Get the BBI from the BBT if BBT
exist

-3 -2 -1 -0

Mirror Main

…….

Page in use

512B main 16B
spare

512B main 16B
spare

512B main 16B
spare

512B
main

16B
spare

Bad Block Table Store in one good block of the last 4 blocks.
There is one main table and one mirror table.

For bad block mark:
Update BBT on nand flash
When block gone bad during
runtime.

Application Note

FREESCALE SEMICONDUCTOR INTERNAL USE ONLY

© FREESCALE SEMICONDUCTOR, INC. 2010

All Rights Reserved. Presence of copyright notice is not an acknowledgement of publication

can recognize the BBT table and re-use it. But due to the BI swap, the bad block

information appears on the BBI offset will be swapped with 0xFF, which lead to any bad

block appears on this range will be taken as good block. This is very very rarely case and

if it’s unfortunately happen, the only we can do is to erase the bad block table with uboot

force erase function.

Recommendation:

Highly recommend using the BBI swap + BBT solutions for NAND flash bad block

management during mass production.

9.NAND driver internals

Please refer to drivers/mtd/nand/mxc_nd2.c & drivers/mtd/nand/mxc_nd2.h file under

Linux BSP source code package.

