

© 2019 NXP B.V.

NXP eIQ™ Machine Learning Software

Development Environment for i.MX

Applications Processors

1. Introduction

Machine Learning (ML) is a computer science domain

that has its roots in the 1960s. ML provides algorithms

capable of finding patterns and rules in data. ML is a

category of algorithm that allows software applications

to become more accurate in predicting outcomes

without being explicitly programmed. The basic

premise of ML is to build algorithms that can receive

input data and use statistical analysis to predict an

output while updating outputs as new data becomes

available.

In 2010, the so-called deep learning started. It is a

fast-growing subdomain of ML, based on Neural

Networks (NN). Inspired by the human brain, deep

learning achieved state-of-the-art results in various

tasks; for example, Computer Vision (CV) and Natural

Language Processing (NLP). Neural networks are

capable of learning complex patterns from millions of

examples. A huge adaptation is expected in the

embedded world, where NXP is the leader. NXP

created eIQ machine learning software for i.MX

applications processors, a set of ML tools which allows

developing and deploying ML applications on the

i.MX 8 family of devices.

NXP Semiconductors Document Number: UM11226

User Manual Rev. 2 , 06/2019

Contents

1. Introduction ... 1
2. NXP eIQ software introduction ... 2
3. Yocto installation guide... 3

3.1. Prerequisites ... 3
3.2. Building NXP eIQ software support using Yocto

Project tools .. 3
4. OpenCV getting started guide ... 7

4.1. OpenCV DNN demos .. 8
4.2. OpenCV standard machine learning demos 15

5. Arm Compute Library getting started guide 19
5.1. Running DNN with random weight and inputs...... 19
5.2. Running AlexNet using graph API 20

6. TensorFlow getting started guide 20
6.1. Running benchmark application 21

7. TensorFlow Lite getting started guide............................... 21
7.1. Running benchmark application 22
7.2. Running image classification example................... 23

8. Arm NN getting started guide ... 25
8.1. Running Arm NN tests ... 25
8.2. Using Arm NN in a custom C/C++ application 33

9. ONNX Runtime getting started guide 34
9.1. Running ONNX Runtime test 34

10. References ... 35
11. Revision history ... 36

NXP eIQ software introduction

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

2 NXP Semiconductors

This document provides guidance for the supported ML software for the i.MX family. The document is

divided into separate sections, starting with the NXP eIQ introduction, the Yocto installation guide, and

the step-by step guide for running all supported DNN and non-DNN examples.

2. NXP eIQ software introduction

The NXP eIQ machine learning software development environment provides a set of libraries and

development tools for machine learning applications targeted at NXP MCUs and application processors.

The NXP eIQ software is concerned only with neural networks inference and standard machine-learning

algorithms, leaving neural network training to other specialized software tools and dedicated hardware.

The NXP eIQ is continuously expanding to include data-acquisition and curation tools and model

conversion for a wide range of NN frameworks and inference engines, such as TensorFlow, TensorFlow

Lite, Arm® NN, and Arm Compute Library.

The current version of NXP eIQ software of i.MX processors delivers advanced and highly optimized

machine learning enablement by providing ML support in Linux OS BSPs for the i.MX 8 family of

devices. The NXP eIQ software contains these main Yocto recipes:

• OpenCV 4.0.1

• Arm Compute Library 19.02

• Arm NN 19.02

• ONNX runtime 0.3.0

• TensorFlow 1.12

• TensorFlow Lite 1.12

For more details about the i.MX 8 family of application processors, see the fact sheet [3].

For up-to-date information about NXP machine learning solutions, see the official NXP web page [2] for

machine learning and artificial intelligence.

Figure 1. NXP eIQ machine learning software

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 3

3. Yocto installation guide

This chapter provides a step-by-step guide for configuring and building Linux L4.14.98 GA, the Linux

Yocto BSP release for i.MX 8 family of devices [4], with support for NXP eIQ software.

To enable NXP eIQ machine learning software, the main configuration changes are:

• Mandatory: select the right machine learning manifest file (*.xml) – see Section 3.2.2, “Yocto

project metadata downloading”.

• Optional: modify the machine learning configuration file (*.conf) or layer files (*.bb), depending

on which special configuration is needed; see Section 3.2.4, “Yocto configuration file

modifying” or Section 3.2.5, “OpenCV user build modification”.

For more information about the Linux Yocto BSP setup, see the Linux L4.14.98_2.0.0

documentation [5].

3.1. Prerequisites

3.1.1. Hardware requirements

• 1 x Linux OS host machine with a minimum of 120 GB HDD space available and internet

connection

• 1 x MCIMX8QM-CPU board with internet connection

• 1 x SDHC card (tested with a 16-GB SDHC Class 10 UHS-I card)

• 1 x MIPI camera MCIMXCAMERA1MP with de-serializer MX8XMIPI4CAM2 for running

OpenCV DNN examples using the live camera inputs (optional only)

• LCD HDMI monitor

3.1.2. Software requirements

1. Host OS: Ubuntu (tested with 16.04)

2. Host packages:

— The essential Yocto project host packages are:

$: sudo apt-get install gawk wget git-core diffstat unzip texinfo \

 gcc-multilib build-essential chrpath socat libsdl1.2-dev

— The i.MX layers host packages for the Ubuntu OS host setup are:

$: sudo apt-get install libsdl1.2-dev xterm sed cvs subversion \

 coreutils texi2html docbook-utils python-pysqlite2 help2man gcc \

 g++ make desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev \

 mercurial autoconf automake groff curl lzop asciidoc u-boot-tools

3.2. Building NXP eIQ software support using Yocto Project tools

See the i.MX Yocto Project User’s Guide document [5] or sections 3.2.1 to 3.2.6, and 3.2.9. See the i.MX

Linux User’s Guide document [5] or sections 3.2.7 to 3.2.8.

https://www.nxp.com/part/MCIMX8QM-CPU?lang=en&lang_cd=en&
https://www.nxp.com/part/MCIMXCAMERA1MP?lang=en&lang_cd=en&
https://www.nxp.com/part/MX8XMIPI4CAM2?lang=en&lang_cd=en&

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

4 NXP Semiconductors

3.2.1. Repo utility installing

This must be done only once.

$: mkdir ~/bin

$: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

$: chmod a+x ~/bin/repo

$: PATH=${PATH}:~/bin

3.2.2. Yocto project metadata downloading

$: mkdir fsl-arm-yocto-bsp

$: cd fsl-arm-yocto-bsp

$: repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b imx-linux-sumo -m

imx-4.14.98-2.0.0_machinelearning.xml

$: repo sync

NOTE

The imx-4.14.78-1.0.0_machinelearning manifest file can be also used.

3.2.3. Yocto build setup

$: EULA=1 MACHINE=imx8qmmek DISTRO=fsl-imx-xwayland source ./fsl-setup-release.sh -b build-

xwayland

$: echo "BBLAYERS += \" \${BSPDIR}/sources/meta-imx-machinelearning \"" >> conf/bblayers.conf

3.2.4. Yocto configuration file modifying

OpenCV 4.0.1 is available to be built and is already installed in the suggested image. Therefore, the

local.conf file does not have to be modified to include the OpenCV in the Yocto image. However, it is

recommended to add some extra packages to this configuration file for a more convenient image. The

local.conf file is in folder fsl-arm-yocto-bsp/build-xwayland/conf.

Add basic development capabilities:

EXTRA_IMAGE_FEATURES = " dev-pkgs debug-tweaks tools-debug tools-sdk ssh-server-openssh"

Add packages for networking capabilities:

IMAGE_INSTALL_append = " net-tools iputils dhcpcd"

Add some generic tools:

IMAGE_INSTALL_append = " which gzip python python-pip"

IMAGE_INSTALL_append = " wget cmake gtest git zlib patchelf"

IMAGE_INSTALL_append = " nano grep vim tmux swig tar unzip"

IMAGE_INSTALL_append = " parted e2fsprogs e2fsprogs-resize2fs"

Configure the OpenCV package:

IMAGE_INSTALL_append = " opencv python-opencv"

PACKAGECONFIG_remove_pn-opencv_mx8 = "python3"

PACKAGECONFIG_append_pn-opencv_mx8 = " dnn python2 qt5 jasper openmp test neon"

Remove the OpenCL support from packages:

PACKAGECONFIG_remove_pn-opencv_mx8 = "opencl"

PACKAGECONFIG_remove_pn-arm-compute-library = "opencl"

https://storage.googleapis.com/git-repo-downloads/repo
https://source.codeaurora.org/external/imx/imx-manifest

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 5

Add CMake for SDK’s cross-compile:

TOOLCHAIN_HOST_TASK_append = " nativesdk-cmake nativesdk-make"

Add packages:

IMAGE_INSTALL_append = " arm-compute-library tensorflow tensorflow-lite armnn onnxruntime"

PREFERRED_VERSION_opencv = "4.0.1%"

PREFERRED_VERSION_tensorflow = "1.12.0%"

PREFERRED_VERSION_tensorflow-lite = "1.12.0%"

NOTE

OpenCL is currently not supported in the L4.14.98_2.0.0 and

L4.14.78_1.0.0 Yocto configurations.

3.2.5. OpenCV user build modification

The OpenCV 4.0.1 is installed with all necessary DNN and ML dependencies in the NXP eIQ software.

If some special OpenCV build options are required, add them to the OpenCV recipe file to their separate

PACKAGECONFIG section. The opencv_4.0.1-imx.bb file is located on the Linux OS host PC in this

folder:

fsl-arm-yocto-bsp/sources/meta-imx-machinelearning/recipes-graphics/opencv

3.2.6. Image building

The image should be built with Qt 5 support, because some OpenCV examples requires Qt 5 to be
enabled in the image:

$: bitbake fsl-image-qt5

3.2.7. SD card image flashing

The result of the build process is a compressed image which can be found in

tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-<timestamp>.rootfs.sdcard.bz2, where

<timestamp> is the image timestamp (for example: 20180509080732).

Decompress the image before flashing it to the SD card:

bunzip2 -k -f tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-

<timestamp>.rootfs.sdcard.bz2

Flash the SD card (replace “sdX” with the actual SD card device):

dd if= tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-<timestamp>.rootfs.sdcard

of=/dev/sdX bs=1M && sync

NOTE

The Win32DiskImager utility can be also used for the SD card image

flashing.

Yocto installation guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

6 NXP Semiconductors

3.2.8. SD card disk space extending

The ML applications require a lot of disk space to store the input model data. By default, the SD card

image is created with a small amount of extra space (approximately 500 MB) in the rootfs, which may

not be enough for all ML applications.

There are two methods how to extend the SD card free space:

1. Define additional free disk space before start the building process. It is done using the

IMAGE_ROOTFS_EXTRA_SPACE variable in the local.conf file. This step is also described in

the Yocto project manual here: https://www.yoctoproject.org/docs/current/mega-manual/mega-

manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE.

2. Extend the SD card disk space after the image building. This ex-post method is described in

more detail in the below section.

Print all SD card partitions of the target board:

$: fdisk -l

Device Boot Start End Sectors Size Id Type

/dev/mmcblk1p1 16384 147455 131072 64M c W95 FAT32 (LBA)

/dev/mmcblk1p2 147456 10584063 10436608 5G 83 Linux

Start the “fdisk” utility:

$: fdisk /dev/mmcblk1

Delete the Linux-type partition (second in this case):

Command (m for help): d

Partition number (1,2, default 2): 2

Partition 2 has been deleted.

Create the new primary partition (second in this case) with the first sector being identical to the original

partition:

Command (m for help): n

Partition type

 p primary (1 primary, 0 extended, 3 free)

 e extended (container for logical partitions)

Select (default p):

Using default response p.

Partition number (2-4, default 2):

First sector (2048-31116287, default 2048): 147456

Last sector, +sectors or +size{K,M,G,T,P} (147456-31116287, default 31116287):

Write the new partition and exit the “fdisk” utility:

Command (m for help): w

The partition table has been altered.

Syncing disks.

Increase the filesystem size of the second partition:

$: resize2fs /dev/mmcblk1p2

resize2fs 1.43.8 (1-Jan-2018)

Filesystem at /dev/mmcblk1p2 is mounted on /; on-line resizing required

old_desc_blocks = 1, new_desc_blocks = 1

The filesystem on /dev/mmcblk1p2 is now 3871104 (4k) blocks long.

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 7

NOTE

You can also use the “parted” Linux OS command to create a new

partition instead of using the “fdisk” command.

Finally, check the free disk space after resizing:

$: df -h

3.2.9. Generating the Toolchain

The toolchain created by the Yocto Project tools provides a set of tools (compilers, libraries, and header

files) to cross-compile the code for the previously-built images. Build the SDK with the Qt 5 support:

$: bitbake fsl-image-qt5 -c populate_sdk

After the build process finishes, it produces an installer script that can be used to install the SDK on the

developing system. The script is created in the tmp/deploy/sdk/fsl-imx-xwayland-glibc-x86_64-fsl-

image-qt5-aarch64-toolchain-4.14-sumo.sh.

4. OpenCV getting started guide

OpenCV is an open-source computer vision library. One of its modules (called ML) provides traditional

machine learning algorithms. Another important module in the OpenCV is the DNN, which provides

support for neural network algorithms.

OpenCV offers a unitary solution for both the neural network inference (DNN module) and the standard

machine learning algorithms (ML module). It includes many computer vision functions, making it easier

to build complex machine learning applications in a short amount of time and without being dependent

on other libraries.

OpenCV has wide adoption in the computer vision field and is supported by a strong and active

community. The key algorithms are specifically optimized for various devices and instructions sets. For

i.MX, OpenCV uses the Arm NEON acceleration. The Arm NEON technology is an advanced SIMD

(Single Instruction Multiple Data) architecture extension for the Arm Cortex-A series. The Arm NEON

technology is intended to improve multimedia user experience by accelerating the audio and video

encoding/decoding, user interface, 2D/3D graphics, or gaming. The Arm NEON can also accelerate the

signal-processing algorithms and functions to speed up applications such as the audio and video

processing, voice and facial recognition, computer vision, and deep learning.

At its core, the OpenCV DNN module implements an inference engine and does not provide any

functionalities for neural network training. For more details about the supported models and layers, see

the official OpenCV DNN wiki page [6].

On the other hand, the OpenCV ML module contains classes and functions for solving machine learning

problems such as classification, regression, or clustering. It involves algorithms such as Support Vector

Machine (SVM), decision trees, random trees, expectation maximization, k-nearest neighbors, classic

Bayes classifier, logistic regression, and boosted trees. For more information, see the official reference

manual and machine learning overview. For more details about OpenCV 4.0.1, see the official OpenCV

change log web page [7].

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

8 NXP Semiconductors

4.1. OpenCV DNN demos

After creating a bootable SD card using Yocto, all OpenCV DNN demos are in the

/usr/share/OpenCV/samples/bin/ folder (the default demo location). However, the input data, model

configurations, and model weights are not located in this folder, because of their size. These files must

be downloaded to the device before running the demos:

• Download the opencv_extra.zip package at this link: github.com/opencv/opencv_extra/tree/4.0.1

• Unpack the file using unzip opencv_extra-4.0.1.zip to the SD card root directory <home_dir>.

• Go to the <home_dir>/opencv_extra-4.0.1/testdata/dnn/ folder and run python

download_models.py. The script downloads the NN models, configuration files, and input images

for some OpenCV examples. This operation may take a while. Copy these dependencies to the

/usr/share/OpenCV/samples/bin folder (see also the demo dependencies parts of sections 4.1.x in

this document).

• Download the configuration model file at this link:

github.com/opencv/opencv/blob/master/samples/dnn/models.yml

The model.yml file contains the pre-processing parameters for some DNN examples, which

accept the “–zoo” parameter. Copy the model file to the /usr/share/OpenCV/samples/bin folder.

4.1.1. Image classification example

This demo performs image classification using a pre-trained SqueezeNet network.

Demo dependencies (taken from the “opencv_extra” package):

• dog416.png

• squeezenet_v1.1.caffemodel

• squeezenet_v1.1.prototxt

Other demo dependencies:

• classification_classes_ILSVRC2012.txt from /usr/share/OpenCV/samples/data/dnn

• models.yml from github

Running the C++ example with the image input from the default location:

$: ./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet

https://github.com/opencv/opencv_extra/tree/4.0.1
https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 9

Figure 2. Image classification graphics output

Running the C++ example with the live camera input from the default location:

$: ./example_dnn_classification --zoo=models.yml squeezenet

4.1.2. YOLO object detection example

This demo performs the object detection using the You Only Look Once (YOLO) detector

(arxiv.org/abs/1612.08242). It detects objects in a camera/video/image.

For more information about this demo, see the “Loading Caffe framework models” OpenCV tutorial:

docs.opencv.org/4.0.1/da/d9d/tutorial_dnn_yolo.html.

Demo dependencies (taken from the “opencv_extra” package):

• dog416.png

• yolov3.weights

• yolov3.cfg

Other demo dependencies:

• models.yml

• object_detection_classes_yolov3.txt from /usr/share/OpenCV/samples/data/dnn

Running the C++ example with the image input from the default location:

$: ./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -input=dog416.png -

rgb -zoo=models.yml yolo

https://arxiv.org/abs/1612.08242
docs.opencv.org/4.0.1/da/d9d/tutorial_dnn_yolo.html

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

10 NXP Semiconductors

Figure 3. YOLO object detection graphics output

Running the C++ example with the live camera input from the default location:

$: ./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -rgb -

zoo=models.yml yolo

NOTE

Running this example with the live camera input is very slow, because this

example runs only on the CPU.

4.1.3. Image segmentation example

The image segmentation means dividing the image into groups of pixels based on some criteria. You can

do this grouping based on color, texture, or some other criteria that you choose.

Demo dependencies (taken from the “opencv_extra” package):

• dog416.png

• fcn8s-heavy-pascal.caffemodel

• fcn8s-heavy-pascal.prototxt

Other demo dependencies:

• models.yml

Running the C++ example with the image input from the default location:

$: ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png --

zoo=models.yml fcn8s

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 11

Figure 4. Image segmentation graphics output

Running the C++ example with the live camera input from the default location:

$: ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --zoo=models.yml fcn8s

NOTE

Running this example with the live camera input is very slow, because this

example runs only on the CPU.

4.1.4. Image colorization example

This example demonstrates the recoloring of grayscale images using DNN. The demo supports input

images only, not the live camera input.

Demo dependencies (taken from the “opencv_extra” package):

• colorization_release_v2.caffemodel

• colorization_deploy_v2.prototxt

Other demo dependencies:

• basketball1.png

Running the C++ example with the image input from the default location:

$: ./example_dnn_colorization --model=colorization_release_v2.caffemodel --

proto=colorization_deploy_v2.prototxt --image=../data/basketball1.png

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

12 NXP Semiconductors

Figure 5. Image colorization demo graphics output

4.1.5. Human pose estimation example

This application demonstrates the human or hand pose detection with a pretrained OpenPose DNN. The

demo supports only input images, not the live camera input.

Demo dependencies (taken from the “opencv_extra” package):

• grace_hopper_227.png

• openpose_pose_coco.caffemodel

• openpose_pose_coco.prototxt

Running the C++ example with the image input from the default location:

$: ./example_dnn_openpose --model=openpose_pose_coco.caffemodel --

proto=openpose_pose_coco.prototxt --image=grace_hopper_227.png --width=227 --height=227

Figure 6. Human pose estimation graphics output

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 13

4.1.6. Object detection example

This demo performs object detection using SqueezeDet. The demo supports only input images, not the

live camera input.

Demo dependencies:

• Download the model definition and model weight files from:

github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto

• SqueezeDet.caffemodel

• SqueezeDet_deploy.prototxt

• Download the input image from:

github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane

.jpg

Running the C++ example with the image input from the default location:

$: ./example_dnn_objdetect_obj_detect SqueezeDet_deploy.prototxt SqueezeDet.caffemodel

aeroplane.jpg

Running the model on the aeroplane.jpg image produces the following text results in the console:

Class: aeroplane

Probability: 0.845181

Co-ordinates: 41 116 415 254

Figure 7. Object detection graphics output

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane.jpg
https://github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane.jpg

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

14 NXP Semiconductors

4.1.7. CNN image classification example

This demo performs image classification using a pre-trained SqueezeNet network. The demo supports

only input images, not the live camera input.

Demo dependencies (taken from the “opencv_extra” package):

• space_shuttle.jpg

Other demo dependencies:

• Download the SqueezeNet.caffemodel model weight file from:

github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto

• Download the SqueezeNet_deploy.prototxt model definition file from:

github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data

Running the C++ example with the image input from the default location:

$: ./example_dnn_objdetect_image_classification SqueezeNet_deploy.prototxt

SqueezeNet.caffemodel space_shuttle.jpg

Running the model on the space_shuttle.jpg image produces the following text results in the console:

Best class Index: 812

Time taken: 0.649153

Probability: 15.8467

4.1.8. Text detection example

This demo is used for text detection in the image using the EAST algorithm.

Demo dependencies (taken from the opencv_extra package):

• frozen_east_text_detection.pb

Other demo dependencies:

• imageTextN.png

Running the C++ example with the image input from the default location:

$: ./example_dnn_text_detection --model=frozen_east_text_detection.pb --

input=../data/imageTextN.png

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 15

Figure 8. Text detection graphics output

NOTE

This example accepts only the PNG image format.

Running the C++ example with the live camera input from the default location:

$: ./example_dnn_text_detection --model=frozen_east_text_detection.pb

4.2. OpenCV standard machine learning demos

After deploying OpenCV on the target device, the non-neural-network demos are installed in the

“rootfs” in the /usr/share/OpenCV/samples/bin/ folder. To display the results, a Yocto image with Qt 5

support is required.

4.2.1. Introduction to SVM

This example demonstrates how to create and train an SVM model using training data. When the model

is trained, the labels for test data are predicted. The full description of the example is in

tutorial_introduction_to_svm.

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):

$: ./example_tutorial_introduction_to_svm

Result:

1. The code opens an image and shows the training examples of both classes. The points of one

class are represented with white circles and the other class uses black points.

https://docs.opencv.org/4.0.1/d1/d73/tutorial_introduction_to_svm.html

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

16 NXP Semiconductors

2. The SVM is trained and used to classify all the pixels of the image. This results in the division of

image into blue and green regions. The boundary between both regions is the optimal separating

hyperplane.

3. Finally, the support vectors are shown using gray rings around the training examples.

Figure 9. SVM introduction graphics output

4.2.2. SVM for non-linearly separable data

This example deals with non-linearly-separable data and shows how to set the parameters of the SVM

with linear kernel for these data. For more details, see SVM_non_linearly_separable_data.

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):

$: ./example_tutorial_non_linear_svms

Result:

1. The code opens an image and shows the training data of both classes. The points of one class are

represented by a light-green color and the other class is shown as light-blue points.

2. The SVM is trained and used to classify all pixels of the image. This divides the image into blue

and green regions. The boundary between both regions is the separating hyperplane. Because the

training data is non-linearly separable, some examples of both classes are misclassified; some

green points lay in the blue region and some blue points lay in the green one.

3. The support vectors are shown with gray rings around the training examples.

https://docs.opencv.org/4.0.1/d0/dcc/tutorial_non_linear_svms.html

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 17

Figure 10. SVM non-linearity graphics output

4.2.3. Introduction to PCA

The Principal Component Analysis (PCA) is a statistical method that extracts the most important

features of a dataset. In this tutorial, it is shown how to use the PCA to calculate the orientation of an

object. For more details, see the OpenCV tutorial: Introduction_to_PCA.

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):

$: ./example_tutorial_introduction_to_pca

Result:

• The code opens an image (loaded from ../data/pca_test1.jpg), finds the orientation of the

detected objects of interest, and visualizes the result by drawing the contours of the detected

objects of interest, the center point, and the x-axis and y-axis regarding the extracted orientation.

https://docs.opencv.org/4.0.1/d1/dee/tutorial_introduction_to_pca.html

OpenCV getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

18 NXP Semiconductors

Figure 11. PCA graphics output

4.2.4. Logistic regression

In this example, logistic regression is used to predict two characters (0 or 1) from an image. Every image

matrix is reshaped from its original size of 28 x 28 to 1 x 784. A logistic regression model is created and

trained on 20 images. After the training, the model can predict the labels of test images. The source code

is at this link and can be run using the below command.

Demo dependencies (preparing the train data files):

$: wget raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):

$: ./example_cpp_logistic_regression

Result:

• The training and test data and the comparison between the original and predicted labels are

shown. The trained model reaches 95 % accuracy. The console text output is as follows:

original vs predicted:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]

accuracy: 95%

saving the classifier to NewLR_Trained.xml

loading a new classifier from NewLR_Trained.xml

predicting the dataset using the loaded classifier...done!

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]

accuracy: 95%

https://github.com/opencv/opencv/blob/4.0.1/samples/cpp/logistic_regression.cpp
https://raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml

Arm Compute Library getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 19

Figure 12. Logistic regression graphics output

5. Arm Compute Library getting started guide

The Arm Compute Library [8] is a collection of low-level functions optimized for the Arm CPU and

GPU architectures targeted at image processing, computer vision, and machine learning. It is a

convenient repository of optimized functions that developers can source either individually or as a part

of complex pipelines to accelerate algorithms and applications. The Arm compute library also supports

NEON acceleration.

Two types of examples are described in the following sub-sections:

• Example based on the DNN models with random weights and inputs

• Example based on the AlexNet using the graph API

5.1. Running DNN with random weight and inputs

The Arm Compute Library contains examples for most common DNN architectures, such as

AlexNet, MobileNet, ResNet, Inception v3, Inception v4, Squeezenet, and others.

All available examples are at this example build location:

• /usr/share/arm-compute-library/build/examples

Each model architecture can be tested using the “graph_[dnn_model]” application.

Here is an example of running the required DNN model with a random weight (run the example

application without any arguments):

$: ./graph_mobilenet_v2

The application creates the required network model with random weights and predicts the random

inputs. If all components work, the “Test passed” message is printed.

TensorFlow getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

20 NXP Semiconductors

5.2. Running AlexNet using graph API

In 2012, AlexNet became famous when it won the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC), an annual challenge that aims to evaluate algorithms for object detection and image

classification. AlexNet is made up of eight trainable layers (five convolution layers and three

fully-connected layers). All the trainable layers are followed by the ReLu activation function, except for

the last fully-connected layer, where the Softmax function is used.

The C++ AlexNet example implementation [9] uses the graph API in this folder:

• /usr/share/arm-compute-library/build/examples

Demo dependencies:

• Download the archive file to the example location folder from:

developer.arm.com//-/media/developer/technologies/Machine learning on

Arm/Tutorials/Running AlexNet on Pi with Compute

Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01

• Create new sub-folder and unzip the file:

$: mkdir assets_alexnet

$: unzip compute_library_alexnet.zip -d assets_alexnet

• Set the environment variables for execution:

$: export LD_LIBRARY_PATH=/usr/share/arm-compute-library/build/examples/

$: export PATH_ASSETS=/usr/share/arm-compute-library/build/examples/assets_alexnet/

• Run the example with the command-line arguments from the default location:

$: ./graph_alexnet --data=$PATH_ASSETS --image=$PATH_ASSETS/go_kart.ppm --

labels=$PATH_ASSETS/labels.txt

• The output of the successful classification is as follows:

---------- Top 5 predictions ----------

0.9736 - [id = 573], n03444034 go-kart

0.0118 - [id = 518], n03127747 crash helmet

0.0108 - [id = 751], n04037443 racer, race car, racing car

0.0022 - [id = 817], n04285008 sports car, sport car

0.0006 - [id = 670], n03791053 motor scooter, scooter

Test passed

6. TensorFlow getting started guide

TensorFlow [10] is an end-to-end open-source platform for machine learning. It has a comprehensive,

flexible ecosystem of tools, libraries, and community resources that enable the researchers to push the

state-of-the-art in ML and give the developers the ability to easily build and deploy ML-powered

applications.

TensorFlow provides a collection of workflows [14] with intuitive, high-level APIs for both beginners

and experts to create machine learning models in numerous languages. TensorFlow provides a variety of

different toolkits that enable you to construct models at your preferred level of abstraction. Use the

lower-level APIs to build models by defining a series of mathematical operations. Alternatively, you can

use higher-level APIs to specify pre-defined architectures, such as linear regressors or neural networks.

https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01

TensorFlow Lite getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 21

6.1. Running benchmark application

This simple example is pre-installed by default on the prepared Yocto image with machine learning

enablement. It performs simple TensorFlow benchmarking using the pre-defined model. The graph

model file is not included in the target image due to its size. The benchmark binary file location is:

• /usr/bin/tensorflow-1.12.0/examples

Demo dependencies:

• Download the inception graph model:

$: wget storage.googleapis.com/download.tensorflow.org/models/inception5h.zip

• Unzip the model file to the example target location:

$: unzip inception5h.zip

• Run the example with command-line arguments from the default location:

$: ./benchmark --graph=tensorflow_inception_graph.pb --max_num_runs=10

The benchmark application outputs lots of useful information, such as:

• Run order

• Top by computation time

• Top by memory use

• Summary by node type

For example, the summary node output of the TensorFlow benchmarking is as follows:

[Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]

Conv2D 22 171.150 64.825% 64.825% 10077.888 22

MatMul 2 35.295 13.368% 78.194% 8.128 2

MaxPool 6 23.723 8.985% 87.179% 3562.496 6

LRN 2 18.823 7.129% 94.309% 3211.264 2

BiasAdd 24 8.475 3.210% 97.519% 0.000 24

Relu 14 3.847 1.457% 98.976% 0.000 14

Concat 3 1.303 0.494% 99.469% 2706.368 3

Const 50 0.619 0.234% 99.704% 0.000 50

AvgPool 1 0.544 0.206% 99.910% 32.512 1

Softmax 1 0.097 0.037% 99.947% 0.000 1

NoOp 1 0.082 0.031% 99.978% 0.000 1

_Retval 1 0.022 0.008% 99.986% 0.000 1

Reshape 1 0.013 0.005% 99.991% 0.000 1

_Arg 1 0.012 0.005% 99.995% 0.000 1

Identity 1 0.012 0.005% 100.000% 0.000 1

Timings (microseconds): count=10 first=281154 curr=242529 min=240048 max=291365 avg=264068

std=19523

7. TensorFlow Lite getting started guide

TensorFlow Lite is a light-weight version of and a next step from TensorFlow. TensorFlow Lite is an

open-source software library focused on running machine learning models on mobile and embedded

devices (available at www.tensorflow.org/lite). It enables on-device machine learning inference with

low latency and small binary size. TensorFlow Lite also supports hardware acceleration using

Android™ OS neural network APIs.

https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
http://www.tensorflow.org/lite

TensorFlow Lite getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

22 NXP Semiconductors

TensorFlow Lite supports a set of core operators (both quantized and float) tuned for mobile platforms.

They incorporate pre-fused activations and biases to further enhance the performance and quantized

accuracy. Additionally, TensorFlow Lite also supports the use of custom operations in models.

TensorFlow Lite defines a new model file format, based on FlatBuffers [11]. FlatBuffers is an

open-source, efficient, cross-platform serialization library. It is similar to protocol buffers, but the

primary difference is that FlatBuffers does not need a parsing/unpacking step for a secondary

representation before you can access the data, often coupled with per-object memory allocation. Also,

the code footprint of FlatBuffers is an order of magnitude smaller than protocol buffers.

TensorFlow Lite has a new mobile-optimized interpreter, which has the key goal to keep apps lean and

fast. The interpreter uses static graph ordering and a custom (less-dynamic) memory allocator to ensure

minimal load, initialization, and execution latency.

7.1. Running benchmark application

This simple example is pre-installed by default on the prepared Yocto image with machine learning

enablement. Its name is “benchmark_model”. It performs simple TensorFlow Lite benchmarking using

the pre-defined models. The model file is not included in the target image, because of its size. The

example binary file location is:

• /usr/bin/tensorflow-lite-1.12.0/examples

Demo dependencies:

• Download the model file [13] using this command:

$: wget

download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

• Unpack the model file:

$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz

• Run the example with the command-line arguments from the default location:

$: ./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite

The output of a successful TensorFlow Lite benchmarking is as follows:

STARTING!

Num runs: [50]

Inter-run delay (seconds): [-1]

Num threads: [1]

Benchmark name: []

Output prefix: []

Warmup runs: [1]

Graph: [mobilenet_v1_1.0_224_quant.tflite]

Input layers: []

Input shapes: []

Use nnapi : [0]

Loaded model mobilenet_v1_1.0_224_quant.tflite

resolved reporter

Initialized session in 44.687ms

Running benchmark for 1 iterations

count=1 curr=180071

Running benchmark for 50 iterations

count=50 first=128160 curr=128079 min=127643 max=128319 avg=127944 std=138

Average inference timings in us: Warmup: 180071, Init: 44687, no stats: 127944

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

TensorFlow Lite getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 23

7.2. Running image classification example

This simple example classifies images of clothing, such as hats, shirts, and others. The “grace_hopper”

input image (see Figure 13) is used as a typical sample for the image classification. By default, a proper

model file for this example is not included in the target image due to its size. It should be downloaded

by the user to the target image.

Figure 13. Image classification input picture

Two different approaches for running this example are used. The simplest way is to use the pre-installed

binary application with minimum subsequent steps (see Section 7.2.1, “Using pre-installed example”).

The second approach is intended for users who want to create (build) a custom application using sources

(see Section 7.2.2, “Building example from sources”).

7.2.1. Using pre-installed example

The example is pre-installed by default in the prepared Yocto image with the machine-learning

enablement. Its name is “label_image”. The example binary file location is:

• /usr/bin/tensorflow-lite-1.12.0/examples

Demo dependencies:

• Download the TensorFlow model file to the example folder. It can be the model file used by the

previous benchmark example (see Section 7.1, “Running benchmark application”):

$ wget

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan

t.tgz

• Unpack the model file to the example binary location:

$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz

• Run the example with the command-line arguments from the default location:

$: ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l

labels.txt

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

TensorFlow Lite getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

24 NXP Semiconductors

The output of a successful classification for the “grace_hopper” input image (see Figure 13) is as

follows:

Loaded model mobilenet_v1_1.0_224_quant.tflite

resolved reporter

invoked

average time: 330.473 ms

0.780392: 653 military uniform

0.105882: 907 Windsor tie

0.0156863: 458 bow tie

0.0117647: 466 bulletproof vest

0.00784314: 835 suit

7.2.2. Building example from sources

The image classification example can be downloaded from the TensorFlow repository[14] and built from

these sources on the target image.

Demo dependencies:

• Download and make the TensorFlow sources:

$ git clone https://github.com/tensorflow/tensorflow.git

$ cd tensorflow

$ git checkout r1.12

$./tensorflow/contrib/lite/tools/make/download_dependencies.sh

$ make -f tensorflow/contrib/lite/tools/make/Makefile

$ cd tensorflow/contrib/lite/examples/label_image

• Build the “label_image” example using the GNU C++ compiler:

$ g++ --std=c++11 -O3 bitmap_helpers.cc label_image.cc -I ../../../.. -I
../../tools/make/downloads/flatbuffers/include -L

../../tools/make/gen/linux_aarch64/lib -ltensorflow-lite -lpthread -ldl -o label_image

• Download the TensorFlow model file to the current directory. It is the model file used by the

pre-installed example (see Section 7.2.1, “Using pre-installed example”):

$ wget

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan

t.tgz

• Unpack the model file to the current directory:

$ tar -xzvf mobilenet_v1_1.0_224_quant.tgz

• Run the example with the command-line arguments from the default location:

$./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i testdata/grace_hopper.bmp

-l ../../java/ovic/src/testdata/labels.txt

The output of a successful classification for the “grace_hopper” input image (see Figure 13) is the same

as for the pre-installed application (see Section 7.2.1, “Using pre-installed example”):

Loaded model mobilenet_v1_1.0_224_quant.tflite

resolved reporter

invoked

average time: 229.14 ms

0.780392: 653 military uniform

0.105882: 907 Windsor tie

0.0156863: 458 bow tie

0.0117647: 466 bulletproof vest

0.00784314: 835 suit

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 25

8. Arm NN getting started guide

Arm NN is an open-source inference engine framework developed by Arm and supporting a wide range

of neural-network model formats, such as Caffe, TensorFlow, TensorFlow Lite, and ONNX. For

i.MX 8, Arm NN runs on the CPU with NEON and has multi-core support. Arm NN does not currently

support the i.MX 8 GPUs due to the Arm NN OpenCL requirements, which are not met by i.MX 8

GPUs. For more details about Arm NN, check the Arm NN SDK webpage.

To build Arm NN 19.02 using the Yocto Project tools, follow the steps describes in Section 3, “Yocto

installation guide”. Make sure to perform the additional modifications needed for Arm NN, as described

in Section 3.2.4, “Yocto configuration file modifying” (see the “Add packages” instruction).

8.1. Running Arm NN tests

The Arm NN SDK provides a set of tests, which can also be considered as demos, showing what the

Arm NN does and how to use it. They load neural network models of various formats (Caffe,

TensorFlow, TensorFlowLite, ONNX), run the inference on a specified input data, and output the

inference result. The Arm NN tests are built by default when building the rootfs image and installed in

the /usr/bin folder.

Note that the input data, model configurations, and model weights are not distributed with Arm NN.

Download them separately and make sure they are available on the device before running the tests.

However, the Arm NN tests do not have documentation. Moreover, the input file names are hardcoded,

so you must investigate the code to find out what input file names are expected.

To get started with Arm NN, the following sections explain how to prepare the input data and how to

run the Arm NN tests. All of them use well-known neural network models. With only few exceptions,

such pre-trained networks are available to download from the internet. The input image files and their

name, format, and content are deduced by analyzing the code. However, this was not possible for all the

tests. It is recommended to prepare the data on the host and then deploy them on the i.MX 8 board,

where the current Arm NN tests are run.

The following sections assume that the neural network model files are stored in a folder called models,

and the input image files are stored in a folder called data. Both of them are created inside a folder

called ArmnnTests. Create this folder structure on the larger partition using the following commands:

$: mkdir ArmnnTests

$: cd ArmnnTests

$: mkdir data

$: mkdir models

8.1.1. Caffe tests

The Arm NN 19.02 SDK provides the following set of tests for the Caffe models:

/usr/bin/CaffeAlexNet-Armnn

/usr/bin/CaffeCifar10AcrossChannels-Armnn

/usr/bin/CaffeInception_BN-Armnn

/usr/bin/CaffeMnist-Armnn

/usr/bin/CaffeResNet-Armnn

/usr/bin/CaffeVGG-Armnn

/usr/bin/CaffeYolo-Armnn

https://developer.arm.com/products/processors/machine-learning/arm-nn

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

26 NXP Semiconductors

Two important limitations might require a pre-processing of the Caffe model file before running the

Arm NN Caffe test. Firstly, the Arm NN tests require the batch size to be set to 1. Secondly, the Arm

NN does not support all Caffe syntaxes, so some previous neural-network model files require updates to

the latest Caffe syntax. How to perform these pre-processing steps is described at the Arm NN GitHub

page. Note that you should install Caffe on the host. See also [16].

For example, supposing you have a Caffe model that either has the batch size different than 1 or uses

another Caffe defined by files model_name.prototxt and model_name.caffemodel, create a copy of the

*.prototxt file (new_model_name.prototxt), modify this file to use the new Caffe syntax, change the

batch size to 1, and finally run this Python script:

import caffe

net = caffe.Net('model_name.prototxt', 'model_name.caffemodel', caffe.TEST)

new_net = caffe.Net('new_model_name.prototxt', 'model_name.caffemodel', caffe.TEST)

new_net.save('new_model_name.caffemodel')

The following sections explain how to run each of the tests, except for

“CaffeCifar10AcrossChannels-Armnn” and “CaffeYolo-Armnn”. For the first one, a publicly available

pre-trained model was not found. For the second one, there is no way to deduce the exact content of the

input image originally used by this test.

8.1.1.1. CaffeAlexNet-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model files from:

raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt

dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”.

3. Rename bvlc_alexnet.caffemodel to bvlc_alexnet_1.caffemodel.

4. Copy the bvlc_alexnet_1.caffemodel file to the models folder on the device.

5. Find a *.jpg file that contains a shark. Rename it to shark.jpg and copy it to the data folder on

the device.

6. Run the test:

$: cd ArmnnTests

$: CaffeAlexNet-Armnn --data-dir=data --model-dir=models

8.1.1.2. CaffeInception_BN-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model files from:

raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt

www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”.

https://github.com/ARM-software/armnn/issues/7
https://github.com/ARM-software/armnn/issues/7
http://caffe.berkeleyvision.org/install_apt.html
https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt
http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
https://raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt
http://www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 27

3. Rename the Inception21k.caffemodel file to Inception-BN-batchsize1.caffemodel.

4. Copy the Inception-BN-batchsize1.caffemodel file to the models folder on the device.

5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: CaffeInception_BN-Armnn --data-dir=data --model-dir=models

8.1.1.3. CaffeMnist-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model files from:

raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt

github.com/ARM-software/ML-examples/blob/master/armnn-

mnist/model/lenet_iter_9000.caffemodel

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”.

3. Download these two archives and unpack them:

yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz

yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

4. Copy the lenet_iter_9000.caffemodel file to the models folder on the device.

5. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: CaffeMnist-Armnn --data-dir=data --model-dir=models

8.1.1.4. CaffeResNet-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model file for ResNet50 from:

onedrive.live.com/?authkey=%21AAFW2-

FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB

8476FF777%2117887&o=OneUp

2. Rename the RestNet-50-model.caffemodel file to ResNet_50_ilsvrc15_model.caffemodel.

3. Copy the ResNet_50_ilsvrc15_model.caffemodel file to the models folder on the device.

4. Download this image file and copy it to the data folder on the device:

raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_s

amples/ILSVRC2012_val_00000018.JPEG

https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

28 NXP Semiconductors

5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: CaffeResNet-Armnn --data-dir=data --model-dir=models

8.1.1.5. CaffeVGG-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model files for VGG19 from:

www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel

gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d

5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”.

3. Rename the VGG_ILSVRC_19_layers.caffemodel file to VGG_CNN_S.caffemodel.

4. Copy the VGG_CNN_S.caffemodel file to the models folder on the device.

5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: CaffeVGG-Armnn --data-dir=data --model-dir=models

8.1.2. TensorFlow tests

The Arm NN 19.02 SDK provides the following set of tests for the TensorFlow models:

/usr/bin/TfCifar10-Armnn

/usr/bin/TfInceptionV3-Armnn

/usr/bin/TfMnist-Armnn

/usr/bin/TfMobileNet-Armnn

/usr/bin/TfResNext-Armnn

Before running the tests, the TensorFlow models must be prepared for inference. This process is

TensorFlow-specific and uses TensorFlow tools. Therefore, TensorFlow must be installed on your host

machine.

The following sections explain how to run each of the tests, except for “TfResNext-Armnn” and

“TfCifar10-Armnn”, for which the publicly available pre-trained models were not found.

8.1.2.1. TfInceptionV3-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, generate the graph definition for the Inception model:

model preparation

$: mkdir checkpoints

http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 29

clone the models repository

$: git clone https://github.com/tensorflow/models.git

$: cd models/research/slim/

export the inference graph

$: python export_inference_graph.py --model_name=inception_v3 --

output_file=../../../checkpoints/inception_v3_inf_graph.pb

2. From your host machine, download the pre-trained model and use the TensorFlow tools to

prepare it for inference. Note that <path_to_tensorflow_repo> refers to the path where you

cloned or downloaded the TensorFlow repo.

$: cd ../../../checkpoints

download and extract the checkpoint

$: wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz -qO- | tar

-xvz

freeze the model

$: python <path_to_tensorflow_repo>/tensorflow/python/tools/freeze_graph.py --

input_graph=inception_v3_inf_graph.pb --input_checkpoint=inception_v3.ckpt --

input_binary=true --output_graph=inception_v3_2016_08_28_frozen.pb --

output_node_names=InceptionV3/Predictions/Reshape_1

3. Copy the inception_v3_2016_08_28_frozen.pb file to the models folder on the device.

4. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

5. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.

6. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

7. Run the test:

$: cd ArmnnTests

$: TfInceptionV3-Armnn --data-dir=data --model-dir=models

8.1.2.2. TfMnist-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. Download the model file from:

raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-

mnist/model/simple_mnist_tf.prototxt

2. Copy the simple_mnist_tf.prototxt file to the models folder on the device.

3. Download these two archives and unpack them:

yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz

yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

4. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the

device.

5. Run the test:

$: cd ArmnnTests

$: TfMnist-Armnn --data-dir=data --model-dir=models

https://github.com/tensorflow/models.git
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

30 NXP Semiconductors

8.1.2.3. TfMobileNet-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:

download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz

2. Copy the mobilenet_v1_1.0_224_frozen.pb file to the models folder on the device.

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: TfMobileNet-Armnn --data-dir=data --model-dir=models

8.1.3. TensorFlow Lite tests

The Arm NN 19.02 SDK provides the following test for the TensorFlow Lite models:

/usr/bin/TfLiteInceptionV3Quantized-Armnn

/usr/bin/TfLiteInceptionV4Quantized-Armnn

/usr/bin/TfLiteMnasNet-Armnn

/usr/bin/TfLiteMobileNetSsd-Armnn

/usr/bin/TfLiteMobilenetQuantized-Armnn

/usr/bin/TfLiteMobilenetV2Quantized-Armnn

/usr/bin/TfLiteResNetV2-Armnn

/usr/bin/TfLiteVGG16Quantized-Armnn

The following sections explain how to run some of the tests. Some of the tests are excluded, because it

was not possible to find a publicly available model or they need more resources than available on the

i.MX 8 embedded application processors.

8.1.3.1. TfLiteInceptionV3Quantized-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:

download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz

2. Copy the inception_v3_quant.tflite file to the models folder on the device.

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 31

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: TfLiteInceptionV3Quantized-Armnn --data-dir=data --model-dir=models

8.1.3.2. TfLiteMnasNet-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:

download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz

2. Copy the mnasnet_1.3_224/mnasnet_1.3_224.tflite file to the models folder on the device.

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: TfLiteMnasNet-Armnn --data-dir=data --model-dir=models

8.1.3.3. TfLiteMobilenetQuantized-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download the model file:

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan

t.tgz

2. Copy the mobilenet_v1_1.0_224_quant.tflite file to the models folder on the device.

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: TfLiteMobilenetQuantized-Armnn --data-dir=data --model-dir=models

http://download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

32 NXP Semiconductors

8.1.3.4. TfLiteMobilenetV2Quantized-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download the model file:

download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz

2. Copy the mobilenet_v2_1.0_224_quant.tflite file to the models folder on the device.

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: TfLiteMobilenetV2Quantized-Armnn --data-dir=data --model-dir=models

8.1.4. ONNX tests

The Arm NN provides the following set of tests for ONNX models:

/usr/bin/OnnxMnist-Armnn

/usr/bin/OnnxMobileNet-Armnn

The following sections explain how to run each of the tests.

8.1.4.1. OnnxMnist-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:

onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz

2. Rename the model.onnx file to mnist_onnx.onnx and copy it to the models folder on the device.

3. Download the following two archives and unpack them (after unpacking, rename the files to use

dots instead of hyphens: t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte, respectively):

yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz

yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

4. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the

device.

5. Run the test:

$: cd ArmnnTests

$: OnnxMnist-Armnn --data-dir=data --model-dir=models

http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
https://onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

Arm NN getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 33

8.1.4.2. OnnxMobileNet-Armnn

To run this test using the folder structure described in the introductory part, perform these steps:

1. From your host machine, download and unpack the model file:

s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz

2. Copy the unpacked mobilenetv2-1.0.onnx file to the models folder on the device.

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the

device.

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the

device.

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the

device.

6. Run the test:

$: cd ArmnnTests

$: OnnxMobileNet-Armnn --data-dir=data --model-dir=models -i 3

8.2. Using Arm NN in a custom C/C++ application

You can create your own C/C++ applications for the i.MX 8 family of devices using Arm NN

capabilities. This requires writing the code using the Arm NN API, setting up the build dependencies,

building the code, and deploying your application. Below is a detailed description for each of these

steps. Note that the scenario is cross-compiling a C/C++ application on a Linux OS machine for an

i.MX 8 family device board.

1. Write the code.

A good starting point to understand how to use Arm NN API in your own application is the

armnn-mnist example provided by Arm. It includes two applications; one shows how to load and

run inference for a MNIST TensorFlow model, and the second one shows how to load and run

inference for a MNSIT Caffe model. See the Arm tutorial Deploying a TensorFlow MNIST

model on Arm NN.

2. Set up the build dependencies.

From a software developer’s perspective, Arm NN is a library. Therefore, create and build an

application which uses the Arm NN features, set of Arm NN headers, and set of Arm NN

libraries for the target device. The Arm NN headers and libraries are all available within the

SDK. Build the SDK when building the Yocto image and install it on your local machine, as

described in Section 3.2, “Building NXP eIQ software support using Yocto Project tools”. When

this is done, find:

— Arm NN headers in:

<Yocto_SDK_install_folder>/sysroots/aarch64-poky-linux/usr/include

— Arm NN libraries in:

<Yocto_SDK_install_folder>/sysroots/aarch64-poky-linux/usr/lib

https://s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz
https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/

ONNX Runtime getting started guide

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

34 NXP Semiconductors

3. Build the code.

To build the “armnn-mnist” example provided by Arm, use the Makefile included in the project

with a few minor changes:

— Remove the definition of “ARMNN_INC” and all its uses. The Arm NN headers are

already available in the default include directories.

— Remove the definition of “ARMNN_LIB” and all its uses. The Arm NN libraries are

already available in the default linker search path.

— Replace “g++” by “${CXX}”.

Build the example:

— Source the SDK environment:

$: source <Yocto_SDK_install_folder>/environment-setup-aarch64-poky-linux

— Run make:

$: make

4. Deploy the applications.

At this point, you have two binaries ready to be deployed on the i.MX 8 family device board. All you

need to take care of are the runtime dependencies. Regarding the input data, these dependencies are

described at the “armnn-mnist” example page. The suggested image described in this document requires

Arm NN library dependencies already available on the board and you can run your Arm NN application

on the i.MX 8 family device board.

9. ONNX Runtime getting started guide

ONNX Runtime is an open-source inference engine framework developed by Microsoft, supporting the

ONNX model format. ONNX Runtime runs on the CPU with NEON and has multi-core support. ONNX

Runtime does not currently support the i.MX 8 GPUs due to the lack of OpenCL support. For more

details about ONNX Runtime, see the official ONNX Runtime project webpage.

To build Yocto with ONNX Runtime, follow the steps described in Section 3, “Yocto installation

guide”. Make sure to perform the additional modifications needed for ONNX Runtime, as described in

Section 3.2.4, “Yocto configuration file modifying” (see the “Add packages” part).

9.1. Running ONNX Runtime test

ONNX Runtime provides a tool that runs a collection of standard tests provided in the ONNX model

Zoo. The tool named “onnx_test_runner” is installed in the /usr/bin folder.

The ONNX tests are available at github.com/onnx/models and consist of various models in the ONNX

format with associated input and expected output data.

Here is an example with the steps required to run the “squeezenet” test:

1. Download and unpack the latest release of the “squeezenet” test archive:

github.com/onnx/models/tree/master/squeezenet

s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz

https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://github.com/onnx/models
https://github.com/onnx/models/tree/master/squeezenet
https://s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz

References

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

NXP Semiconductors 35

2. Copy the squeezenet folder containing the model and test data on the device; for example, to the

/home/root folder.

3. Run the “onnx_test_runner” tool, providing the squeezenet folder path as the command-line

parameter:

$: ls /home/root/squeezenet/

model.onnx test_data_set_11 test_data_set_5 test_data_set_9

test_data_set_0 test_data_set_2 test_data_set_6

test_data_set_1 test_data_set_3 test_data_set_7

test_data_set_10 test_data_set_4 test_data_set_8

$: onnx_test_runner /home/root/squeezenet/

result:

 Models: 1

 Total test cases: 12

 Succeeded: 12

 Not implemented: 0

 Failed: 0

 Stats by Operator type:

 Not implemented(0):

 Failed:

Failed Test Cases:

$:

10. References

1. NXP eIQ Software

2. NXP eIQ Software Support Community

3. i.MX8 family of Application processor fact sheet:

4. i.MX Software and development tools

5. L4.14.98_2.0.0_LINUX_DOCS documentation

6. Deep learning in OpenCV

7. OpenCV Change Logs

8. ARM Compute library

9. Running Alexnet on Rapsberry PI with Compute Library

10. TensorFlow

11. FlatBuffers

12. What is the difference between TensorFlow and TensorFlow lite

13. TensorFlow Hosted Models

14. TensorFlow sources

15. https://searchenterpriseai.techtarget.com/definition/machine-learning-ML

16. Arm NN documentation for caffe support

http://www.nxp.com/eiq
https://community.nxp.com/community/eiq
https://www.nxp.com/docs/en/fact-sheet/IMX8FAMFS.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-8-processors/i.mx-software-and-development-tool:IMX_SW
https://www.nxp.com/webapp/Download?colCode=imx-yocto-L4.14.98_2.0.0_ga
https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV
https://github.com/opencv/opencv/wiki/ChangeLog
https://www.arm.com/why-arm/technologies/compute-library
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/running-alexnet-on-raspberry-pi-with-compute-library?CommentId=f770a894-7656-4c8c-be45-0de16a01c9ff
https://opensource.google.com/projects/tensorflow
https://google.github.io/flatbuffers/
https://www.quora.com/What-is-the-difference-between-TensorFlow-and-TensorFlow-lite
https://www.tensorflow.org/lite/guide/hosted_models
https://github.com/tensorflow/tensorflow
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://github.com/ARM-software/armnn/blob/master/src/armnnCaffeParser/CaffeSupport.md

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019

36 NXP Semiconductors

11. Revision history

Table summarizes the changes done to this document since the initial release.

Table 1. Revision history

Revision number Date Substantive changes

0 05/2019 Initial release.

1 06/2019
Updated Section 7.2, “Running image

classification example”.

2 06/2019 Minor formatting changes.

Document Number: UM11226
Rev. 2

06/2019

How to Reach Us:

Home Page:
www.nxp.com
Web Support:
www.nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

www.nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9,

Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,

DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited

(or its subsidiaries) in the US and/or elsewhere. The related technology may be

protected by any or all of patents, copyrights, designs and trade secrets. All rights

reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and

related marks are trademarks and service marks licensed by Power.org.

© 2019 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors
	1. Introduction
	2. NXP eIQ software introduction
	3. Yocto installation guide
	3.1. Prerequisites
	3.1.1. Hardware requirements
	3.1.2. Software requirements

	3.2. Building NXP eIQ software support using Yocto Project tools
	3.2.1. Repo utility installing
	3.2.2. Yocto project metadata downloading
	3.2.3. Yocto build setup
	3.2.4. Yocto configuration file modifying
	3.2.5. OpenCV user build modification
	3.2.6. Image building
	3.2.7. SD card image flashing
	3.2.8. SD card disk space extending
	3.2.9. Generating the Toolchain

	4. OpenCV getting started guide
	4.1. OpenCV DNN demos
	4.1.1. Image classification example
	4.1.2. YOLO object detection example
	4.1.3. Image segmentation example
	4.1.4. Image colorization example
	4.1.5. Human pose estimation example
	4.1.6. Object detection example
	4.1.7. CNN image classification example
	4.1.8. Text detection example

	4.2. OpenCV standard machine learning demos
	4.2.1. Introduction to SVM
	4.2.2. SVM for non-linearly separable data
	4.2.3. Introduction to PCA
	4.2.4. Logistic regression

	5. Arm Compute Library getting started guide
	5.1. Running DNN with random weight and inputs
	5.2. Running AlexNet using graph API

	6. TensorFlow getting started guide
	6.1. Running benchmark application

	7. TensorFlow Lite getting started guide
	7.1. Running benchmark application
	7.2. Running image classification example
	7.2.1. Using pre-installed example
	7.2.2. Building example from sources

	8. Arm NN getting started guide
	8.1. Running Arm NN tests
	8.1.1. Caffe tests
	8.1.1.1. CaffeAlexNet-Armnn
	8.1.1.2. CaffeInception_BN-Armnn
	8.1.1.3. CaffeMnist-Armnn
	8.1.1.4. CaffeResNet-Armnn
	8.1.1.5. CaffeVGG-Armnn

	8.1.2. TensorFlow tests
	8.1.2.1. TfInceptionV3-Armnn
	8.1.2.2. TfMnist-Armnn
	8.1.2.3. TfMobileNet-Armnn

	8.1.3. TensorFlow Lite tests
	8.1.3.1. TfLiteInceptionV3Quantized-Armnn
	8.1.3.2. TfLiteMnasNet-Armnn
	8.1.3.3. TfLiteMobilenetQuantized-Armnn
	8.1.3.4. TfLiteMobilenetV2Quantized-Armnn

	8.1.4. ONNX tests
	8.1.4.1. OnnxMnist-Armnn
	8.1.4.2. OnnxMobileNet-Armnn

	8.2. Using Arm NN in a custom C/C++ application

	9. ONNX Runtime getting started guide
	9.1. Running ONNX Runtime test

	10. References
	11. Revision history

