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1. Introduction 

Machine Learning (ML) is a computer science domain 

that has its roots in the 1960s. ML provides algorithms 

capable of finding patterns and rules in data. ML is a 

category of algorithm that allows software applications 

to become more accurate in predicting outcomes 

without being explicitly programmed. The basic 

premise of ML is to build algorithms that can receive 

input data and use statistical analysis to predict an 

output while updating outputs as new data becomes 

available. 

In 2010, the so-called deep learning started. It is a 

fast-growing subdomain of ML, based on Neural 

Networks (NN). Inspired by the human brain, deep 

learning achieved state-of-the-art results in various 

tasks; for example, Computer Vision (CV) and Natural 

Language Processing (NLP). Neural networks are 

capable of learning complex patterns from millions of 

examples. A huge adaptation is expected in the 

embedded world, where NXP is the leader. NXP 

created eIQ machine learning software for i.MX 

applications processors, a set of ML tools which allows 

developing and deploying ML applications on the 

i.MX 8 family of devices. 
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This document provides guidance for the supported ML software for the i.MX family. The document is 

divided into separate sections, starting with the NXP eIQ introduction, the Yocto installation guide, and 

the step-by step guide for running all supported DNN and non-DNN examples. 

2. NXP eIQ software introduction 

The NXP eIQ machine learning software development environment provides a set of libraries and 

development tools for machine learning applications targeted at NXP MCUs and application processors. 

The NXP eIQ software is concerned only with neural networks inference and standard machine-learning 

algorithms, leaving neural network training to other specialized software tools and dedicated hardware. 

The NXP eIQ is continuously expanding to include data-acquisition and curation tools and model 

conversion for a wide range of NN frameworks and inference engines, such as TensorFlow, TensorFlow 

Lite, Arm® NN, and Arm Compute Library. 

The current version of NXP eIQ software of i.MX processors delivers advanced and highly optimized 

machine learning enablement by providing ML support in Linux OS BSPs for the i.MX 8 family of 

devices. The NXP eIQ software contains these main Yocto recipes: 

• OpenCV 4.0.1 

• Arm Compute Library 19.02 

• Arm NN 19.02 

• ONNX runtime 0.3.0 

• TensorFlow 1.12 

• TensorFlow Lite 1.12 

For more details about the i.MX 8 family of application processors, see the fact sheet [3]. 

For up-to-date information about NXP machine learning solutions, see the official NXP web page [2] for 

machine learning and artificial intelligence. 

 

Figure 1. NXP eIQ machine learning software 



Yocto installation guide 

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019 

NXP Semiconductors  3 

 

3. Yocto installation guide 

This chapter provides a step-by-step guide for configuring and building Linux L4.14.98 GA, the Linux 

Yocto BSP release for i.MX 8 family of devices [4], with support for NXP eIQ software.  

To enable NXP eIQ machine learning software, the main configuration changes are: 

• Mandatory: select the right machine learning manifest file (*.xml) – see Section 3.2.2, “Yocto 

project metadata downloading”. 

• Optional: modify the machine learning configuration file (*.conf) or layer files (*.bb), depending 

on which special configuration is needed; see Section 3.2.4, “Yocto configuration file 

modifying” or Section 3.2.5, “OpenCV user build modification”. 

For more information about the Linux Yocto BSP setup, see the Linux L4.14.98_2.0.0 

documentation [5]. 

3.1. Prerequisites 

3.1.1. Hardware requirements 

• 1 x Linux OS host machine with a minimum of 120 GB HDD space available and internet 

connection 

• 1 x MCIMX8QM-CPU board with internet connection 

• 1 x SDHC card (tested with a 16-GB SDHC Class 10 UHS-I card) 

• 1 x MIPI camera MCIMXCAMERA1MP with de-serializer MX8XMIPI4CAM2 for running 

OpenCV DNN examples using the live camera inputs (optional only) 

• LCD HDMI monitor 

3.1.2. Software requirements 

1. Host OS: Ubuntu (tested with 16.04) 

2. Host packages:  

— The essential Yocto project host packages are: 

$: sudo apt-get install gawk wget git-core diffstat unzip texinfo \ 

   gcc-multilib build-essential chrpath socat libsdl1.2-dev 

— The i.MX layers host packages for the Ubuntu OS host setup are: 

$: sudo apt-get install libsdl1.2-dev xterm sed cvs subversion \ 

   coreutils texi2html docbook-utils python-pysqlite2 help2man gcc \ 

   g++ make desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev \ 

   mercurial autoconf automake groff curl lzop asciidoc u-boot-tools 

3.2. Building NXP eIQ software support using Yocto Project tools 

See the i.MX Yocto Project User’s Guide document [5] or sections 3.2.1 to 3.2.6, and 3.2.9. See the i.MX 

Linux User’s Guide document [5] or sections 3.2.7 to 3.2.8. 

https://www.nxp.com/part/MCIMX8QM-CPU?lang=en&lang_cd=en&
https://www.nxp.com/part/MCIMXCAMERA1MP?lang=en&lang_cd=en&
https://www.nxp.com/part/MX8XMIPI4CAM2?lang=en&lang_cd=en&
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3.2.1. Repo utility installing 

This must be done only once. 

$: mkdir ~/bin 

$: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo 

$: chmod a+x ~/bin/repo 

$: PATH=${PATH}:~/bin 

3.2.2. Yocto project metadata downloading 

$: mkdir fsl-arm-yocto-bsp 

$: cd fsl-arm-yocto-bsp 

$: repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b imx-linux-sumo -m 

imx-4.14.98-2.0.0_machinelearning.xml 

$: repo sync 

NOTE 

The imx-4.14.78-1.0.0_machinelearning manifest file can be also used. 

3.2.3.  Yocto build setup 

$: EULA=1 MACHINE=imx8qmmek DISTRO=fsl-imx-xwayland source ./fsl-setup-release.sh -b build-

xwayland 

$: echo "BBLAYERS += \" \${BSPDIR}/sources/meta-imx-machinelearning \"" >> conf/bblayers.conf 

3.2.4. Yocto configuration file modifying 

OpenCV 4.0.1 is available to be built and is already installed in the suggested image. Therefore, the 

local.conf file does not have to be modified to include the OpenCV in the Yocto image. However, it is 

recommended to add some extra packages to this configuration file for a more convenient image. The 

local.conf file is in folder fsl-arm-yocto-bsp/build-xwayland/conf. 

Add basic development capabilities: 

EXTRA_IMAGE_FEATURES = " dev-pkgs debug-tweaks tools-debug tools-sdk ssh-server-openssh" 

Add packages for networking capabilities: 

IMAGE_INSTALL_append = " net-tools iputils dhcpcd" 

Add some generic tools: 

IMAGE_INSTALL_append = " which gzip python python-pip" 

IMAGE_INSTALL_append = " wget cmake gtest git zlib patchelf" 

IMAGE_INSTALL_append = " nano grep vim tmux swig tar unzip" 

IMAGE_INSTALL_append = " parted e2fsprogs e2fsprogs-resize2fs" 

Configure the OpenCV package: 

IMAGE_INSTALL_append = " opencv python-opencv" 

PACKAGECONFIG_remove_pn-opencv_mx8 = "python3" 

PACKAGECONFIG_append_pn-opencv_mx8 = " dnn python2 qt5 jasper openmp test neon" 

Remove the OpenCL support from packages: 

PACKAGECONFIG_remove_pn-opencv_mx8 = "opencl" 

PACKAGECONFIG_remove_pn-arm-compute-library = "opencl" 

https://storage.googleapis.com/git-repo-downloads/repo
https://source.codeaurora.org/external/imx/imx-manifest
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Add CMake for SDK’s cross-compile: 

TOOLCHAIN_HOST_TASK_append = " nativesdk-cmake nativesdk-make" 

Add packages: 

IMAGE_INSTALL_append = " arm-compute-library tensorflow tensorflow-lite armnn onnxruntime" 

PREFERRED_VERSION_opencv = "4.0.1%" 

PREFERRED_VERSION_tensorflow = "1.12.0%" 

PREFERRED_VERSION_tensorflow-lite = "1.12.0%" 

NOTE 

OpenCL is currently not supported in the L4.14.98_2.0.0 and 

L4.14.78_1.0.0 Yocto configurations. 

3.2.5. OpenCV user build modification 

The OpenCV 4.0.1 is installed with all necessary DNN and ML dependencies in the NXP eIQ software. 

If some special OpenCV build options are required, add them to the OpenCV recipe file to their separate 

PACKAGECONFIG section. The opencv_4.0.1-imx.bb file is located on the Linux OS host PC in this 

folder:  

fsl-arm-yocto-bsp/sources/meta-imx-machinelearning/recipes-graphics/opencv 

3.2.6. Image building 

The image should be built with Qt 5 support, because some OpenCV examples requires Qt 5 to be 
enabled in the image: 
 

$: bitbake fsl-image-qt5 

3.2.7. SD card image flashing 

The result of the build process is a compressed image which can be found in 

tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-<timestamp>.rootfs.sdcard.bz2, where 

<timestamp> is the image timestamp (for example: 20180509080732). 

Decompress the image before flashing it to the SD card: 

bunzip2 -k -f tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-

<timestamp>.rootfs.sdcard.bz2 

Flash the SD card (replace “sdX” with the actual SD card device): 

dd if= tmp/deploy/images/imx8qmmek/fsl-image-qt5-imx8qmmek-<timestamp>.rootfs.sdcard 

of=/dev/sdX bs=1M && sync 

NOTE 

The Win32DiskImager utility can be also used for the SD card image 

flashing. 
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3.2.8. SD card disk space extending 

The ML applications require a lot of disk space to store the input model data. By default, the SD card 

image is created with a small amount of extra space (approximately 500 MB) in the rootfs, which may 

not be enough for all ML applications. 

There are two methods how to extend the SD card free space: 

1. Define additional free disk space before start the building process. It is done using the 

IMAGE_ROOTFS_EXTRA_SPACE variable in the local.conf file. This step is also described in 

the Yocto project manual here: https://www.yoctoproject.org/docs/current/mega-manual/mega-

manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE. 

2. Extend the SD card disk space after the image building. This ex-post method is described in 

more detail in the below section. 

Print all SD card partitions of the target board: 

$: fdisk -l  

Device         Boot  Start      End  Sectors Size Id Type 

/dev/mmcblk1p1       16384   147455   131072  64M  c W95 FAT32 (LBA) 

/dev/mmcblk1p2      147456 10584063 10436608   5G 83 Linux 

Start the “fdisk” utility: 

$: fdisk /dev/mmcblk1 

Delete the Linux-type partition (second in this case): 

Command (m for help): d 

Partition number (1,2, default 2): 2 

Partition 2 has been deleted. 

Create the new primary partition (second in this case) with the first sector being identical to the original 

partition: 

Command (m for help): n 

Partition type 

   p   primary (1 primary, 0 extended, 3 free) 

   e   extended (container for logical partitions) 

Select (default p): 

 

Using default response p. 

Partition number (2-4, default 2): 

First sector (2048-31116287, default 2048): 147456 

Last sector, +sectors or +size{K,M,G,T,P} (147456-31116287, default 31116287): 

Write the new partition and exit the “fdisk” utility: 

Command (m for help): w 

 

The partition table has been altered. 

Syncing disks. 

Increase the filesystem size of the second partition: 

$: resize2fs /dev/mmcblk1p2 

resize2fs 1.43.8 (1-Jan-2018) 

Filesystem at /dev/mmcblk1p2 is mounted on /; on-line resizing required 

old_desc_blocks = 1, new_desc_blocks = 1 

The filesystem on /dev/mmcblk1p2 is now 3871104 (4k) blocks long. 

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#var-IMAGE_ROOTFS_EXTRA_SPACE
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NOTE 

You can also use the “parted” Linux OS command to create a new 

partition instead of using the “fdisk” command. 

Finally, check the free disk space after resizing: 

$: df -h 

3.2.9. Generating the Toolchain 

The toolchain created by the Yocto Project tools provides a set of tools (compilers, libraries, and header 

files) to cross-compile the code for the previously-built images. Build the SDK with the Qt 5 support:  

$: bitbake fsl-image-qt5 -c populate_sdk  

After the build process finishes, it produces an installer script that can be used to install the SDK on the 

developing system. The script is created in the tmp/deploy/sdk/fsl-imx-xwayland-glibc-x86_64-fsl-

image-qt5-aarch64-toolchain-4.14-sumo.sh. 

4. OpenCV getting started guide 

OpenCV is an open-source computer vision library. One of its modules (called ML) provides traditional 

machine learning algorithms. Another important module in the OpenCV is the DNN, which provides 

support for neural network algorithms.  

OpenCV offers a unitary solution for both the neural network inference (DNN module) and the standard 

machine learning algorithms (ML module). It includes many computer vision functions, making it easier 

to build complex machine learning applications in a short amount of time and without being dependent 

on other libraries. 

OpenCV has wide adoption in the computer vision field and is supported by a strong and active 

community. The key algorithms are specifically optimized for various devices and instructions sets. For 

i.MX, OpenCV uses the Arm NEON acceleration. The Arm NEON technology is an advanced SIMD 

(Single Instruction Multiple Data) architecture extension for the Arm Cortex-A series. The Arm NEON 

technology is intended to improve multimedia user experience by accelerating the audio and video 

encoding/decoding, user interface, 2D/3D graphics, or gaming. The Arm NEON can also accelerate the 

signal-processing algorithms and functions to speed up applications such as the audio and video 

processing, voice and facial recognition, computer vision, and deep learning. 

At its core, the OpenCV DNN module implements an inference engine and does not provide any 

functionalities for neural network training. For more details about the supported models and layers, see 

the official OpenCV DNN wiki page [6]. 

On the other hand, the OpenCV ML module contains classes and functions for solving machine learning 

problems such as classification, regression, or clustering. It involves algorithms such as Support Vector 

Machine (SVM), decision trees, random trees, expectation maximization, k-nearest neighbors, classic 

Bayes classifier, logistic regression, and boosted trees. For more information, see the official reference 

manual and machine learning overview. For more details about OpenCV 4.0.1, see the official OpenCV 

change log web page [7]. 
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4.1. OpenCV DNN demos 

After creating a bootable SD card using Yocto, all OpenCV DNN demos are in the 

/usr/share/OpenCV/samples/bin/ folder (the default demo location). However, the input data, model 

configurations, and model weights are not located in this folder, because of their size. These files must 

be downloaded to the device before running the demos: 

• Download the opencv_extra.zip package at this link: github.com/opencv/opencv_extra/tree/4.0.1  

• Unpack the file using unzip opencv_extra-4.0.1.zip to the SD card root directory <home_dir>. 

• Go to the <home_dir>/opencv_extra-4.0.1/testdata/dnn/ folder and run python 

download_models.py. The script downloads the NN models, configuration files, and input images 

for some OpenCV examples. This operation may take a while. Copy these dependencies to the 

/usr/share/OpenCV/samples/bin folder (see also the demo dependencies parts of sections 4.1.x in 

this document). 

• Download the configuration model file at this link: 

github.com/opencv/opencv/blob/master/samples/dnn/models.yml  

The model.yml file contains the pre-processing parameters for some DNN examples, which 

accept the “–zoo” parameter. Copy the model file to the /usr/share/OpenCV/samples/bin folder. 

4.1.1. Image classification example 

This demo performs image classification using a pre-trained SqueezeNet network.  

Demo dependencies (taken from the “opencv_extra” package): 

• dog416.png 

• squeezenet_v1.1.caffemodel 

• squeezenet_v1.1.prototxt 

Other demo dependencies: 

• classification_classes_ILSVRC2012.txt from /usr/share/OpenCV/samples/data/dnn 

• models.yml from github 

Running the C++ example with the image input from the default location: 

$: ./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet 

https://github.com/opencv/opencv_extra/tree/4.0.1
https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml
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Figure 2. Image classification graphics output 

Running the C++ example with the live camera input from the default location: 

$: ./example_dnn_classification --zoo=models.yml squeezenet 

4.1.2. YOLO object detection example 

This demo performs the object detection using the You Only Look Once (YOLO) detector 

(arxiv.org/abs/1612.08242). It detects objects in a camera/video/image. 

For more information about this demo, see the “Loading Caffe framework models” OpenCV tutorial: 

docs.opencv.org/4.0.1/da/d9d/tutorial_dnn_yolo.html.  

Demo dependencies (taken from the “opencv_extra” package): 

• dog416.png 

• yolov3.weights 

• yolov3.cfg 

Other demo dependencies: 

• models.yml 

• object_detection_classes_yolov3.txt from /usr/share/OpenCV/samples/data/dnn 

Running the C++ example with the image input from the default location: 

$: ./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -input=dog416.png -

rgb -zoo=models.yml yolo 

https://arxiv.org/abs/1612.08242
docs.opencv.org/4.0.1/da/d9d/tutorial_dnn_yolo.html
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Figure 3. YOLO object detection graphics output 

Running the C++ example with the live camera input from the default location: 

$: ./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -rgb -

zoo=models.yml yolo 

NOTE 

Running this example with the live camera input is very slow, because this 

example runs only on the CPU. 

4.1.3. Image segmentation example 

The image segmentation means dividing the image into groups of pixels based on some criteria. You can 

do this grouping based on color, texture, or some other criteria that you choose. 

Demo dependencies (taken from the “opencv_extra” package): 

• dog416.png 

• fcn8s-heavy-pascal.caffemodel 

• fcn8s-heavy-pascal.prototxt 

Other demo dependencies: 

• models.yml 

Running the C++ example with the image input from the default location: 

$: ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png --

zoo=models.yml fcn8s 
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Figure 4. Image segmentation graphics output 

Running the C++ example with the live camera input from the default location: 

$: ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --zoo=models.yml fcn8s 

NOTE 

Running this example with the live camera input is very slow, because this 

example runs only on the CPU. 

4.1.4. Image colorization example 

This example demonstrates the recoloring of grayscale images using DNN. The demo supports input 

images only, not the live camera input. 

Demo dependencies (taken from the “opencv_extra” package): 

• colorization_release_v2.caffemodel 

• colorization_deploy_v2.prototxt 

Other demo dependencies: 

• basketball1.png 

Running the C++ example with the image input from the default location: 

$: ./example_dnn_colorization --model=colorization_release_v2.caffemodel --

proto=colorization_deploy_v2.prototxt --image=../data/basketball1.png 
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Figure 5. Image colorization demo graphics output 

4.1.5. Human pose estimation example 

This application demonstrates the human or hand pose detection with a pretrained OpenPose DNN. The 

demo supports only input images, not the live camera input. 

Demo dependencies (taken from the “opencv_extra” package): 

• grace_hopper_227.png 

• openpose_pose_coco.caffemodel  

• openpose_pose_coco.prototxt 

Running the C++ example with the image input from the default location: 

$: ./example_dnn_openpose --model=openpose_pose_coco.caffemodel --

proto=openpose_pose_coco.prototxt --image=grace_hopper_227.png --width=227 --height=227 

 

Figure 6. Human pose estimation graphics output 



OpenCV getting started guide 

NXP eIQ™ Machine Learning Software Development Environment for i.MX Applications Processors, Rev. 2, 06/2019 

NXP Semiconductors  13 

 

4.1.6. Object detection example 

This demo performs object detection using SqueezeDet. The demo supports only input images, not the 

live camera input. 

Demo dependencies: 

• Download the model definition and model weight files from:  

github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto  

• SqueezeDet.caffemodel  

• SqueezeDet_deploy.prototxt  

• Download the input image from: 

github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane

.jpg 

Running the C++ example with the image input from the default location: 

$: ./example_dnn_objdetect_obj_detect SqueezeDet_deploy.prototxt SqueezeDet.caffemodel 

aeroplane.jpg 

Running the model on the aeroplane.jpg image produces the following text results in the console: 

------ 

Class: aeroplane 

Probability: 0.845181 

Co-ordinates: 41 116 415 254 

------ 

 

Figure 7. Object detection graphics output 

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane.jpg
https://github.com/opencv/opencv_contrib/blob/4.0.1/modules/dnn_objdetect/tutorials/images/aeroplane.jpg
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4.1.7. CNN image classification example 

This demo performs image classification using a pre-trained SqueezeNet network. The demo supports 

only input images, not the live camera input. 

Demo dependencies (taken from the “opencv_extra” package): 

• space_shuttle.jpg 

Other demo dependencies: 

• Download the SqueezeNet.caffemodel model weight file from: 

github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto  

• Download the SqueezeNet_deploy.prototxt model definition file from: 

github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data  

Running the C++ example with the image input from the default location: 

$: ./example_dnn_objdetect_image_classification SqueezeNet_deploy.prototxt 

SqueezeNet.caffemodel space_shuttle.jpg 

Running the model on the space_shuttle.jpg image produces the following text results in the console: 

Best class Index: 812 

Time taken: 0.649153 

Probability: 15.8467 

4.1.8. Text detection example 

This demo is used for text detection in the image using the EAST algorithm. 

Demo dependencies (taken from the opencv_extra package): 

• frozen_east_text_detection.pb 

Other demo dependencies: 

• imageTextN.png 

Running the C++ example with the image input from the default location: 

$: ./example_dnn_text_detection --model=frozen_east_text_detection.pb --

input=../data/imageTextN.png 

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data
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Figure 8. Text detection graphics output 

NOTE 

This example accepts only the PNG image format. 

Running the C++ example with the live camera input from the default location: 

$: ./example_dnn_text_detection --model=frozen_east_text_detection.pb 

4.2. OpenCV standard machine learning demos  

After deploying OpenCV on the target device, the non-neural-network demos are installed in the 

“rootfs” in the /usr/share/OpenCV/samples/bin/ folder. To display the results, a Yocto image with Qt 5 

support is required. 

4.2.1. Introduction to SVM 

This example demonstrates how to create and train an SVM model using training data. When the model 

is trained, the labels for test data are predicted. The full description of the example is in 

tutorial_introduction_to_svm. 

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):  

$: ./example_tutorial_introduction_to_svm 

Result: 

1. The code opens an image and shows the training examples of both classes. The points of one 

class are represented with white circles and the other class uses black points. 

 

 

https://docs.opencv.org/4.0.1/d1/d73/tutorial_introduction_to_svm.html
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2. The SVM is trained and used to classify all the pixels of the image. This results in the division of 

image into blue and green regions. The boundary between both regions is the optimal separating 

hyperplane. 

3. Finally, the support vectors are shown using gray rings around the training examples. 

 

Figure 9. SVM introduction graphics output 

4.2.2. SVM for non-linearly separable data 

This example deals with non-linearly-separable data and shows how to set the parameters of the SVM 

with linear kernel for these data. For more details, see SVM_non_linearly_separable_data. 

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):  

$: ./example_tutorial_non_linear_svms  

Result: 

1. The code opens an image and shows the training data of both classes. The points of one class are 

represented by a light-green color and the other class is shown as light-blue points. 

2. The SVM is trained and used to classify all pixels of the image. This divides the image into blue 

and green regions. The boundary between both regions is the separating hyperplane. Because the 

training data is non-linearly separable, some examples of both classes are misclassified; some 

green points lay in the blue region and some blue points lay in the green one. 

3. The support vectors are shown with gray rings around the training examples. 

https://docs.opencv.org/4.0.1/d0/dcc/tutorial_non_linear_svms.html
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Figure 10. SVM non-linearity graphics output 

4.2.3. Introduction to PCA 

The Principal Component Analysis (PCA) is a statistical method that extracts the most important 

features of a dataset. In this tutorial, it is shown how to use the PCA to calculate the orientation of an 

object. For more details, see the OpenCV tutorial: Introduction_to_PCA. 

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):  

$: ./example_tutorial_introduction_to_pca 

Result: 

• The code opens an image (loaded from ../data/pca_test1.jpg), finds the orientation of the 

detected objects of interest, and visualizes the result by drawing the contours of the detected 

objects of interest, the center point, and the x-axis and y-axis regarding the extracted orientation. 

https://docs.opencv.org/4.0.1/d1/dee/tutorial_introduction_to_pca.html
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Figure 11. PCA graphics output 

4.2.4. Logistic regression 

In this example, logistic regression is used to predict two characters (0 or 1) from an image. Every image 

matrix is reshaped from its original size of 28 x 28 to 1 x 784. A logistic regression model is created and 

trained on 20 images. After the training, the model can predict the labels of test images. The source code 

is at this link and can be run using the below command. 

Demo dependencies (preparing the train data files): 

$: wget raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml 

After running the demo, the graphics result is shown on the screen (Qt 5 support is required):  

$: ./example_cpp_logistic_regression 

Result: 

• The training and test data and the comparison between the original and predicted labels are 

shown. The trained model reaches 95 % accuracy. The console text output is as follows: 

original vs predicted: 

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1] 

accuracy: 95% 

saving the classifier to NewLR_Trained.xml 

loading a new classifier from NewLR_Trained.xml 

predicting the dataset using the loaded classifier...done! 

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1] 

accuracy: 95% 

https://github.com/opencv/opencv/blob/4.0.1/samples/cpp/logistic_regression.cpp
https://raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml
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Figure 12. Logistic regression graphics output 

5. Arm Compute Library getting started guide 

The Arm Compute Library [8] is a collection of low-level functions optimized for the Arm CPU and 

GPU architectures targeted at image processing, computer vision, and machine learning. It is a 

convenient repository of optimized functions that developers can source either individually or as a part 

of complex pipelines to accelerate algorithms and applications. The Arm compute library also supports 

NEON acceleration. 

Two types of examples are described in the following sub-sections: 

• Example based on the DNN models with random weights and inputs 

• Example based on the AlexNet using the graph API 

5.1. Running DNN with random weight and inputs 

The Arm Compute Library contains examples for most common DNN architectures, such as 

AlexNet, MobileNet, ResNet, Inception v3, Inception v4, Squeezenet, and others. 

All available examples are at this example build location: 

• /usr/share/arm-compute-library/build/examples 

Each model architecture can be tested using the “graph_[dnn_model]” application.  

Here is an example of running the required DNN model with a random weight (run the example 

application without any arguments): 

$: ./graph_mobilenet_v2 

The application creates the required network model with random weights and predicts the random 

inputs. If all components work, the “Test passed” message is printed. 
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5.2. Running AlexNet using graph API 

In 2012, AlexNet became famous when it won the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC), an annual challenge that aims to evaluate algorithms for object detection and image 

classification. AlexNet is made up of eight trainable layers (five convolution layers and three 

fully-connected layers). All the trainable layers are followed by the ReLu activation function, except for 

the last fully-connected layer, where the Softmax function is used. 

The C++ AlexNet example implementation [9] uses the graph API in this folder: 

• /usr/share/arm-compute-library/build/examples 

Demo dependencies: 

• Download the archive file to the example location folder from: 

developer.arm.com//-/media/developer/technologies/Machine learning on 

Arm/Tutorials/Running AlexNet on Pi with Compute 

Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01 

• Create new sub-folder and unzip the file: 

$: mkdir assets_alexnet 

$: unzip compute_library_alexnet.zip -d assets_alexnet 

• Set the environment variables for execution: 

$: export LD_LIBRARY_PATH=/usr/share/arm-compute-library/build/examples/ 

$: export PATH_ASSETS=/usr/share/arm-compute-library/build/examples/assets_alexnet/ 

• Run the example with the command-line arguments from the default location:  

$: ./graph_alexnet --data=$PATH_ASSETS --image=$PATH_ASSETS/go_kart.ppm --

labels=$PATH_ASSETS/labels.txt 

• The output of the successful classification is as follows: 

---------- Top 5 predictions ---------- 

 

0.9736 - [id = 573], n03444034 go-kart 

0.0118 - [id = 518], n03127747 crash helmet 

0.0108 - [id = 751], n04037443 racer, race car, racing car 

0.0022 - [id = 817], n04285008 sports car, sport car 

0.0006 - [id = 670], n03791053 motor scooter, scooter 

 

Test passed 

6. TensorFlow getting started guide 

TensorFlow [10] is an end-to-end open-source platform for machine learning. It has a comprehensive, 

flexible ecosystem of tools, libraries, and community resources that enable the researchers to push the 

state-of-the-art in ML and give the developers the ability to easily build and deploy ML-powered 

applications. 

TensorFlow provides a collection of workflows [14] with intuitive, high-level APIs for both beginners 

and experts to create machine learning models in numerous languages. TensorFlow provides a variety of 

different toolkits that enable you to construct models at your preferred level of abstraction. Use the 

lower-level APIs to build models by defining a series of mathematical operations. Alternatively, you can 

use higher-level APIs to specify pre-defined architectures, such as linear regressors or neural networks. 

https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01
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6.1. Running benchmark application 

This simple example is pre-installed by default on the prepared Yocto image with machine learning 

enablement. It performs simple TensorFlow benchmarking using the pre-defined model. The graph 

model file is not included in the target image due to its size. The benchmark binary file location is: 

• /usr/bin/tensorflow-1.12.0/examples 

Demo dependencies: 

• Download the inception graph model:  

$: wget storage.googleapis.com/download.tensorflow.org/models/inception5h.zip 

• Unzip the model file to the example target location: 

$: unzip inception5h.zip 

• Run the example with command-line arguments from the default location: 

$: ./benchmark --graph=tensorflow_inception_graph.pb --max_num_runs=10 

The benchmark application outputs lots of useful information, such as: 

• Run order 

• Top by computation time 

• Top by memory use 

• Summary by node type 

For example, the summary node output of the TensorFlow benchmarking is as follows: 

[Node type]    [count]  [avg ms]     [avg %]   [cdf %]   [mem KB]    [times called] 

----------------------------------------------------------------------------------- 

Conv2D           22      171.150    64.825%   64.825%    10077.888          22 

MatMul            2       35.295    13.368%   78.194%        8.128           2 

MaxPool           6       23.723     8.985%   87.179%     3562.496           6 

LRN               2       18.823     7.129%   94.309%     3211.264           2 

BiasAdd          24        8.475     3.210%   97.519%        0.000          24 

Relu             14        3.847     1.457%   98.976%        0.000          14 

Concat            3        1.303     0.494%   99.469%     2706.368           3 

Const            50        0.619     0.234%   99.704%        0.000          50 

AvgPool           1        0.544     0.206%   99.910%       32.512           1 

Softmax           1        0.097     0.037%   99.947%        0.000           1 

NoOp              1        0.082     0.031%   99.978%        0.000           1 

_Retval           1        0.022     0.008%   99.986%        0.000           1 

Reshape           1        0.013     0.005%   99.991%        0.000           1 

_Arg              1        0.012     0.005%   99.995%        0.000           1 

Identity          1        0.012     0.005%   100.000%       0.000           1 

 

Timings (microseconds): count=10 first=281154 curr=242529 min=240048 max=291365 avg=264068 

std=19523 

7. TensorFlow Lite getting started guide 

TensorFlow Lite is a light-weight version of and a next step from TensorFlow. TensorFlow Lite is an 

open-source software library focused on running machine learning models on mobile and embedded 

devices (available at www.tensorflow.org/lite). It enables on-device machine learning inference with 

low latency and small binary size. TensorFlow Lite also supports hardware acceleration using 

Android™ OS neural network APIs. 

https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
http://www.tensorflow.org/lite
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TensorFlow Lite supports a set of core operators (both quantized and float) tuned for mobile platforms. 

They incorporate pre-fused activations and biases to further enhance the performance and quantized 

accuracy. Additionally, TensorFlow Lite also supports the use of custom operations in models. 

TensorFlow Lite defines a new model file format, based on FlatBuffers [11]. FlatBuffers is an 

open-source, efficient, cross-platform serialization library. It is similar to protocol buffers, but the 

primary difference is that FlatBuffers does not need a parsing/unpacking step for a secondary 

representation before you can access the data, often coupled with per-object memory allocation. Also, 

the code footprint of FlatBuffers is an order of magnitude smaller than protocol buffers. 

TensorFlow Lite has a new mobile-optimized interpreter, which has the key goal to keep apps lean and 

fast. The interpreter uses static graph ordering and a custom (less-dynamic) memory allocator to ensure 

minimal load, initialization, and execution latency. 

7.1. Running benchmark application 

This simple example is pre-installed by default on the prepared Yocto image with machine learning 

enablement. Its name is “benchmark_model”. It performs simple TensorFlow Lite benchmarking using 

the pre-defined models. The model file is not included in the target image, because of its size. The 

example binary file location is: 

• /usr/bin/tensorflow-lite-1.12.0/examples 

Demo dependencies: 

• Download the model file [13] using this command:  

$: wget 

download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz  

• Unpack the model file: 

$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz   

• Run the example with the command-line arguments from the default location: 

$: ./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite 

The output of a successful TensorFlow Lite benchmarking is as follows: 

STARTING! 

Num runs: [50] 

Inter-run delay (seconds): [-1] 

Num threads: [1] 

Benchmark name: [] 

Output prefix: [] 

Warmup runs: [1] 

Graph: [mobilenet_v1_1.0_224_quant.tflite] 

Input layers: [] 

Input shapes: [] 

Use nnapi : [0] 

Loaded model mobilenet_v1_1.0_224_quant.tflite 

resolved reporter 

Initialized session in 44.687ms 

Running benchmark for 1 iterations 

count=1 curr=180071 

Running benchmark for 50 iterations 

count=50 first=128160 curr=128079 min=127643 max=128319 avg=127944 std=138 

Average inference timings in us: Warmup: 180071, Init: 44687, no stats: 127944 

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
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7.2. Running image classification example 

This simple example classifies images of clothing, such as hats, shirts, and others. The “grace_hopper” 

input image (see Figure 13) is used as a typical sample for the image classification. By default, a proper 

model file for this example is not included in the target image due to its size. It should be downloaded 

by the user to the target image. 

 

Figure 13. Image classification input picture 

Two different approaches for running this example are used. The simplest way is to use the pre-installed 

binary application with minimum subsequent steps (see Section 7.2.1, “Using pre-installed example”). 

The second approach is intended for users who want to create (build) a custom application using sources 

(see Section 7.2.2, “Building example from sources”). 

7.2.1. Using pre-installed example 

The example is pre-installed by default in the prepared Yocto image with the machine-learning 

enablement. Its name is “label_image”. The example binary file location is:  

• /usr/bin/tensorflow-lite-1.12.0/examples  

Demo dependencies:  

• Download the TensorFlow model file to the example folder. It can be the model file used by the 

previous benchmark example (see Section 7.1, “Running benchmark application”):  

$ wget  

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan

t.tgz  

• Unpack the model file to the example binary location: 

$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz  

• Run the example with the command-line arguments from the default location:  

$: ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l 

labels.txt 

 

 

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
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The output of a successful classification for the “grace_hopper” input image (see Figure 13) is as 

follows:  

Loaded model mobilenet_v1_1.0_224_quant.tflite  

resolved reporter  

invoked  

average time: 330.473 ms  

0.780392: 653 military uniform  

0.105882: 907 Windsor tie  

0.0156863: 458 bow tie  

0.0117647: 466 bulletproof vest  

0.00784314: 835 suit 

7.2.2. Building example from sources 

The image classification example can be downloaded from the TensorFlow repository[14] and built from 

these sources on the target image. 

Demo dependencies:  

• Download and make the TensorFlow sources:  

$ git clone https://github.com/tensorflow/tensorflow.git  

$ cd tensorflow  

$ git checkout r1.12  

$ ./tensorflow/contrib/lite/tools/make/download_dependencies.sh  

$ make -f tensorflow/contrib/lite/tools/make/Makefile  

$ cd tensorflow/contrib/lite/examples/label_image 

• Build the “label_image” example using the GNU C++ compiler:  

$ g++ --std=c++11 -O3 bitmap_helpers.cc label_image.cc -I ../../../.. -I 
../../tools/make/downloads/flatbuffers/include -L 

../../tools/make/gen/linux_aarch64/lib -ltensorflow-lite -lpthread -ldl -o label_image  

• Download the TensorFlow model file to the current directory. It is the model file used by the 

pre-installed example (see Section 7.2.1, “Using pre-installed example”):  

$ wget  

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan

t.tgz  

• Unpack the model file to the current directory:  

$ tar -xzvf mobilenet_v1_1.0_224_quant.tgz  

• Run the example with the command-line arguments from the default location: 

$ ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i testdata/grace_hopper.bmp 

-l ../../java/ovic/src/testdata/labels.txt 

The output of a successful classification for the “grace_hopper” input image (see Figure 13) is the same 

as for the pre-installed application (see Section 7.2.1, “Using pre-installed example”):  

Loaded model mobilenet_v1_1.0_224_quant.tflite 

resolved reporter 

invoked 

average time: 229.14 ms 

0.780392: 653 military uniform 

0.105882: 907 Windsor tie 

0.0156863: 458 bow tie 

0.0117647: 466 bulletproof vest 

0.00784314: 835 suit 
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8. Arm NN getting started guide 

Arm NN is an open-source inference engine framework developed by Arm and supporting a wide range 

of neural-network model formats, such as Caffe, TensorFlow, TensorFlow Lite, and ONNX. For 

i.MX 8, Arm NN runs on the CPU with NEON and has multi-core support. Arm NN does not currently 

support the i.MX 8 GPUs due to the Arm NN OpenCL requirements, which are not met by i.MX 8 

GPUs. For more details about Arm NN, check the Arm NN SDK webpage. 

To build Arm NN 19.02 using the Yocto Project tools, follow the steps describes in Section 3, “Yocto 

installation guide”. Make sure to perform the additional modifications needed for Arm NN, as described 

in Section 3.2.4, “Yocto configuration file modifying” (see the “Add packages” instruction). 

8.1. Running Arm NN tests 

The Arm NN SDK provides a set of tests, which can also be considered as demos, showing what the 

Arm NN does and how to use it. They load neural network models of various formats (Caffe, 

TensorFlow, TensorFlowLite, ONNX), run the inference on a specified input data, and output the 

inference result. The Arm NN tests are built by default when building the rootfs image and installed in 

the /usr/bin folder. 

Note that the input data, model configurations, and model weights are not distributed with Arm NN. 

Download them separately and make sure they are available on the device before running the tests. 

However, the Arm NN tests do not have documentation. Moreover, the input file names are hardcoded, 

so you must investigate the code to find out what input file names are expected. 

To get started with Arm NN, the following sections explain how to prepare the input data and how to 

run the Arm NN tests. All of them use well-known neural network models. With only few exceptions, 

such pre-trained networks are available to download from the internet. The input image files and their 

name, format, and content are deduced by analyzing the code. However, this was not possible for all the 

tests. It is recommended to prepare the data on the host and then deploy them on the i.MX 8 board, 

where the current Arm NN tests are run. 

The following sections assume that the neural network model files are stored in a folder called models, 

and the input image files are stored in a folder called data. Both of them are created inside a folder 

called ArmnnTests. Create this folder structure on the larger partition using the following commands: 

$: mkdir ArmnnTests 

$: cd ArmnnTests 

$: mkdir data 

$: mkdir models 

8.1.1. Caffe tests 

The Arm NN 19.02 SDK provides the following set of tests for the Caffe models: 

/usr/bin/CaffeAlexNet-Armnn 

/usr/bin/CaffeCifar10AcrossChannels-Armnn 

/usr/bin/CaffeInception_BN-Armnn 

/usr/bin/CaffeMnist-Armnn 

/usr/bin/CaffeResNet-Armnn 

/usr/bin/CaffeVGG-Armnn 

/usr/bin/CaffeYolo-Armnn 

https://developer.arm.com/products/processors/machine-learning/arm-nn
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Two important limitations might require a pre-processing of the Caffe model file before running the 

Arm NN Caffe test. Firstly, the Arm NN tests require the batch size to be set to 1. Secondly, the Arm 

NN does not support all Caffe syntaxes, so some previous neural-network model files require updates to 

the latest Caffe syntax. How to perform these pre-processing steps is described at the Arm NN GitHub 

page. Note that you should install Caffe on the host. See also [16].   

For example, supposing you have a Caffe model that either has the batch size different than 1 or uses 

another Caffe defined by files model_name.prototxt and model_name.caffemodel, create a copy of the 

*.prototxt file (new_model_name.prototxt), modify this file to use the new Caffe syntax, change the 

batch size to 1, and finally run this Python script: 

import caffe 

 

net = caffe.Net('model_name.prototxt', 'model_name.caffemodel', caffe.TEST) 

new_net = caffe.Net('new_model_name.prototxt', 'model_name.caffemodel', caffe.TEST) 

new_net.save('new_model_name.caffemodel') 

The following sections explain how to run each of the tests, except for 

“CaffeCifar10AcrossChannels-Armnn” and “CaffeYolo-Armnn”. For the first one, a publicly available 

pre-trained model was not found. For the second one, there is no way to deduce the exact content of the 

input image originally used by this test. 

8.1.1.1. CaffeAlexNet-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model files from: 

raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt 

dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel 

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”. 

3. Rename bvlc_alexnet.caffemodel to bvlc_alexnet_1.caffemodel. 

4. Copy the bvlc_alexnet_1.caffemodel file to the models folder on the device. 

5. Find a *.jpg file that contains a shark. Rename it to shark.jpg and copy it to the data folder on 

the device. 

6. Run the test: 

$: cd ArmnnTests 

$: CaffeAlexNet-Armnn --data-dir=data --model-dir=models 

8.1.1.2. CaffeInception_BN-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model files from: 

raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt 

www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel 

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”. 

https://github.com/ARM-software/armnn/issues/7
https://github.com/ARM-software/armnn/issues/7
http://caffe.berkeleyvision.org/install_apt.html
https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt
http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
https://raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt
http://www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel
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3. Rename the Inception21k.caffemodel file to Inception-BN-batchsize1.caffemodel. 

4. Copy the Inception-BN-batchsize1.caffemodel file to the models folder on the device. 

5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: CaffeInception_BN-Armnn --data-dir=data --model-dir=models 

8.1.1.3. CaffeMnist-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model files from: 

raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt 

github.com/ARM-software/ML-examples/blob/master/armnn-

mnist/model/lenet_iter_9000.caffemodel 

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”. 

3. Download these two archives and unpack them: 

yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 

yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 

4. Copy the lenet_iter_9000.caffemodel file to the models folder on the device. 

5. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: CaffeMnist-Armnn --data-dir=data --model-dir=models 

8.1.1.4. CaffeResNet-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model file for ResNet50 from: 

onedrive.live.com/?authkey=%21AAFW2-

FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB

8476FF777%2117887&o=OneUp 

2. Rename the RestNet-50-model.caffemodel file to ResNet_50_ilsvrc15_model.caffemodel. 

3. Copy the ResNet_50_ilsvrc15_model.caffemodel file to the models folder on the device. 

4. Download this image file and copy it to the data folder on the device: 

raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_s

amples/ILSVRC2012_val_00000018.JPEG  

 

https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887&o=OneUp
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
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5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: CaffeResNet-Armnn --data-dir=data --model-dir=models 

8.1.1.5. CaffeVGG-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model files for VGG19 from: 

www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel 

gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d

5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt 

2. Transform the network as explained in the introductory part of Section 8.1.1, “Caffe tests”. 

3. Rename the VGG_ILSVRC_19_layers.caffemodel file to VGG_CNN_S.caffemodel. 

4. Copy the VGG_CNN_S.caffemodel file to the models folder on the device. 

5. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: CaffeVGG-Armnn --data-dir=data --model-dir=models 

8.1.2. TensorFlow tests 

The Arm NN 19.02 SDK provides the following set of tests for the TensorFlow models: 

/usr/bin/TfCifar10-Armnn 

/usr/bin/TfInceptionV3-Armnn 

/usr/bin/TfMnist-Armnn 

/usr/bin/TfMobileNet-Armnn 

/usr/bin/TfResNext-Armnn  

Before running the tests, the TensorFlow models must be prepared for inference. This process is 

TensorFlow-specific and uses TensorFlow tools. Therefore, TensorFlow must be installed on your host 

machine. 

The following sections explain how to run each of the tests, except for “TfResNext-Armnn” and 

“TfCifar10-Armnn”, for which the publicly available pre-trained models were not found. 

8.1.2.1. TfInceptionV3-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, generate the graph definition for the Inception model: 

# model preparation  

$: mkdir checkpoints  

http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt
https://gist.githubusercontent.com/ksimonyan/3785162f95cd2d5fee77/raw/f02f8769e64494bcd3d7e97d5d747ac275825721/VGG_ILSVRC_19_layers_deploy.prototxt
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# clone the models repository 

$: git clone https://github.com/tensorflow/models.git  

$: cd models/research/slim/ 

# export the inference graph 

$: python export_inference_graph.py --model_name=inception_v3 --

output_file=../../../checkpoints/inception_v3_inf_graph.pb  

2. From your host machine, download the pre-trained model and use the TensorFlow tools to 

prepare it for inference. Note that <path_to_tensorflow_repo> refers to the path where you 

cloned or downloaded the TensorFlow repo. 

$: cd ../../../checkpoints  

# download and extract the checkpoint 

$: wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz -qO- | tar 

-xvz 

# freeze the model 

$: python <path_to_tensorflow_repo>/tensorflow/python/tools/freeze_graph.py --

input_graph=inception_v3_inf_graph.pb --input_checkpoint=inception_v3.ckpt --

input_binary=true --output_graph=inception_v3_2016_08_28_frozen.pb --

output_node_names=InceptionV3/Predictions/Reshape_1 

3. Copy the inception_v3_2016_08_28_frozen.pb file to the models folder on the device. 

4. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

5. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 

6. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

7. Run the test: 

$: cd ArmnnTests 

$: TfInceptionV3-Armnn --data-dir=data --model-dir=models 

8.1.2.2. TfMnist-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. Download the model file from: 

raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-

mnist/model/simple_mnist_tf.prototxt 

2. Copy the simple_mnist_tf.prototxt file to the models folder on the device. 

3. Download these two archives and unpack them: 

yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 

yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 

4. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the 

device. 

5. Run the test: 

$: cd ArmnnTests 

$: TfMnist-Armnn --data-dir=data --model-dir=models 

https://github.com/tensorflow/models.git
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
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8.1.2.3. TfMobileNet-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 

download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz 

2. Copy the mobilenet_v1_1.0_224_frozen.pb file to the models folder on the device. 

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: TfMobileNet-Armnn --data-dir=data --model-dir=models 

8.1.3. TensorFlow Lite tests 

The Arm NN 19.02 SDK provides the following test for the TensorFlow Lite models: 

/usr/bin/TfLiteInceptionV3Quantized-Armnn 

/usr/bin/TfLiteInceptionV4Quantized-Armnn 

/usr/bin/TfLiteMnasNet-Armnn 

/usr/bin/TfLiteMobileNetSsd-Armnn 

/usr/bin/TfLiteMobilenetQuantized-Armnn 

/usr/bin/TfLiteMobilenetV2Quantized-Armnn 

/usr/bin/TfLiteResNetV2-Armnn 

/usr/bin/TfLiteVGG16Quantized-Armnn  

The following sections explain how to run some of the tests. Some of the tests are excluded, because it 

was not possible to find a publicly available model or they need more resources than available on the 

i.MX 8 embedded application processors. 

8.1.3.1. TfLiteInceptionV3Quantized-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 

download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz 

2. Copy the inception_v3_quant.tflite file to the models folder on the device. 

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 

 

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
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5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: TfLiteInceptionV3Quantized-Armnn --data-dir=data --model-dir=models 

8.1.3.2. TfLiteMnasNet-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 

download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz 

2. Copy the mnasnet_1.3_224/mnasnet_1.3_224.tflite file to the models folder on the device. 

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: TfLiteMnasNet-Armnn --data-dir=data --model-dir=models 

8.1.3.3. TfLiteMobilenetQuantized-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download the model file: 

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quan

t.tgz  

2. Copy the mobilenet_v1_1.0_224_quant.tflite file to the models folder on the device. 

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: TfLiteMobilenetQuantized-Armnn --data-dir=data --model-dir=models 

http://download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
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8.1.3.4. TfLiteMobilenetV2Quantized-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download the model file: 

download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz 

2. Copy the mobilenet_v2_1.0_224_quant.tflite file to the models folder on the device. 

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: TfLiteMobilenetV2Quantized-Armnn --data-dir=data --model-dir=models 

8.1.4. ONNX tests 

The Arm NN provides the following set of tests for ONNX models: 

/usr/bin/OnnxMnist-Armnn 

/usr/bin/OnnxMobileNet-Armnn 

The following sections explain how to run each of the tests. 

8.1.4.1. OnnxMnist-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 

onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz 

2. Rename the model.onnx file to mnist_onnx.onnx and copy it to the models folder on the device. 

3. Download the following two archives and unpack them (after unpacking, rename the files to use 

dots instead of hyphens: t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte, respectively): 

yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz 

yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz 

4. Copy the t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte files to the data folder on the 

device. 

5. Run the test: 

$: cd ArmnnTests 

$: OnnxMnist-Armnn --data-dir=data --model-dir=models 

http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
https://onnxzoo.blob.core.windows.net/models/opset_8/mnist/mnist.tar.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
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8.1.4.2. OnnxMobileNet-Armnn 

To run this test using the folder structure described in the introductory part, perform these steps: 

1. From your host machine, download and unpack the model file: 

s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz 

2. Copy the unpacked mobilenetv2-1.0.onnx file to the models folder on the device. 

3. Find a *.jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the 

device. 

4. Find a *.jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the 

device. 

5. Find a *.jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the 

device. 

6. Run the test: 

$: cd ArmnnTests 

$: OnnxMobileNet-Armnn --data-dir=data --model-dir=models -i 3 

8.2. Using Arm NN in a custom C/C++ application 

You can create your own C/C++ applications for the i.MX 8 family of devices using Arm NN 

capabilities. This requires writing the code using the Arm NN API, setting up the build dependencies, 

building the code, and deploying your application. Below is a detailed description for each of these 

steps. Note that the scenario is cross-compiling a C/C++ application on a Linux OS machine for an 

i.MX 8 family device board. 

1. Write the code. 

A good starting point to understand how to use Arm NN API in your own application is the 

armnn-mnist example provided by Arm. It includes two applications; one shows how to load and 

run inference for a MNIST TensorFlow model, and the second one shows how to load and run 

inference for a MNSIT Caffe model. See the Arm tutorial Deploying a TensorFlow MNIST 

model on Arm NN. 

2. Set up the build dependencies. 

From a software developer’s perspective, Arm NN is a library. Therefore, create and build an 

application which uses the Arm NN features, set of Arm NN headers, and set of Arm NN 

libraries for the target device. The Arm NN headers and libraries are all available within the 

SDK. Build the SDK when building the Yocto image and install it on your local machine, as 

described in Section 3.2, “Building NXP eIQ software support using Yocto Project tools”. When 

this is done, find: 

— Arm NN headers in: 

<Yocto_SDK_install_folder>/sysroots/aarch64-poky-linux/usr/include 

— Arm NN libraries in: 

<Yocto_SDK_install_folder>/sysroots/aarch64-poky-linux/usr/lib 

https://s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.tar.gz
https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/
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3. Build the code. 

To build the “armnn-mnist” example provided by Arm, use the Makefile included in the project 

with a few minor changes: 

— Remove the definition of “ARMNN_INC” and all its uses. The Arm NN headers are 

already available in the default include directories. 

— Remove the definition of “ARMNN_LIB” and all its uses. The Arm NN libraries are 

already available in the default linker search path. 

— Replace “g++” by “${CXX}”. 

Build the example: 

— Source the SDK environment: 

$: source <Yocto_SDK_install_folder>/environment-setup-aarch64-poky-linux 

— Run make: 

$: make 

4. Deploy the applications. 

At this point, you have two binaries ready to be deployed on the i.MX 8 family device board. All you 

need to take care of are the runtime dependencies. Regarding the input data, these dependencies are 

described at the “armnn-mnist” example page. The suggested image described in this document requires 

Arm NN library dependencies already available on the board and you can run your Arm NN application 

on the i.MX 8 family device board. 

9. ONNX Runtime getting started guide 

ONNX Runtime is an open-source inference engine framework developed by Microsoft, supporting the 

ONNX model format. ONNX Runtime runs on the CPU with NEON and has multi-core support. ONNX 

Runtime does not currently support the i.MX 8 GPUs due to the lack of OpenCL support. For more 

details about ONNX Runtime, see the official ONNX Runtime project webpage.  

To build Yocto with ONNX Runtime, follow the steps described in Section 3, “Yocto installation 

guide”. Make sure to perform the additional modifications needed for ONNX Runtime, as described in 

Section 3.2.4, “Yocto configuration file modifying” (see the “Add packages” part). 

9.1. Running ONNX Runtime test 

ONNX Runtime provides a tool that runs a collection of standard tests provided in the ONNX model 

Zoo. The tool named “onnx_test_runner” is installed in the /usr/bin folder. 

The ONNX tests are available at github.com/onnx/models and consist of various models in the ONNX 

format with associated input and expected output data. 

Here is an example with the steps required to run the “squeezenet” test: 

1. Download and unpack the latest release of the “squeezenet” test archive: 

github.com/onnx/models/tree/master/squeezenet 

s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz 

 

https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://github.com/ARM-software/ML-examples/tree/master/armnn-mnist
https://github.com/onnx/models
https://github.com/onnx/models/tree/master/squeezenet
https://s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz
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2. Copy the squeezenet folder containing the model and test data on the device; for example, to the 

/home/root folder. 

3. Run the “onnx_test_runner” tool, providing the squeezenet folder path as the command-line 

parameter: 

$: ls /home/root/squeezenet/ 

model.onnx        test_data_set_11  test_data_set_5  test_data_set_9 

test_data_set_0   test_data_set_2   test_data_set_6 

test_data_set_1   test_data_set_3   test_data_set_7 

test_data_set_10  test_data_set_4   test_data_set_8 

$: onnx_test_runner /home/root/squeezenet/ 

result: 

        Models: 1 

        Total test cases: 12 

                Succeeded: 12 

                Not implemented: 0 

                Failed: 0 

        Stats by Operator type: 

                Not implemented(0): 

                Failed: 

Failed Test Cases: 

$:  
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11. Revision history 

Table summarizes the changes done to this document since the initial release. 

Table 1. Revision history 

Revision number Date Substantive changes 

0 05/2019 Initial release. 

1 06/2019 
Updated Section 7.2, “Running image 

classification example”. 

2 06/2019 Minor formatting changes. 
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