1.MX 8 GStreamer User Guide

© 2019-2020 NXP Semiconductors, Inc. All rights reserved.

Version 2.0, September, 2020

Table of Contents

1. Introduction

1.1. Release History
. GStreamer-1.0 Plugin Reference
2.1. Video Decoder Plugins
2.2.Video Encoder Plugins
2.3. Video Sink Plugins
2.4. Demux Plugins
2.5. Mux Plugins
2.6. 1.MX Proprietary Plugins
2.7. Audio Plugins
2.8. Image Plugins
2.9. Network Protocol Plugins
2.10. Payload/Depayload Plugins
3. Decode Examples
3.1. i.MX 8M

3.1.1. H.264/H.265/VP8 Decode (HW Accelerated Decode)

3.2.1.MX 8X/8QM
3.2.1. H.264 Decode (HW Accelerated Decode)
3.2.2. H.265 Decode (HW Accelerated Decode)
3.2.3. MPEG-4 Decode (HW Accelerated Decode)
3.2.4. MPEG-2 Decode (HW Accelerated Decode)
3.2.5. VP6 Decode (HW Accelerated Decode)
3.2.6. VP8 Decode (HW Accelerated Decode)

4. Encode Examples

4.1.1.MX 8M
4.1.1. H.264 Encode (HW Accelerated Encode)
4.1.2. VP8 Encode (HW Accelerated Encode)
4.2.1.MX 8X/8QM
4.2.1. H.264 Encode (HW Accelerated Decode)
4.2.2. Additional control of v412

5. Mux/demux Examples

5.1. Mux Plugins
5.1.1. qtmux
5.1.2. matroskamux
5.1.3. mp4mux
5.1.4. flvmux
5.1.5. avimux

5.2. Demux Plugins
5.2.1. aiurdemux
5.2.2. qtdemux
5.2.3. matroskademux
5.2.4. flvdemux
5.2.5. avidemux

. Camera Examples

6.1. Camera Capture

0 00 0 00 0 00 0 N 0 N O O O O OO OO Uk kW W LWwNNDNDN R

e e e T T S e S e e S e e
N N B R R R R, R, O 0O O O O O o

6.2. Changing the Camera Resolution and Framerate
6.3. Using Multiple Cameras
7. Audio Examples
7.1. Audio Playback Example
7.2. Audio Decode Examples
7.2.1. Play an MP3 format file:
7.2.2. Play an Ogg Vorbis format file:
7.3. Audio Format Conversion
7.3.1. Convert MP3 to the Ogg Vorbis format:
7.3.2. Convert WAV to the MP3 format:
7.4. Audio Record
8. Image Examples

8.1. Image Output

8.1.1. To display a PNG image file, use the following pipeline:
8.1.2. To display a JPEG image file, use the following pipeline:

8.2. Image Record
8.2.1. Camera Raw to JPG
8.2.2. Camera Raw to PNG
8.2.3. Camera Raw to JPEG
8.3. JPEG VPU support
9. Transcode Examples
9.1. Video Transcoding
10. Video Streaming
10.1. Video file Streaming
10.1.1. Video UDP Streaming
10.1.2. Video Multi UDP Streaming
10.1.3. Video TCP Streaming
10.1.4. Video RTSP Streaming
10.1.5. Video Streaming to PC/VLC
10.2. Camera Streaming
10.2.1. Camera UDP Streaming
10.2.2. Camera TCP Streaming
10.2.3. Camera RTSP Streaming
10.3. Audio Streaming
10.3.1. Audio UDP Streaming
10.3.2. Audio Streaming to PC/VLC
10.4. Video and Audio Streaming
10.4.1. Video and Audio Streaming to PC/VLC
11. Multi-Display Examples
11.1. iMX 8M Quad EVK
11.1.1. Waylandsink + Kmssink
11.1.2. Kmsink Framebuffer + DRM
11.2. iMX 8QM and i.MX 8QXP
12. Video Composition
12.1. iMX 8M
12.1.1. Video Composition Example
12.1.2. Video Decode Composition Example

13
13
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
17
17
18
18
18
19
19
19
20
20
20
20
21
21
21
21
22
22
23
23
23
23
23
24
24
24
24

12.1.3. Two Camera Composition Example
12.2. i.MX 8QXP/QM
12.2.1. Video Composition Example
12.2.2. Nine Video Decode Composition Example
12.2.3. Eight Camera Composition Example
13. Video Scaling and Rotation
13.1.1MX 8
13.1.1. Video Scaling
13.1.2. Video Rotation
14. Zero-copy Pipelines
14.1. Pushing buffers
14.1.1. Dmabuf
14.1.2. MMAP
14.2. CPU performance
15. Debug Tools
15.1. GStreamer standard debug
15.2. Graphviz

24
25
25
25
25
27
27
27
27
28
28
28
28
28
29
29
29

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 1. Introduction

This document is a user guide for the GStreamer version 1.0 based accelerated solution included in all the i.MX 8
family SoCs supported by NXP BSP 1.5.4.24 2.1.1.

Some instructions assume a host machine running a Linux distribution, such as Ubuntu, connected to an i. MX 8
device. These commands were tested using Ubuntu 18.04 LTD, and while Ubuntu is not required on the host
machine, other distributions have not been tested.

These instructions are targeted for use with the following hardware:

* 1.MX 8M Quad EVK

¢ 1.MX 8M Mini EVK

* 1.MX 8M Nano EVK

e 1.MX 8QuadXPlus MEK BO
* 1.MX 8QuadMax MEK BO

1.1. Release History
Table 1. Release history
Version Release Data Description
v1.0 Mar 2020 Initial release.
v2.0 Set 2020 Minor arrangements with some specific plugins,

rearrange the chapters, and add the following content:
- Mux/Demux Examples

- Audio Examples

- Image Examples

- Transcode Examples

- Streaming Examples

- Multi Display Examples

- Scaling and Rotation Examples

- Zero-copy Examples

- Debug Examples

Chapter 1. Introduction © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 1

https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 2. GStreamer-1.0 Plugin Reference

The NXP BSP 15.4.24_2.1.1 supports a huge list of GStreamer plugins. This section describes all the plugins used on
this user guide, but it does not intent to keep the user limited by them, so feel free and encouraged to experience
other options.

To check all the plugins available, enter with the following command at the device:

$ gst-inspect-1.0

2.1. Video Decoder Plugins

Video decoders are usually used to link a video source format to a raw format, which can be interpreted by the
destination sink, such as a display.

Table 2. Video Decoder Plugins

Video Decoder Package Description

decodebin gst-plugins-base Autoplug and decode to raw media
v4l2mpegddec gst-plugins-good Decodes MPEG4 streams via V412 API
v4l2mpeg2dec gst-plugins-good Decodes MPEG2 streams via V4L2 API
v4l2h264dec gst-plugins-good Decodes H.264 streams via V4L2 API
v4l2h265dec gst-plugins-good Decodes H.265 streams via V4L2 API
v4l2vpédec gst-plugins-good Decodes VP6 streams via V4L2 API
v4l2vp8dec gst-plugins-good Decodes VP8 streams via V4L2 API

2.2. Video Encoder Plugins

Working as an opposition from the decoders, video encoders can take raw data and turns into an encoded video
format, such as H.264 format.

Table 3. Video Encoder Plugins

Video Encoder

encodebin

v4l2h264enc

Package
gst-plugins-base

gst-plugins-good

2.3. Video Sink Plugins

Video sink plugins are used to show the data consumed results through the display output.

Table 4. Video Sink Plugins

Description
Convenience encoding/muxing element

Encode H.264 video streams via V4L2 API

Video Sink Package Description

autovideosink gst-plugins-good Wrapper video sink for automatically detected video
sink

kmssink gst-plugins-bad Video sink using the Linux Kernel mode setting API*

ximagesink gst-plugins-base A standard X based videosink**

glimagesink gst-plugins-base Infrastructure to process GL textures

Chapter 2. GStreamer-1.0 Plugin Reference © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 2

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Video Sink Package Description
waylandsink gst-plugins-bad Output to wayland surface
fhdevsink gst-plugins-bad Output a Linux framebuffer videosink
fpsdisplaysink gst-plugins-bad Video sink with current and average framerate
0 *In order to use the kmssink and fbdevsink plugins, stop the weston interface before: § systemctl
stop weston

O **In order to use the ximagesink plugins, start the X server before: § export DISPLAY=:0

2.4. Demux Plugins

Demuxers plugins are responsible to convert different video/audio formats into raw unparsed data. The most
common are described in the table below.

Table 5. Demux Plugins

Video Demux Package Description

qtdemux gst-plugins-good Demux a .mov/.mp4 file to raw data
matroskademux gst-plugins-good Demux a .mkv file to raw data
flvdemux gst-plugins-good Demux a .flv file to raw data
avidemux gst-plugins-good Demux a .avi file to raw data
aiurdemux imx-gst1.0-plugin Unified parser for raw data

2.5. Mux Plugins

Muxers plugins are responsible to convert raw unparsed data into a specific video/audio data. The most common
are described in the table below.

Table 6. Mux Plugins

Video Mux Package Description

qtmux gst-plugins-good Mux a raw data to a .mov file
matroskemux gst-plugins-good Mux a raw data to a .mkv file
flvmux gst-plugins-good Mux a raw data to a .flv file
avimux gst-plugins-good Mux a raw data to a .avi file
mp4mux gst-plugins-good Mux a raw data to a .mp4 file

2.6. 1.MX Proprietary Plugins

The i.MX GStreamer support has the following proprietary plugins, which can help the user to reach some
superior results by using it.

Table 7. i.MX Proprietary Plugins

i.MX Proprietary Plugin Package Description
vpudec imx-gst1.0-plugin Decodes compressed video to raw data
vpuenc_h264 imx-gst1.0-plugin Encode raw data to compressed video

Chapter 2. GStreamer-1.0 Plugin Reference © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 3

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

i.MX Proprietary Plugin Package

vpuenc_vp8 imx-gst1.0-plugin
imxcompositor_g2d imx-gst1.0-plugin
imxvideoconvert_g2d imx-gst1.0-plugin

2.7. Audio Plugins

Description
Encode raw data to compressed video

Composite multiple video streams with HW
acceleration

i.MX Video Convert Plugins with HW acceleration

Audio plugins are responsible to arrange the data from audio raw formats or specific audio data formats, such as

WAV.

Table 8. Audio Plugins

Audio Plugin Package

mpgl23audiodec gst-plugins-good
vorbisdec gst-plugins-base
vorbisenc gst-plugins-base
alsasink gst-plugins-base
pulsesink gst-plugins-good

2.8. Image Plugins

Description

MP3 decoding plugin based on the mpg123 library
Decodes raw vorbis streams to float audio
Encodes audio in Vorbis format

Output to a sound card via ALSA

Plays audio to a PulseAudio server

Image plugins are responsible to arrange the data from image raw formats or specific data formats, such as JPEG.

Table 9. Image Plugins

Image Plugins Package

jpegdec gst-plugins-good
v4l2jpegdec gst-plugins-good
pngdec gst-plugins-good
jpegenc gst-plugins-good
pngenc gst-plugins-good
imagefreeze gst-plugins-good

2.9. Network Protocol Plugins

Description

Decode images from JPEG format
Decodes JPEG streams via V4L2 API
Decode a png video frame to a raw image
Encode images in JPEG format

Decode a png video frame to a raw image

Generates a still frame stream from an image

Network protocol plugins are responsible for establishing connections between devices over the network.

Table 10. Network Protocol Plugins

Network Plugins Package

udpsink gst-plugins-good
multiudpsink gst-plugins-good
udpsrc gst-plugins-good
tcpserversink gst-plugins-base
tepclientsrc gst-plugins-base

Description
Send data over the network via UDP

Send data over the network via UDP to one or multiple

recipients
Receive data over the network via UDP
Send data as a server over the network via TCP

Receive data as a client over the network via TCP

Chapter 2. GStreamer-1.0 Plugin Reference © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 4

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Network Plugins Package Description

rtspsrc gst-plugins-good Receive data over the network via RTSP

2.10. Payload/Depayload Plugins

Payload plugins are responsible for packing the data over the network. In order to received and unpacking it,
depayload plugins are used in combination with these plugins.

Table 11. Payload/Depayload Plugins

Pay/Depayload Package Description

gdppay gst-plugins-bad Payloads GStreamer Data Protocol buffers
gdpdepay gst-plugins-bad Depayloads GStreamer Data Protocol buffers
rtpvrawpay gst-plugins-good Payload raw video as RTP packets

rtpvrawdepay gst-plugins-good Extracts raw video from RTP packets
rtph264pay gst-plugins-good Payload-encode H264 video into RTP packets
rtph264depay gst-plugins-good Extracts H264 video from RTP packets
rtpmpapay gst-plugins-good Payload MPEG audio as RTP packets
rtpmpadepay gst-plugins-good Extracts MPEG audio from RTP packets
rtpjitterbuffer gst-plugins-good A buffer that deals with network jitter and other

transmission faults

Chapter 2. GStreamer-1.0 Plugin Reference © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 5

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 3. Decode Examples

This section shows how to perform video decode with some GStreamer pipelines examples and its supported
devices.

3.1.1.MX 8M

The i.MX 8M family adopted the Hantro VPU IP. This VPU provides the following accelerated video decoder
solutions.

3.1.1. H.264/H.265/VP8 Decode (HW Accelerated Decode)

0 The vpudec provides support for more than one video format. In order to use it correctly, be sure
to set the parser according:

e H.264: h264parse;
e H.265: h265parse;

* VP8: does not require parse plugin.

3.2. i.MX 8X/8QM

The i.MX 8QXP and i.MX 8QM SoCs are equipped with the Amphion VPU IP. This VPU provides the following
accelerated video decoder solutions.

3.2.1. H.264 Decode (HW Accelerated Decode)

o The Amphion VPU IP uses a specific tiling format, so it requires the imxvideoconvert_g2d plugin
usage.

3.2.2. H.265 Decode (HW Accelerated Decode)

3.2.3. MPEG-4 Decode (HW Accelerated Decode)

Chapter 3. Decode Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 6

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

3.2.4. MPEG-2 Decode (HW Accelerated Decode)

3.2.5. VP6 Decode (HW Accelerated Decode)

3.2.6. VP8 Decode (HW Accelerated Decode)

Chapter 3. Decode Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 7

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 4. Encode Examples

This section shows how to perform video encode with some GStreamer pipelines examples and its supported
devices.

4.1.1.MX 8M

The i.MX 8M family adopted the Hantro VPU IP. This VPU provides the following accelerated video encode
solutions.

4.1.1. H.264 Encode (HW Accelerated Encode)

0 The i.MX 8M Quad EVK and i.MX 8M Nano EVK do not have HW Accelerated encode support.

4.1.2. VP8 Encode (HW Accelerated Encode)

4.2.i.MX 8X/8QM

The i.MX 8QXP and i.MX 8QM SoCs are equipped with the Amphion VPU IP. This VPU provides the following
accelerated video encoder solutions.

4.2.1. H.264 Encode (HW Accelerated Decode)

4.2.2. Additional control of v412

This should output something like:

Chapter 4. Encode Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 8

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Then with the provided information, it is possible to configure more encode parameters such as shown below:

And to reduce CPU usage, use the following:

Chapter 4. Encode Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 9

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 5. Mux/demux Examples

This section shows some most commonly used mux and demux plugins and some examples of how to use each
one of them correctly.

5.1. Mux Plugins

5.1.1. qtmux

This type of muxer converts video and/or audio into QuickTime (.mov) files.

The pipeline above records a camera video to a .mov file.

5.1.2. matroskamux

This type of muxer converts video and/or audio into a Matroska (.MKV) file.

The pipeline above muxes an MP3 file into an MKV file.

5.1.3. mp4mux

This type of muxer converts video and/or audio into an IS0 MPEG-4 (.mp4) file.

The pipeline above describes the process of recording a video from a v412 device, encoding into an H.264 format
and muxes into a .mp4 file.

5.1.4. flvmux

This type of muxer converts video and/or audio into a flash video (.FLV) file.

The pipeline above decodes a video and audio file into a .FLV file.

5.1.5. avimux

This type of muxer converts video and/or audio into an .AVI file.

Chapter 5. Mux/demux Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 10

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

5.2. Demux Plugins

5.2.1. aiurdemux

This type of demuxer is a proprietary plugin from NXP that automatically detects the file encoding and turns into
a raw unparsed file.

5.2.2. qtdemux

This type of demuxer converts a .mov file into a raw unparsed file.

5.2.3. matroskademux

This type of demuxer converts a .mkv file into a raw unparsed file.

5.2.4. flvdemux

This type of demuxer converts a . flv file into a raw unparsed file.

5.2.5. avidemux

This type of demuxer converts a .avi file into a raw unparsed file.

Chapter 5. Mux/demux Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 11

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 6. Camera Examples

This section shows how to perform camera captures with some GStreamer pipelines examples and its supported
devices. There are also some differences regarding each board model, which will be described at this chapter.

6.1. Camera Capture

First, locate the video outputs with the following command line:

This should output something like:

0 The described command line can output various important information such as camera
resolution, framerate, and supported formats.

You can use the following command line to locate the video outputs as well:

This should output something like:

Chapter 6. Camera Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 12

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Then, to automatically output the CSI port into the screen, type the following pipeline:

6.2. Changing the Camera Resolution and Framerate

In order to change configurations such as resolution and framerate, enter with the following properties:

Which WIDTH, FRAMERATE, and HEIGHT are the parameters that you should change.

As an example, in order to set the resolution to HD, run the following pipeline:

And to change the frame rate to 60 fps, run the following pipeline:

6.3. Using Multiple Cameras

The i.MX 8QXP MEK C0 and i.MX 8QM MEK supports more than one camera.

In order to display all the cameras at the same monitor output, use the following GStreamer pipeline:

Chapter 6. Camera Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 13

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

This pipeline enables the user to set up more than one camera to the same screen using the imxcompositor_g2d
plugin. This is the unique solution available to create an interface over Weston/Wayland interface, i.e., in iMX 8
devices we need to use GPU to handle the screen position.

Chapter 6. Camera Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 14

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 7. Audio Examples

This section describes some basic pipelines regarding audio output using GStreamer.

7.1. Audio Playback Example
Audio playback consists of the process of playing a determining audio file based on its determined file format.

In the examples shown below, the use of audiotestsrc plugin outputs standard audio to the audio jack:

o if needed to change the device and confirm the number of each output, run the command $
pactl list sinks

7.2. Audio Decode Examples

The following described pipelines decodes a audio file located in the board using the filesrc plugin:

7.2.1. Play an MP3 format file:

7.2.2. Play an Ogg Vorbis format file:

7.3. Audio Format Conversion

Audio conversion is the process to change the current format of the audio file to another desired format, for
example changing .wav to .aac.

In the pipelines described below, some cases are used as an example.

7.3.1. Convert MP3 to the Ogg Vorbis format:

7.3.2. Convert WAV to the MP3 format:

7.4. Audio Record

Besides audio playback and conversion of the file format, it’s also possible to record audio provided by some
external source such as a microphone attached to the jack input.

The pipeline described below shows the process to obtain this type of audio file and save it as an Ogg Vorbis file:

Chapter 7. Audio Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 15

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 8. Image Examples

This section describes some basic pipelines regarding image output using GStreamer.

8.1. Image Output

Image output consists on the process of showing on the desired screen or any other type of output source, the
desired image file. The pipeline described below executes this process:

8.1.1. To display a PNG image file, use the following pipeline:

8.1.2. To display a JPEG image file, use the following pipeline:

8.2. Image Record

For image record, it is possible to use an image provider input, such as a camera, in order to execute the pipeline
and obtain pictures from the camera. The pipelines described below executes this process:

8.2.1. Camera Raw to JPG

8.2.2. Camera Raw to PNG

8.2.3. Camera Raw to JPEG

8.3. JPEG VPU support

The i.MX 8QM and i.MX 8QXP support JPEG VPU encode thought v412jpegenc plugin. Check the pipeline below for
an example:

Chapter 8. Image Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 16

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 9. Transcode Examples

This section shows how to perform some transcoding pipelines desired to general i.MX8 boards and how to
properly run those pipelines in each one of them.

9.1. Video Transcoding

The example below transcodes MJPEG file obtained from the camera into a MKV file:

In some cases, the pipeline uses a lot of the processing power from the board, in this case, it is desirable to use the
zero-copy method with the pipeline, such as shown below:

For more information on this type of process, check Zero-copy Pipelines chapter.

Chapter 9. Transcode Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 17

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 10. Video Streaming

This section shows how to perform video, camera, and audio streaming with some GStreamer pipelines examples
and its supported devices.

10.1. Video file Streaming

10.1.1. Video UDP Streaming

e SERVER

In order to perform UDP streaming, the SERVER pipeline must be the verbose enabled (-v). The output value should
be something like the following:

By examining the output values, search for caps = "application/x-rtp" and copy its value.
e CLIENT

The caps value has to be used at the CLIENT pipeline, so export it as CAPS value:

Then run the udpsrc pipeline:

Chapter 10. Video Streaming © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 18

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23
10.1.2. Video Multi UDP Streaming

* SERVER

e CLIENT_1

e CLIENT_2

0 For more details at the CAPS value, check the Video UDP Streaming section.

10.1.3. Video TCP Streaming

e SERVER

e CLIENT

10.1.4. Video RTSP Streaming

O In order to enable RTSP protocol support on i.MX 8 devices, please check the i.MX 8 - RTSP
Streaming Support documentation.

* SERVER

e CLIENT

Chapter 10. Video Streaming © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 19

https://community.nxp.com/docs/DOC-347206
https://community.nxp.com/docs/DOC-347206

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

10.1.5. Video Streaming to PC/VLC

e SERVER

In the Linux PC, create a text file named test_video.sdp and copy the following content to it:

e CLIENT

O For more details at the sprop-parameter-sets content, check the CAPS value at the Video UDP
Streaming section.

Then start the server and open the file with VLC application.

10.2. Camera Streaming

10.2.1. Camera UDP Streaming

* SERVER

e CLIENT

0 For more details at the CAPS value, check the Video UDP Streaming section.

10.2.2. Camera TCP Streaming

* SERVER

Chapter 10. Video Streaming © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 20

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

e CLIENT

10.2.3. Camera RTSP Streaming

0 In order to enable RTSP protocol support on i.MX 8 devices, please check the i.MX 8 - RTSP
Streaming Support documentation.

* SERVER

e CLIENT

10.3. Audio Streaming

10.3.1. Audio UDP Streaming

* SERVER

e CLIENT

0 For more details at the CAPS value, check the Video UDP Streaming section.

10.3.2. Audio Streaming to PC/VLC

e SERVER

Chapter 10. Video Streaming © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 21

https://community.nxp.com/docs/DOC-347206
https://community.nxp.com/docs/DOC-347206

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

In the Linux PC, create a text file named test_audio.sdp and copy the following content to it:

e CLIENT

Then start the server and open the file with VLC application.

10.4. Video and Audio Streaming

10.4.1. Video and Audio Streaming to PC/VLC

* SERVER

In the Linux PC, create a text file named test_audio.sdp and copy the following content to it:

e CLIENT

0 For more details at the sprop-parameter-sets content, check the CAPS value at the Video UDP
Streaming section.

Then start the server and open the file with VLC application.

Chapter 10. Video Streaming © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 22

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 11. Multi-Display Examples

Some 1.MX 8 devices support more than one display output. This section describes how to enable them.

11.1. i.MX 8M Quad EVK

In order to enable dual display support on i.MX 8M Quad EVK, change the .dtb to fsl-imx8mg-evk-dual-
display.dtb. The native HDMI will be handled by the DCSS controller and reaches up to 4k@60fps, while the MIPI-
DSI will be controlled by the LCDIF and reaches up to 720@60fps.

11.1.1. Waylandsink + Kmssink

11.1.2. Kmsink Framebuffer + DRM

o In order to use this pipeline, stop the weston interface before: § systemctl stop weston

11.2. i.MX 8QM and i.MX 8QXP

The i.MX 8QM MEK can handle up to four monitors. However, just like the i.MX 8QXP, it requires the mouse
navegation on these displays in order to enable it.

So in order to support more than one display at these devices, move the mouse to it, click at the screen, and then
run any GStreamer pipeline.

Repeat this process to each monitor.

Chapter 11. Multi-Display Examples © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 23

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 12. Video Composition

The composition consists of a method of outputting multiple video displays with GStreamer. It is usefulness
reaches a lot of applications and it is very common video output method for many necessities.

For i.MX 8 devices, the unique available solution to create a video composition over Weston/Wayland is by using
GPU to handle the screen position. So all the GStreamer pipelines in this section use the imxcompositor_g2d plugin
for it.

12.1. i.MX 8M

12.1.1. Video Composition Example

O This pipeline does not work with the iMX 8M Nano EVK because it does not have the
imxcompositor_g2d plugin support.

12.1.2. Video Decode Composition Example

This example shows how to display nine videos from a unique H.264 decode process:

0 This pipeline does not work with the iMX 8M Nano EVK because it does not have the
imxcompositor_g2d plugin support.

12.1.3. Two Camera Composition Example

At this example, it is using a MINISAS-T0-CSI daughter card and a USB web camera:

Chapter 12. Video Composition © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 24

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

0 This pipeline does not work with the iMX 8M Nano EVK because it does not have the
imxcompositor_g2d plugin support.

12.2. i.MX 8QXP/QM

12.2.1. Video Composition Example

12.2.2. Nine Video Decode Composition Example

Different from i.MX 8M example, this example decodes nine different H.264 videos at the same time:

12.2.3. Eight Camera Composition Example

This following example uses two MX8XMIPI4CAM2 daughter cards and 8 MCIMXCAMERATMP cameras, being able to
display 8 different images at the same output.

Chapter 12. Video Composition © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 25

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

0 The i.MX 8QXP only supports one MX8XMIPI4CAM2 daughter card.

Chapter 12. Video Composition © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 26

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 13. Video Scaling and Rotation

This section shows how to perform video scaling and rotation with some GStreamer pipelines examples and its
supported devices.

For i.MX 8 devices, the unique available solution to create an interface over Weston/Wayland is by using GPU to
handle the screen position. So all the GStreamer pipelines in this sections use glimagesink for it.

13.1.i.MX 8

13.1.1. Video Scaling

In order to display different scaling results, uses the glimagesink - render_rectangle property:

For VGA resolution:

For Full HD resolution:

13.1.2. Video Rotation

In order to rotate the video results, uses the glimagesink - rotate-method property:

To rotate 90 degrees:

To rotate 180 degrees:

To rotate 270 degrees:

Chapter 13. Video Scaling and Rotation © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 27

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 14. Zero-copy Pipelines

This section approaches the zero-copy operations using GStreamer pipelines. The zero-copy support is an
operation in which the CPU uses the data produced by one element but without requiring any type of
transformation.

14.1. Pushing buffers

One way of using buffers to operate a zero-copy pipeline is to use property such as io-mode. This process can be
very helpful in order to improve the execution speed of a video processing pipeline. Some of these types can be
seen below:

14.1.1. Dmabuf

The dmabuf uses buffers of a hardware DA in order to perform a zero-copy pipeline, as shown below:

$ gst-launch-1.0 v412src device=/dev/videod num-buffers=300 io-mode=dmabuf ! \
'video/x-raw, format=(string)NV12,width=1920,height=1080, framerate=(fraction)30/1" ! \
queue ! v412h264enc output-io-mode=dmabuf-import ! avimux ! filesink location=test.avi

0 In this pipeline, the RAW format is stored by the io-mode property and then used further on the
H.264 format encode process.

14.1.2. MMAP

The MMAP is a memory allocation process provided by the kernel that can perform the zero-copy procedure. One
usage example is shown below:

$ gst-launch-1.0 v412src io-mode=2 device=/dev/video® do-timestamp=true ! \
'video/x-raw, width=1280, height=720, framerate=30/1, format=UYVY' ! autoconvert ! \
'video/x-raw, width=1280, height=720, framerate=30/1, format=I420' ! autovideosink sync=false

14.2. CPU performance

In the pipelines described above, when comparing the use of CPU with each type of buffer usage, it is possible to
see that the zero-copy adoption reduces the CPU usage, as shown in the table below:

Type of encode Average CPU usage
Direct encode 102%

Encode with Dmabuf 15%

Encode with MMAP 70%

Therefore, you can see in some cases an average of 87% decrease in CPU usage with these pipelines.
For the test described in the table above, the board used was a i.MX 8QuadXPlus MEK B0 and

the CPU usage was measured by the top command, while other boards can show different
results for the pipelines.

Chapter 14. Zero-copy Pipelines © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 28

© 2019-2020 NXP Semiconductor Rev 2.0 2020-09-23

Chapter 15. Debug Tools

This section describes some debug tools functionalities, how to use it, and when to use each one.

15.1. GStreamer standard debug

The most common GStreamer debug tool is the standard one. Use the following command to check all the debug
options available:

The example below shows the buffer movement:

As you may notice, the video performance was affected by the console log return. To avoid it, keep the debug
values at a file:

15.2. Graphviz

One special way to debug the pipeline and its capabilities is over .dot files, which can be used to create a diagram
of the pipeline.

For it, set a directory to save the .dot files:

Then, run the pipeline:

Check the .dot files generated at the /tmp directory and copy the PLAYING_PAUSED one to the host machine.

At the host machine, install graphviz:

Still on the host machine, convert the .dot file to yours preferred image file format, in this case, PNG:

Open the image to check the results:

Chapter 15. Debug Tools © 2019-2020 NXP Semiconductor, Inc. All rights reserved | 29

	i.MX 8 GStreamer User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Release History

	Chapter 2. GStreamer-1.0 Plugin Reference
	2.1. Video Decoder Plugins
	2.2. Video Encoder Plugins
	2.3. Video Sink Plugins
	2.4. Demux Plugins
	2.5. Mux Plugins
	2.6. i.MX Proprietary Plugins
	2.7. Audio Plugins
	2.8. Image Plugins
	2.9. Network Protocol Plugins
	2.10. Payload/Depayload Plugins

	Chapter 3. Decode Examples
	3.1. i.MX 8M
	3.1.1. H.264/H.265/VP8 Decode (HW Accelerated Decode)

	3.2. i.MX 8X/8QM
	3.2.1. H.264 Decode (HW Accelerated Decode)
	3.2.2. H.265 Decode (HW Accelerated Decode)
	3.2.3. MPEG-4 Decode (HW Accelerated Decode)
	3.2.4. MPEG-2 Decode (HW Accelerated Decode)
	3.2.5. VP6 Decode (HW Accelerated Decode)
	3.2.6. VP8 Decode (HW Accelerated Decode)

	Chapter 4. Encode Examples
	4.1. i.MX 8M
	4.1.1. H.264 Encode (HW Accelerated Encode)
	4.1.2. VP8 Encode (HW Accelerated Encode)

	4.2. i.MX 8X/8QM
	4.2.1. H.264 Encode (HW Accelerated Decode)
	4.2.2. Additional control of v4l2

	Chapter 5. Mux/demux Examples
	5.1. Mux Plugins
	5.1.1. qtmux
	5.1.2. matroskamux
	5.1.3. mp4mux
	5.1.4. flvmux
	5.1.5. avimux

	5.2. Demux Plugins
	5.2.1. aiurdemux
	5.2.2. qtdemux
	5.2.3. matroskademux
	5.2.4. flvdemux
	5.2.5. avidemux

	Chapter 6. Camera Examples
	6.1. Camera Capture
	6.2. Changing the Camera Resolution and Framerate
	6.3. Using Multiple Cameras

	Chapter 7. Audio Examples
	7.1. Audio Playback Example
	7.2. Audio Decode Examples
	7.2.1. Play an MP3 format file:
	7.2.2. Play an Ogg Vorbis format file:

	7.3. Audio Format Conversion
	7.3.1. Convert MP3 to the Ogg Vorbis format:
	7.3.2. Convert WAV to the MP3 format:

	7.4. Audio Record

	Chapter 8. Image Examples
	8.1. Image Output
	8.1.1. To display a PNG image file, use the following pipeline:
	8.1.2. To display a JPEG image file, use the following pipeline:

	8.2. Image Record
	8.2.1. Camera Raw to JPG
	8.2.2. Camera Raw to PNG
	8.2.3. Camera Raw to JPEG

	8.3. JPEG VPU support

	Chapter 9. Transcode Examples
	9.1. Video Transcoding

	Chapter 10. Video Streaming
	10.1. Video file Streaming
	10.1.1. Video UDP Streaming
	10.1.2. Video Multi UDP Streaming
	10.1.3. Video TCP Streaming
	10.1.4. Video RTSP Streaming
	10.1.5. Video Streaming to PC/VLC

	10.2. Camera Streaming
	10.2.1. Camera UDP Streaming
	10.2.2. Camera TCP Streaming
	10.2.3. Camera RTSP Streaming

	10.3. Audio Streaming
	10.3.1. Audio UDP Streaming
	10.3.2. Audio Streaming to PC/VLC

	10.4. Video and Audio Streaming
	10.4.1. Video and Audio Streaming to PC/VLC

	Chapter 11. Multi-Display Examples
	11.1. i.MX 8M Quad EVK
	11.1.1. Waylandsink + Kmssink
	11.1.2. Kmsink Framebuffer + DRM

	11.2. i.MX 8QM and i.MX 8QXP

	Chapter 12. Video Composition
	12.1. i.MX 8M
	12.1.1. Video Composition Example
	12.1.2. Video Decode Composition Example
	12.1.3. Two Camera Composition Example

	12.2. i.MX 8QXP/QM
	12.2.1. Video Composition Example
	12.2.2. Nine Video Decode Composition Example
	12.2.3. Eight Camera Composition Example

	Chapter 13. Video Scaling and Rotation
	13.1. i.MX 8
	13.1.1. Video Scaling
	13.1.2. Video Rotation

	Chapter 14. Zero-copy Pipelines
	14.1. Pushing buffers
	14.1.1. Dmabuf
	14.1.2. MMAP

	14.2. CPU performance

	Chapter 15. Debug Tools
	15.1. GStreamer standard debug
	15.2. Graphviz

