

AUTHENTICATION FOR USB TYPE-C

FTF-MHW-N1910

JOE SALVADOR MARKETING DIRECTOR, ANTI-COUNTERFEIT PRODUCTS MAY 19, 2016

PUBLIC USE

AGENDA

- Introduction to NXP Identification and Security
- Authentication for a "Universal" Serial Bus Accessories – Why?
- Authentication Approaches
- Overview of the USB Authentication Specification
- NXP Solutions for USB Authentication

NXP #1 in Security IC Solutions*

#1 PAYMENT CHIP CARDS

CONTACT SECURITY CONTROLLER DUAL-INTERFACE AND CONTACTLESS SECURITY CONTROLLER DEBIT, CREDIT, ATM CARDS

#1 MOBILE TRANSACTION

NFC EMBEDDED SECURE ELEMENTS

#1 TRANSPORT TICKETING /TOLLING

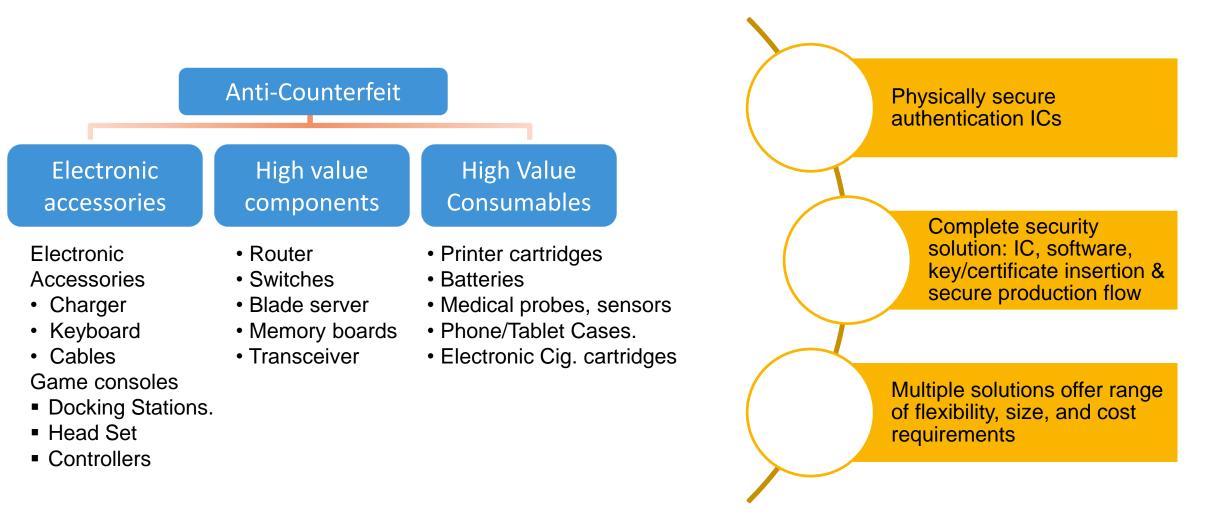
MIFARE SYSTEM SOLUTION CONTACTLESS SECURE MICROCONTROLLER CONTACTLESS SECURE MEMORY ICS

#1 CLOSED LOOP PAYMENT

MIFARE SYSTEM SOLUTION CONTACTLESS SECURE MICRONTROLLER MICROPAYMENTS, GIFT CARDS, LOYALTY

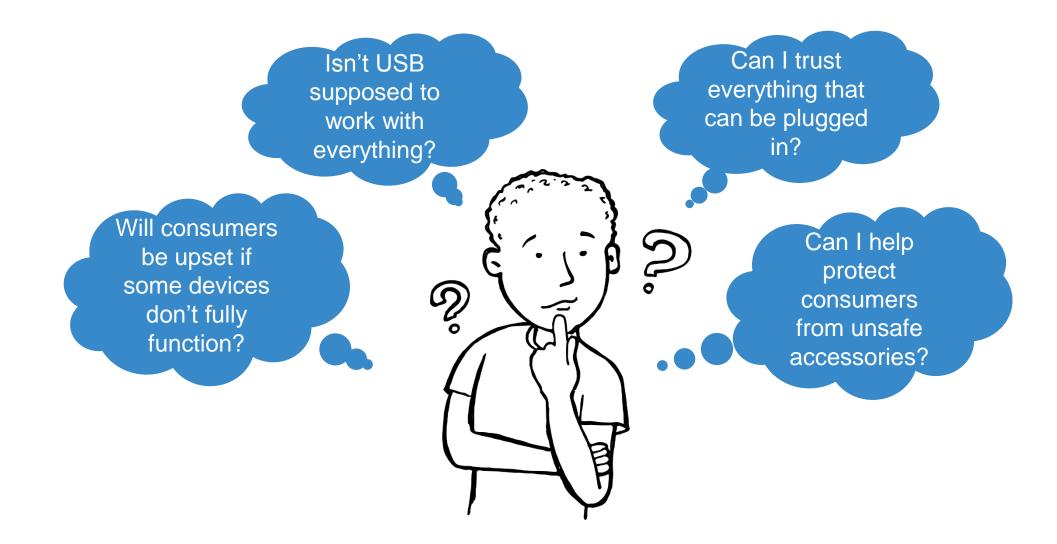
#1 EGOVERMNENT DOCUMENTS

DUAL-INTERFACE AND CONTACTLESS SECURE MICROCONTROLLER NATIONAL ID CARDS, PASSPORTS, VISAS


#1 POINT OF SALES TERMINAL

NFC CONTACT READERS EMVCO COMPLIANT SOLUTIONS HOST PROCESSOR TOUCHSCREEN INTERFACE POWER MANAGEMENT

NP


* Source: IHS 2016

Anti-Counterfeit Protection

Secure Authentication for "Universal" Serial Bus Accessories?

USB Trust Challenges

USB Type-C PD chargers can deliver up to 5 amps at 20 volts

- Is the charger one that came with the system?
- Counterfeit chargers are widespread
- Will it damage my system or even possibly cause a fire?

USB charging ports are everywhere – rental car, taxis, airports, ...

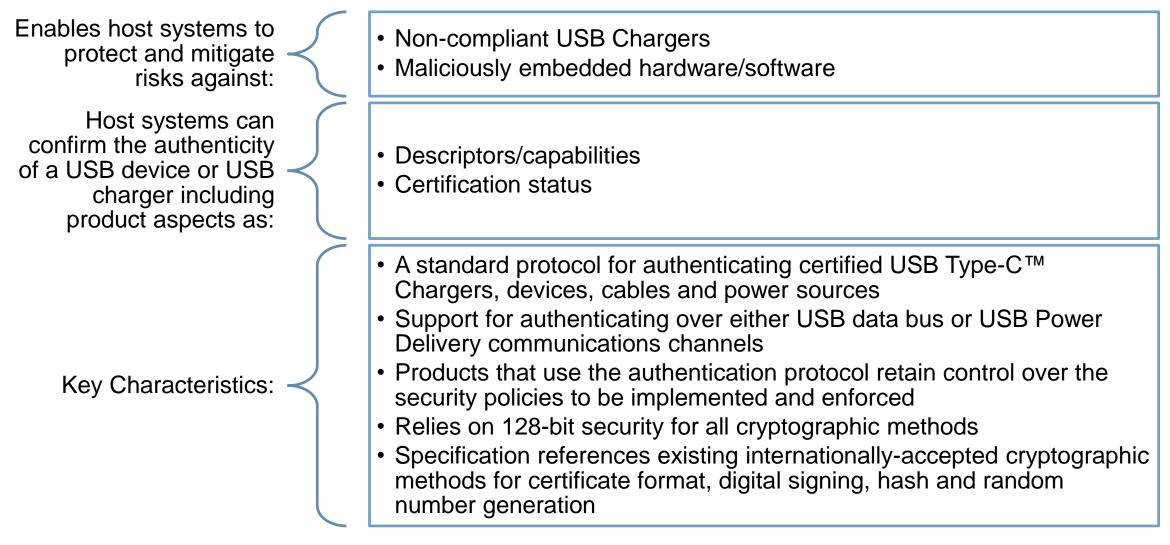
- Is it safe to charge at high power?
- Is it only charging, or doing something else?
- "Bad USB" accessories can present as a network device or keyboard and steal data or worse

Malicious USB devices can even take down other networked systems

 Stuxnet delivered via infected USB storage drives – destroyed a large number of Iranian nuclear centrifuges and was also targeted at their power plant steam turbines "Faulty USB phone charger blamed for death" – Sydney Morning Herald 2014

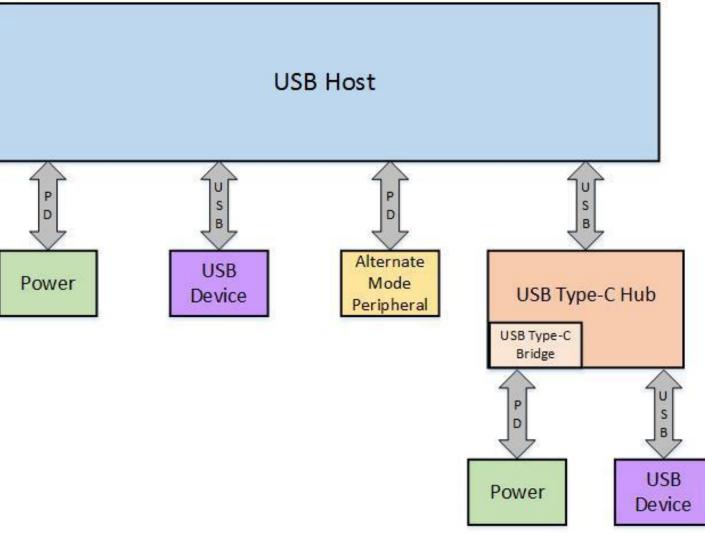
Authentication Options for USB Type-C

USB PD Authentication using Vendor Defined Messaging:


- Advantages:
 - Available immediately, no industry infrastructure required
 - Can be optimized for cost and performance
- Disadvantage: Limited multi-vendor interoperability
- Ok for authenticating branded fast charger or establishing trust with OEM branded peripherals

USB Type-C Authentication Standard:

- Advantage: Support for USB-certified cross-vendor authentication
- Disadvantage: More complex authentication protocol may add unnecessary cost and performance burdens
- Ecosystem support being developed
 - USB as certificate authority
 - Revocation list TBD


USB Authentication Type-C 1.0 Spec Announcement 4/12/2016

USB Type-C Example Topology Supporting Authentication

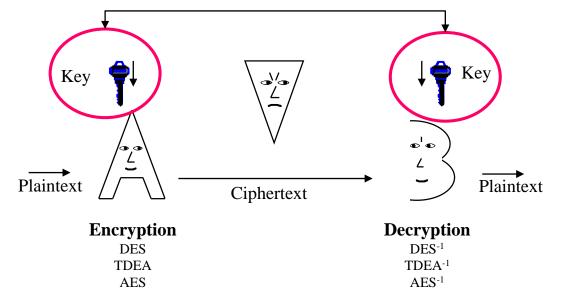
- Supports authentication over data lines and PD
- Supports authentication:
 - Power supply (including cable)
 - -USB device
 - -Alternate mode peripherals
 - Power and devices
 connected through a USB
 Type-C hub

What is Meant by a Security Policy?

What action does system take if an accessory cannot be authenticated?

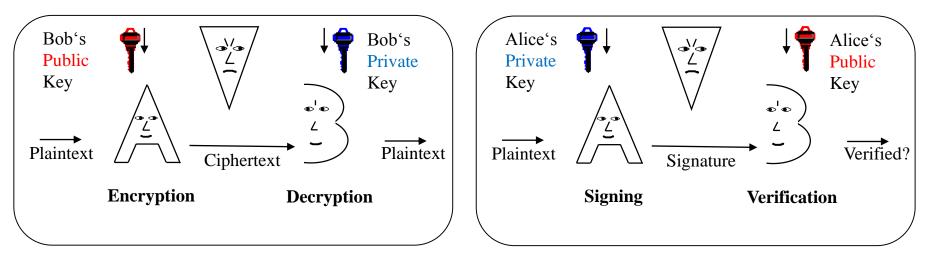
- USB does not define this
- Left to system implementer
- May depend on system implementer, type of accessory and even end-user preferences

Examples:

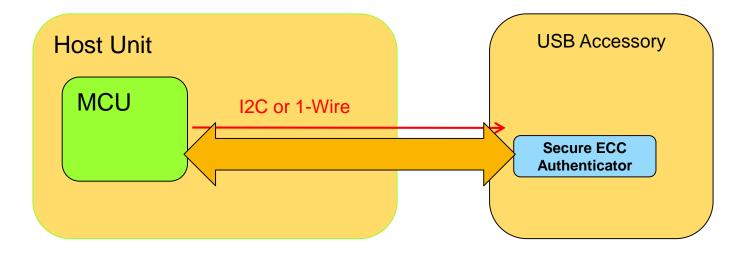

- "Untrusted" high power charger is only allowed to provide 5V/2A vs. up to 20V/5A for trusted charger
- Alert given to user first time an untrusted charger is plugged in, allowing user to identify counterfeits
- System reports to user that an untrusted accessory wants to act as keyboard, let user confirm or restrict access

AUTHENTICATION FUNDAMENTALS AND USB PROTOCOLS

Symmetric Encryption



- Efficient algorithms, good for bulk data encryption
- Both parties have a shared secret key
- Challenge 1: How do we get a key securely from A to B?
- Challenge 2: If one device is hacked, then all are hacked (since key is shared)
- Challenge 3: Both sides need secure key storage


Asymmetric Cryptography

- Based on hard and long-studied mathematical problems
- Each participating party owns a key pair
 - A public key (can be known to everybody)
 - A private key (must stay under the sole control of the owner)
- · Only the private key can decrypt something encrypted with the public key
 - Example encrypted email sender uses public key of intended receiver, only the person with the corresponding private key can read message
- Only the public key can decrypt something encrypted with the private key
 - Ensures that the message came from the original sender who had the private key

Asymmetric Crypto-based Authentication

- Benefits:
 - Unique key pair per accessory
 - Minimized hack scalability.
 - Tamper-resistant IC protects secret key
 - One anti-counterfeit IC per accessory
 - Typical interface options include I²C, One-wire interfaces
 - No need for secure element in the main unit, lower cost of ownership

USB Type-C Authentication Uses Standard Security Protocols

Certificate Format Encoding	X.509v3, DER encoding
Digital Signing of Certificates and Auth Messages	ECDSA, using NIST P256, secp256r1
Hash algorithm	SHA256
Random number	NIST SP800-90A and NISTSP800-90B

USB Authentication Certificates and Certificate Chains

Definitions:

- Certificate: A <u>digital form of identification</u> that provides information about an Entity and certifies ownership of a particular public key.
- Certificate Chain: A series of <u>two or more Certificates</u> where each Certificate is <u>signed by the</u> <u>preceding Certificate</u> in the chain.
 - Root Certificate: The first Certificate in a Certificate Chain. This certificate is self-signed.
 - Leaf Certificate: The last Certificate in a Certificate Chain (typically device specific).
 - Intermediate Certificate: A Certificate that is neither Root nor Leaf.

Restrictions:

- Up to 8 Certificate Chains allowed (up to 4 that have USB-IF Root Certificate)
- Maximum Certificate chain size: 4096 bytes

Certificate Contents (Examples, See Spec for Complete Details)

Distinguished Name – unique per entity

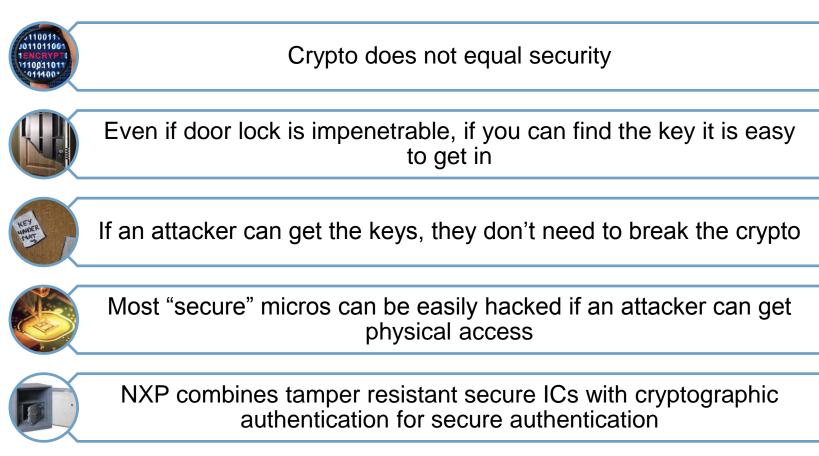
- Includes USB VID, PID where appropriate (both mandatory in leaf certificate)
- Organization name
- Serial number

Certificate Validity Dates


Device Capabilities

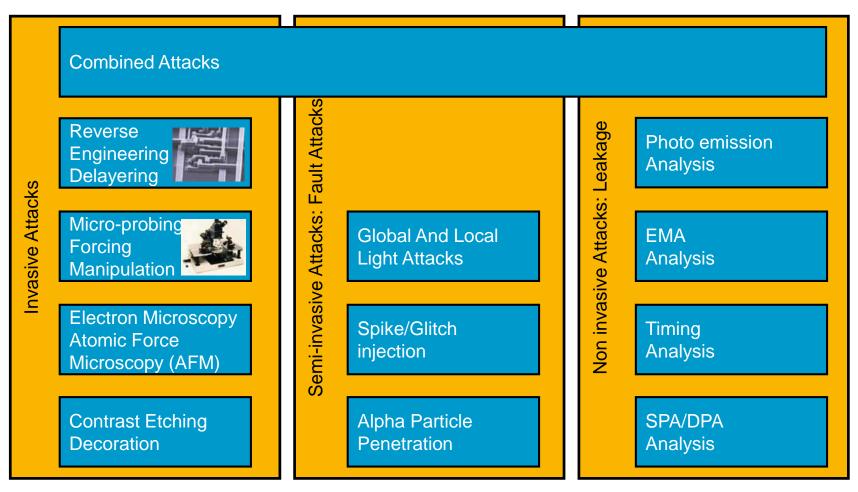
Security component description

Vendor proprietary information


Simplified Elliptic Curve (ECC) based Authentication

17 PUBLIC USE **#NXPFTF**

Is Cryptography Enough?



Multilayered security extends beyond the IC to Software, Product Design and Manufacturing

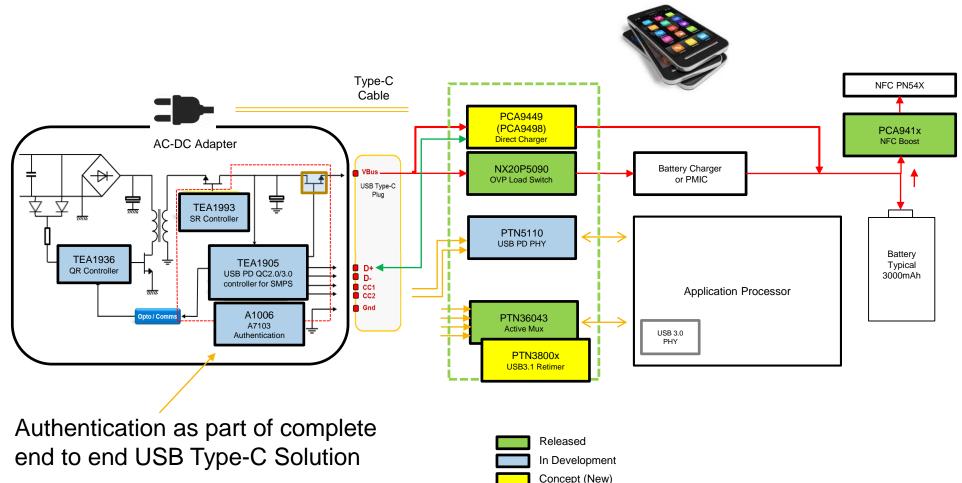
Cracking a Crypto Authentication Device

Attacker's goal is to steal the secret key(s)

19 PUBLIC USE **#NXPFTF**

"Vendors of products take appropriate measures to protect the execution of the USB Type-C Authentication protocol and all private keys."

"Products should provide protected tamper-resistant operation and storage for the private keys to prevent them from being read (all or in part), copied or otherwise disclosed."


"This includes protection against side-channel and fault injection attacks, including software exploits and physical attacks such as leakage, probing, glitching, reverse engineering, and statistical analysis methods."

NXP PRODUCTS FOR SECURE USB AUTHENTICATION

NXP USB Type-C Interface & Smart Charging – End to End Optimized

NXP's Recommended Product Options for USB Authentication

	A1006	A7103
Type of Authentication	USB PD Vendor-specific	USB Auth 1.0 Compliant
Crypto Supported	ECC B-163, ECDH	ECC P256, ECDSA
Tamper Resistant	Yes	Yes
EEPROM	4 kbit	20 kByte
Interfaces	I ² C, one-wire	I ² C, one-wire
Standard Packages	HXSON6 (2 x 2) CSP (1 x 1)	HVSON8 (4 x 4) CSP-12 (2.1 x 2.1)
Status	Sampling, Q3 Production	Production

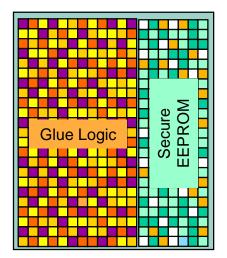
- A1006 offers industry's smallest form factor, lowest power secure authenticator
- A7103 offers full USB Authentication 1.0 compliance

23 PUBLIC USE **#NXPFTF**

Security Threats Landscape

NXP Comprehensive Security Concept

Layered approach protects against all type of attacks Secure IC & Software Secure Design Secure Manufacturing Secure Key Insertion


Proven by third party security assessments and approvals

24 PUBLIC USE **#NXPFTF**

Examples of NXP Attack Countermeasures

- Glue Logic
 - Function blocks are chopped up and randomly mixed
- Memory encryption, Memory scrambling
 - For unique placement of data for each IC
- Security routing on all metal layers
- Security sensors on the IC
 - e.g. voltage, temperature
- Active and passive shielding
- Protected true random number generator
- Secured state-machine
 - Secured booting/secured mode control
 - Protection against pertinent fault attacks (robustness)
- Leakage attack countermeasures
 - Protection against timing analysis
 - Protection against Single Power Analysis (SPA), Differential Power Analysis (DPA), Electromagnetic Analysis (EMA)
 - Protection against Differential Fault Analysis (DFA)

NXP Security Management System – Secure Product Delivery

Secure Product Manufacturing

- Certified procedures for ROM code and FabKey data submission
- All sites involved in manufacturing are regularly re-audited according to Common Criteria
- NXP owned manufacturing sites

Security Maintenance

- Dedicated security managers
- Continuous Improvement process installed including regular process reviews

Trustful external Partnerships

- Customer Screening Procedure
- Long lasting trustworthy partnerships with suppliers and vendors

Regularly Assessed by Security Audits

NXP Trust Provisioning Service

Creation of secret keys, certificates & personalization data in HSM

• Only **HSM**'s (Hardware Security Modules) with CC EAL5+ certification have access to Master secrets and unencrypted cryptographic objects

Insertion of key data into NXP chips during production

• Security sealed **Wafer Tester** allocates cryptographic objects into chips

27 PUBLIC USE **#NXPFTF**

NXP Value Proposition for A1006 Secure Authenticator

Best in class anti-counterfeiting/anti-hacking technology

- · Strongest levels of market-proven and certified security
- End to end security includes common criteria certified design environment, production facilities and secure personalization/key insertion per chip

Lowest power, smallest footprint, high performance

- Solutions as small as 1mm2
- Power consumption as low as 500 uA full-on, 50 uA typ, < 1 uA deep sleep
- Full certificate validation plus ECC challenge-response in ~50 ms

Ease of system integration

- Comprehensive end to end USB Type-C solution
- Demo boards and host demo software available
- Applications support team includes security experts and USB experts

SECURE CONNECTIONS FOR A SMARTER WORLD